
Chapter 3
High-Speed, Ultra-High-Precision
Nanopositioning: A Signal Transformation
Approach

Ali Bazaei, Yuen K. Yong, S.O. Reza Moheimani, and Abu Sebastian

Abstract. Signal transformation is a novel strategy employed in feedback control
to reduce the impact of measurement noise on positioning accuracy. This chapter
addresses robustness issues of the method with respect to output disturbance and
uncertainty in plant low frequency gain. The robustness problems can be solved
by an inner loop with integral action before incorporating the signal transformation
mappings. Feedback controllers are designed for two-dimensional positioning of
a novel 12-electrode piezoelectric tube used for scanning probe microscopy. The
closed-loop bandwidths are intentionally limited to set the standard deviation of
the projected noise around 0.1 nm. For triangular waveform tracking and a general
class of plants and compensators, necessary and almost sufficient conditions are
derived for stability and convergence of tracking error. Effectiveness of the proposed
method, regarding tracking and robust performances, is shown by simulations and
experiments.

3.1 Introduction

Observation, control, and manipulation of matter at very small dimensions have
attracted a great amount of attention in nanotechnology (1; 2). The invention of
scanning probe microscopy (SPM) is one of the revolutionary events in nanoscience
and nanotechnology (3; 4; 5).
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Accurate tracking of a fast triangular waveform is one of the major challenges
not only in SPM (6; 7; 8) but also in other scanner-based devices such as opti-
cal scanners and selective laser sintering (SLS) machines (9; 10). The performance
of the piezoelectric tube scanner is often quantified by its positioning resolution
(which is governed by measurement noise), tracking bandwidth and robustness to
disturbances (5). There has been a significant effort to improve the tracking accu-
racy and speed of piezoelectric tube scanners using feedback control techniques.
To track a fast triangular signal, high bandwidth closed-loop controllers have been
implemented in many nanopositoning devices (7; 11; 12). However, the scanning
speed is limited in feedback control systems due to hysteresis, thermal drift, sen-
sor noise, uncertainty, and mechanical vibrations when piezoelectric tubes are used
to follow non-smooth triangular trajectories (13). Capacitive and inductive sensors
are commonly used in nanopositioning systems due to their capability of providing
simple solution for non-contact, high-resolution measurement. These sensors typi-
cally have a noise density of 20 pm/

√
Hz (14). For every hundredfold increment in

the closed-loop system bandwidth, the position accuracy of a nanopositioning scan-
ner will decrease tenfold. This potentially degrades the resolution of the scanner,
hindering it from performing positioning tasks that require subnanometer resolu-
tion. Hence, feedback control methods with limited closed-loop bandwidth are of
considerable importance.

Command pre-shaping methods can be considered as a possible way for vibration
suppression in an already designed closed-loop control system, leaving the closed-
loop bandwidth of the measurement noise unaffected (15; 16; 17; 18). However,
these methods are not suitable for tracking of time-varying commands such as tri-
angular waveforms or suffer from lack of robustness to plant uncertainties. Itera-
tive learning control (ILC) can also be added as a feed-forward control action in a
feedback system to improve the steady-state tracking error for repetitive references
without altering the closed-loop bandwidth (19; 9). However, it may require a large
number of iterations to converge. Feedback control methods such as repetitive con-
trol (RC) for tracking of periodic references introduce large closed-loop bandwidths,
which may not be acceptable in the presence of measurement noise. Moreover, the
trade-off between the tracking error and rejection of non-periodic disturbances in
RC systems can cause problems when excessive cross coupling exist among the
scanner axes (20; 21).

In (22), the concept of signal transformation was put forward as a novel approach
for tracking of triangular waveforms in a nanopositioning system. The method
showed significant closed-loop performance improvement compared with an or-
dinary feedback-control-system having a similar control bandwidth. However, the
method is sensitive to DC gain variations and disturbances arising from cross cou-
pling between the two axes.

This chapter addresses how signal transformation can be used along with tradi-
tional feedback control methods to improve tracking error in an atomic force mi-
croscope (AFM) scanner while keeping closed-loop measurement noise below a
pre-specified level and providing stability and robustness to DC-gain variations and
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disturbances. A thorough stability analysis of the method in the absence of measure-
ment noise and disturbances is also presented in the Appendix.

3.2 Objectives

To characterize the impact of measurement noise in feedback control systems, con-
cept of projected noise is introduced. As shown in Fig. 3.1, consider a typical feed-
back control system designed to control a physical quantity x, which is measured
by a sensor, that provides a measured signal xm := x + n for feedback, which is af-
fected by measurement noise n. By the projected noise, we mean the direct effect of
the measurement noise signal n on the actual controlled output x in the closed-loop
feedback system. For linear systems, this effect can be quantified in terms of the
noise signal n and the closed-loop transfer function from n to x. An objective in this
paper is to evaluate the capability of signal transformation method in reducing pro-
jected measurement noise compared to ordinary feedback systems. To do this, we
maintain the standard deviation of the projected measurement noise around 0.1nm
at the actual displacement of x-axis. The other objective is to provide disturbance
rejection capability and robustness when signal transformation is incorporated into
the control systems.

Fig. 3.1 Illustration of pro-
jected measurement noise in
a typical feedback control
system

3.3 Signal Transformation

The signal transformation approach incorporates appropriate mappings between
non-smooth signals (e.g. triangular waveforms) and smooth signals (e.g. ramps) in
a control system to improve the tracking error while keeping the closed-loop band-
width low to limit the projected measurement noise (22). The signal transformation
method for control of a SISO plant is described by the hybrid control system shown
in Fig. 3.2, where Φ and Φ−1 refer to the signal transformation mappings, which in
the case of triangular signal tracking use piecewise constant gains g1 and g2 as well
as biases b1 and b2. The latter can be presented in the following form:

g1 = g2 = (−1)k, b2 = 2a0k, b1 =−(−1)kb2 , (3.1)

where a0 is the amplitude of the desired triangular waveform xd , which has period
2T , as shown in the left top insert in Fig. 3.2, and k is the index of the half period
defined as

k(t) = floor
( t

T
+ 0.5

)
. (3.2)
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Fig. 3.2 Schematic diagram of signal transformation method for triangular waveform
tracking

The signal transformation blocks, which use g2 and b2, can convert the non-smooth
periodic triangular signal xd into a smooth ramp signal denoted by r in the left top
insert in Fig. 3.2. The signal transformation block between the plant and compen-
sator does the reverse action, i.e. it can convert the smooth ramp signal into the non-
smooth triangular signal. Consider an ideal situation, where the noise n and output
disturbance do are zero, the plant is a unity gain transfer function, and its output is
perfectly following the desired signal. In this case, the input/output signals at the
compensator block will be smooth signals with no breaks or discontinuities, and
the burden of providing appropriate non-smooth trajectories at the actuator, which
demands a high control bandwidth in an ordinary feedback system, is carried by
the signal transformation block. In this way, the compensator can be designed with
a smaller closed-loop bandwidth in favor of rejecting the projected measurement
noise without deteriorating the steady-state error. The Appendix addresses neces-
sary and sufficient stability conditions of the signal transformation method in the
absence of noise and disturbances. The signal transformation method, however, has
robustness and disturbance rejection problems, which will be explained in Sec. 3.4.

3.4 Investigation of System Robustness

In this section, we use simulations to show that the signal transformation method
mentioned in Sec. 3.3 can improve the tracking performance of feedback control
systems with low closed-loop bandwidth, which translates into low projected noise.
We also investigate the robustness of the method to DC gain variations and output
disturbance using a model obtained for the x-axis of an AFM scanner. To do this,
we use a model for the x-axis of the scanner, obtained after closing a damping loop
through a low noise piezoelectric induced voltage to damp the first resonance of the
tube. The piezoelectric induced voltage is obtained as in (23). The model has zeros at
230±6000i,−1180±876i, and−2.1, and poles at−1286±1992i,−1100±1497i,
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and −2.3. A constant gain of 1/0.42 was included at the input to force a unity DC
gain for the plant in Fig. 3.2. The compensator in Fig. 3.2 is a double integrator plus
an integrator in the following form:

Kx(s) = 2.3× 50s+ 250
s2 , (3.3)

which provides a gain margin of 23.4 dB, a phase margin of 87◦, and reduces the
closed-loop bandwidth to 21 Hz. Such a low closed-loop bandwidth can keep the
projected measurement noise around 0.1 nm, as shown in Sec. 3.6.1. For a 10-Hz
triangular reference with amplitude a0 = 2 V (10 μm peak-to-peak) and under dif-
ferent conditions, the resulting closed-loop steady-state displacement errors (xd−x),
scaled to voltage by sensitivity of capacitive displacement sensors (0.4V/μm), are
shown in Fig. 3.3. With unity DC gain and no disturbance, the signal transforma-
tion provides acceptable tracking (compare the thick solid line curve with a 4-V
peak-to-peak triangular reference). However, when the plant DC gain is increased
or is reduced twice (6 dB), which is much less than the gain margin, the error in-
creases unacceptably, as shown in Fig. 3.3. This shows a lack of robustness against
variations in the plant DC gain. With unity plant DC gain, the steady-state error of
the system to the triangular reference along with a unity amplitude constant output
disturbance do has also been included in Fig. 3.3 (dotted line), which shows an un-
desirable disturbance rejection performance. In this example, the 21 Hz bandwidth
with signal transformation cannot provide acceptable disturbance rejection, while it
is suitable for tracking in the absence of disturbances. To appreciate the benefit of
signal transformation, we have replaced the signal transformation blocks by unity
gains. The resulting ordinary feedback system with unity plant DC gain and no dis-
turbances has the response labeled “No signal transformation” in Fig. 3.3, which
shows that the 21 Hz bandwidth without signal transformation is not sufficient for
acceptable tracking of a 10 Hz triangular reference.

1.4 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.5
−6

−4

−2

0

2

4

6

Time (sec)

S
te

a
d

y
−

s
ta

te
 e

rr
o
r 

(v
o

lt
)

plant DC−gain = 1

plant DC−gain = 2

plant DC−gain = 0.5

with output disturbance

No signal transformation

Fig. 3.3 Effects of plant DC-gain variations and output disturbance on closed-loop steady-
state response of x-axis with signal transformation
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3.5 Incorporating Robustness in Signal Transformation

In this section, we incorporate an intermediate feedback loop prior to the signal
transformation blocks, as shown in Fig. 3.4, to improve the robustness properties
mentioned in Sec. 3.4. In Fig. 3.4, the signal transformation mappings denoted
by Φ and Φ−1 are as before, and dox, nx, vcx, vpx, and ux stand for output dis-
turbance, measurement noise, capacitive sensor output, piezoelectric induced volt-
age, and piezoelectric actuation voltage of the x-axis, respectively. A low-pass filter
F(s) =

(
1 + s

1000

)−1
was used to reduce the effect of measurement noise. The inter-

mediate and outer compensators were selected as

Ki(s) =
166.667

s
(3.4)

Kii(s) =
50s+ 250

s2 . (3.5)

The compensators Ki(s) and Kii(s) were selected such that the overall transfer func-
tion from sensor noise nx to the real displacement output signal x has a low band-
width of 21 Hz, similar as in Sec. 3.4. This transfer function can be described as

Txn(s) :=
x(s)
nx(s)

=− Ki(s)Px(s)[F(s)+ Kii(s)]
1 + Ki(s)Px(s)[F(s)+ Kii(s)]

, (3.6)

where Px(s) is the transfer function of the damped system of the x-axis. The robus-
tification loop by itself (excluding the outer loop) provides a unity DC gain from u
to x with a gain margin of 27.7 dB, phase margin of 90◦, and bandwidth of 13 Hz.
The overall system has a gain margin of 42 dB, phase margin of 55◦, and bandwidth
of 11.6 Hz for the forward transfer function from the reference to the displacement
output. The simulation results shown in Fig. 3.5 correspond to closed-loop response
of the proposed method where the same triangular reference signal and disturbance
as in Sec. 3.4 are used and the plant DC gain in the legend refers to the DC gain of
the damped system in Fig. 3.4. Clearly, the steady-state tracking error remains ac-
ceptable in the presence of DC-gain variations of the plant and output disturbance,

Fig. 3.4 Schematic diagram of signal transformation method with a robustification loop
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Fig. 3.5 Effects of plant DC-gain variations and output disturbance on closed-loop steady-
state response of x-axis with robustified signal transformation

which shows that the robustification loop can improve the robustness of the signal
transformation method without deteriorating its benefits (low tracking error with
low bandwidth).

3.6 Experimental Results

In this section, the signal transformation method with the proposed robustifying
scheme is performed on the x-axis of the actual scanner for further examination.
The external electrode of the piezoelectric tube scanner is segmented into 12 equal
sections, and the inner electrode is a continuous electrode which is grounded. One
end of the tube is fixed. The free end serves as a stage over which a sample can be
placed and its horizontal deflections are measured by two capacitive sensors. Figure
3.6 illustrates the wiring of the tube for actuation and sensing in the x-axis alone,
where ±ûx and v̂px are the actuation and piezoelectric induced voltages after and
before amplification, respectively. The same wiring is applied to the y-axis, but is
not illustrated for the sake of clarity. A dSPACE-1103 rapid prototyping system was

Fig. 3.6 Simultaneous
piezoelectric actuation and
sensing for x-axis of the
tube scanner
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Fig. 3.7 Schematic diagram
for control of y-axis

used to implement the x- and y-axis feedback controllers in real time. The z-axis
displacement was controlled using the AFM’s software and circuitry. The damped
y-axis is controlled by an ordinary integral control as shown in Fig. 3.7, where the
compensator

Ky(s) =
1500

s
(3.7)

provides a gain margin 8.2 dB and a phase margin 86◦. The y-axis reference signal
ry is a ramp signal whose slope is 512 times less than that of the x-axis triangular
reference. The x-axis controllers and the triangular reference signal are as in Sec.
3.5. The overall noise transfer function Txn(s) for the x-axis controller has a band-
width of 21 Hz as before. A calibration grating (MikroMasch TGQ1) with a 3 μm
period, 1.5 μm square side and 20 nm height was used for imaging. A contact mode
ContAl cantilever probe with a resonance frequency of 13 kHz was used to perform
the scan. To evaluate the scanning performance of the controllers, a 9.8 Hz triangu-
lar reference signal was applied to the x-axis and the aforementioned synchronized
ramp signal was applied to the y-axis of the piezoelectric tube scanner to generate a
10 μm × 10 μm image (with 256×256 scan lines). Figure 3.8(a) shows the scanned
image and the tracking performance of the x-axis displacement with signal trans-
formation of the piezoelectric tube scanner. The RMS error of the tracking signal is
80 nm.

3.6.1 Tracking Performance and Noise

The resolution of the piezoelectric tube is often governed by the sensor noise due
to the noise being fed back to the actuator in closed-loop systems. This makes the
open-loop architecture a more attractive solution than the closed-loop one. However,
open-loop devices are sensitive to nonlinear effects such as drift and creep. These
effects deteriorate the tracking performance and subsequently degrade the image
quality generated by the devices.

The signal transformation method presented in this paper ensures that the noise
content of the controlled x-position signal x, in Fig. 3.4, is low. To estimate the noise
content of the x-axis displacement, the capacitive sensor output was first recorded
as the noise signal nx while the piezoelectric tube remained stationary. Then by
simulation the response of the noise transfer function Txn(s) to the recorded noise
signal was obtained as a measure of noise projected into the actual x-position. The
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(a) Signal transformation + (b) Robustification only (c) Robustification only
robustification
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Fig. 3.8 Comparison of the projected noise, tracking error and AFM image (10 μm × 10
μm) of the three closed-loop systems. (a) Closed-loop system with signal transformation and
robustification loop. (b) Closed-loop system without signal transformation. The integrator
gain was tuned to 270; therefore the projected noise is similar to that of system (a). (c) Closed-
loop system without signal transformation. The integrator gain was tuned to 1500; therefore
the tracking performance is similar to that of system (a). σpro j is the standard deviation of
the projected noise. The tracking performance in the x-axis of each closed-loop system is
illustrated. The triangular reference signal (dashed line) and output displacement (solid line)
are also plotted.
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resulting histogram is shown in Fig. 3.8(a). The standard deviations of the sensor
noise nx and the projected noise are 3.075 nm and 0.11 nm, respectively. To evaluate
the efficacy of signal transformation, we now consider an ordinary feedback system
with the same level of projected noise for comparison purposes. If we remove the
double integrator and the signal transformation blocks, keep the robustifiction and
damping loops, apply the triangular reference signal at u in Fig. 3.4, and increase
the integrator gain in Eq. (3.4) to 270 to have the same standard deviation of 0.11
nm for the projected noise, we obtain the resulting steady-state tracking error of the
x-axis as shown in Fig. 3.8(b), where the root-mean-square (RMS) tracking error is
14.5 times more than that of the signal-transformation method. This tracking error
is mostly contributed by the low closed-loop bandwidth of the system.

Alternatively, if in the latter system, which has no signal transformation, we in-
crease the integrator gain of the x-channel to 1500 to keep the RMS value of the
resulting steady-state tracking error equal to that with signal transformation, the
standard deviation of the projected noise will increase to 0.3 nm, as shown in Fig.
3.8(c), which is almost three times more than that obtained with signal transforma-
tion. Thus, signal transformation with the proposed robustification loop provides
better tracking performance, while keeping both the projected measurement noise
and robustness against disturbance and parameter variations low.

For all three controllers designed above, the corresponding images of the cali-
bration grating have been included in Fig. 3.8. The severe distortions in the center
image are caused by the poor tracking performance of the second controller. The im-
ages of the first and the third controller are undistinguishable because of the similar
tracking performance of the two controllers. The image quality of the two closed-
loop systems is the same; it is determined by the sensor as well as environmental
noise.
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Appendix

Here the stability of the proposed signal transformation method in Fig. 3.2 is inves-
tigated in the absence of noise and disturbances.

Stability Analysis

We assume that the plant and compensator dynamics are of degrees np and nc

and are described by linear-time-invariant state-space matrix sets [Ap,Bp,Cp] and
[Ac,Bc,Cc] with Xp and Xc referring to the corresponding state vectors, respectively.
The feedthrough matrices have been assumed zero. To start the analysis, we merge
the plant and its adjacent signal transformation blocks into a unified state-space
model, called equivalent plant. Hence, we wish to determine under what circum-
stances the simple control system shown in Fig. 3.9 is equivalent to the original
hybrid control system in Fig. 3.2, i.e., with the same ramp signal r(t) in both control
systems, the time histories of variables e, v, Xc, and y in the equivalent system shown
in Fig. 3.9 are the same as the corresponding variables in the original system shown
in Fig. 3.2.

Fig. 3.9 Schematic diagram of the equivalent control system

The following theorem provides the conditions for the foregoing equivalence.

Theorem 3.1. In a time interval t ∈ (kT − T
2 ,kT + T

2 ), the hybrid control system in
Fig. 3.2 is equivalent to the control system in Fig. 3.9, and state Xe of the equivalent
plant is related to the plant state by

Xe :=
1
g1

(Xp + F), F := A−1
p Bpb1, (3.8)

provided that the gains and biases are constants (in the time interval) satisfying the
following relationships

g1g2 = 1, b2−g2CpA−1
p Bpb1 = 0, (3.9)

and the equivalent state vector at the start of the time interval is initialized according
to (3.8).
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Proof. The signal transformations in Fig. 3.2 are described in the following forms.

u = g1v + b1 (3.10)

y = g2x + b2. (3.11)

Consider the time interval t ∈ (iT −T, iT ). Since the gain and bias signals are con-
stant in this interval, the following state-space model is readily obtained using the
plant state dynamics and Eqs. (3.10) and (3.11), if the plant has a no poles at the
origin: {

Ẋe = ApXe + Bpv
y = g1g2CpXe +(b2 + g2δ0b1)

, (3.12)

where δ0 =−CpA−1
p Bp is the DC gain of the plant. It is clear from Eq. (3.12) that we

can replace the blocks between nodes v and y in Fig. 3.2 with the equivalent plant,
as described by Fig. 3.9 and Eq. (3.8), and the control systems are equivalent if the
conditions mentioned in Theorem 3.1 are satisfied.

Conditions (3.9) are satisfied with the selected gains and biases in Eqs. (3.1) if the
plant has a unity DC gain (δ0 = 1). If the plant has a transfer function of the form:

Pol(s) :=
x(s)
u(s)

=
δ0 + δ1s+ · · ·+ δnp−1snp−1

1 + ε1s+ · · ·+ εnpsnp
, (3.13)

its state-space realization can be written by the following canonical form:

Ap =
[

0(np−1)×1, Inp−1;
−1
εnp

,
−ε1

εnp

, · · · , εnp−1

−εnp

]
,

Bp =
[

0(np−1)×1;
1

εnp

]
,Cp =

[
δ0, · · · ,δnp−1

]
. (3.14)

The overall state vector X of the equivalent closed-loop system, defined as

X :=
[

Xe

Xc

]
, (3.15)

obeys the following state-space equation:
{

Ẋ = AX + Br
y = CX

, (3.16)

where

A :=
[

Ap BpCc

−BcCp Ac

]
, B :=

[
0np×1

Bc

]
,

C :=
[

Cp 01×nc

]
. (3.17)

The equivalent plant state Xe must be initialized by (3.8) at the start of each half
period, which requires knowledge of plant state Xp. To use the equivalent control
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system as a stand-alone machinery for analysis, appropriate formulas are necessary
to update the equivalent state at the switching moments t = kT − T

2 . The following
theorem gives the updating relationships at the switching moments.

Theorem 3.2. With the triangular reference signal shown in Fig. 3.2, signal trans-
formation parameters (3.1), and unity DC gain for the plant, the overall state vector
of the equivalent control system just before a switching moment obeys the recursive
formula:

X−1 := X(T−/2) = E1/2X0 + H + A−1Ba0, (3.18)

X−k+1 := X(t)|t=kT−+ T
2

= ÂX−k + J(k−0.5)+ H, k = 1,2,3, . . . , (3.19)

and the state just after a switching moment is updated using its value just before the
switching moment as

X+
k := X

(
kT +− T

2

)
= ÎX−k + L(k−0.5), k = 1,2,3, . . . , (3.20)

where L is the constant (np + nc)×1 vector:

L := [4a0,0, . . . ,0]T , (3.21)

and

Î :=
[−Inp 0

0 Inc

]
, X0 :=

[
Xp(0)
Xc(0)

]
, (3.22)

E := eAT , H := 2

[
1
T

(E− I)A−1− I

]
A−1Ba0, (3.23)

Â := EÎ, J := 2(E− I)A−1Ba0 + EL . (3.24)

Proof. For brevity, only a sketch of the proof is presented here. In the original con-
trol system shown in Fig. 3.2, the gains and biases have discontinuous changes at the
switching times t = kT − T

2 (k = 1,2,3, . . .), which makes the signals y and u discon-
tinuous. However, the states and outputs of the plant and compensator (Xc,Xp,v,x)
are continuous due to zero feedthrough matrices and the inherent integration actions
in the compensator and plant state equations. Hence, the equivalent plant state Xe

has discontinuities at the switching times because of g1 and b1 (see Eq. (3.8)). Thus,
to maintain the equivalence of the simple control system shown in Fig. 3.9 with the
original control system over time intervals longer than a half period, we have to
intentionally incorporate appropriate jumps in the equivalent plant state Xe at each
switching time, which can be described in the following form using Eq. (3.8):

ΔXek := X+
ek
−X−ek

=

(
1

g+
1k

− 1

g−1k

)
Xpk + A−1

p Bp

(
b+

1k

g+
1k

− b−1k

g−1k

)
(3.25)
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where the lowest subscript k for each variable refers its value at the switching mo-
ment t = kT − T

2 (k = 1,2,3, . . .), and the minus and plus superscripts refer to the
values of the corresponding variable at infinitesimal times just before and after the
switching moment indicated by the lowest subscript, respectively, as defined in the
following forms:

Xpk := Xp

(
kT − T

2

)
, X+

ek
:= Xe

(
kT +− T

2

)
, X−ek

:= Xe

(
kT−− T

2

)
, . . . (3.26)

If we use Eq. (3.8) to replace Xpk by g−1k
X−ek
−F−k in Eq. (3.25), the equivalent plant

state just after the switching moment can be described in terms of its value just
before the switching moment as:

X+
ek

=
1

g+
1k

[
g−1k

X−ek
+ A−1

p Bp(b+
1k
−b−1k

)
]
. (3.27)

The inverse of the plant state matrix is in the following form:

A−1
p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ε1 −ε2 −ε3 · · · −εnp−1 −εnp

1 0 0 · · · · · · 0
0 1 0 · · · · · · 0
...

. . .
. . .

. . . · · · ...
0 · · · 0 1 0 0
0 · · · · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.28)

Hence, A−1
p Bp is [−1,0, . . . ,0]T . Using (3.27) and the signal transformation gains

and biases selected in (3.1) for the triangular reference, the equivalent plant state at
the switching moments can be updated based on the following relationship:

X+
ek

=−X−ek
+ L(k−0.5), for k = 1,2,3, . . . (3.29)

where L is a np× 1 vector defined similar to (3.21). Using (3.29) and the fact that
the compensator state is continuous at the switching moments, the overall state X
just after the switching moment is easily obtained in the form of (3.20). Using the
commutativity of multiplication of A−1 and eAt , the solution of the state X from
state-equation (3.16) in the time interval t ∈ (kT − T

2 ,kT + T
2 ) with ramp input r =

2a0t
T , in terms of the state just after the switching moment t = kT − T

2 , can be written
in the following form.

X(t) = eAt′X+
k +{(eAt′ − I)[a0(2k−1)I + A−1α]−αt ′I}A−1B, (3.30)

where

t ′ := t−
(

kT − T
2

)
, α :=

2a0

T
, X+

k := X(t)|t=(kT− T
2 )+ . (3.31)
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Equation (3.19) defines a discrete-time LTI dynamic system with Â as the state
matrix, [J,H] as the input matrix, and [k − 0.5,1]T as the input vector whose
first element is a discrete-time ramp signal. Hence, a necessary condition for the
closed-loop system to be free from exponentially unstable modes is that all eigen-
values of Â are inside the unit disk. This condition is also a sufficient one because
the state at the arbitrary time t = kT − T

2 + t ′ depends on X−k through Eqs. (3.20)
and (3.30) and variable t ′ is limited to t ′ ∈ (0,T ), which shows that if X−k does not
have any exponentially unstable mode, neither does X(t). In the more general case,
where the desired signal xd is an arbitrary bounded signal but the signal transforma-
tion parameters are kept as before with unity DC gain for the plant, Eq. (3.20) will
not change but Eqs. (3.30), (3.18), and (3.19) can be represented in the following
forms:

X(t ′+ kT − T
2

) = eAt′X+
k + 2(eAt′ − I)A−1Ba0k +W(k, t ′), (3.32)

X−1 = EX0 +
∫ T

2

0
eA( T

2−t)Bxd(t)dt, (3.33)

X−k+1 = ÂX−k + Jk +W(k,T )−0.5EL, k = 1,2,3, . . . , (3.34)

where

W (k,t ′) =
∫ t′

0
eA(t′−τ)xd

(
τ + kT − T

2

)
dτB(−1)k. (3.35)

Since vector W (k,t ′) is bounded, because of the boundedness of xd , the aforemen-
tioned condition about the absence of exponentially unstable modes is not restricted
to the triangular waveform and is also valid for arbitrarily bounded reference inputs.

Theorem 3.3. Assuming unity DC gain for the plant and signal transformation pa-
rameters (3.1), the hybrid control system is free from exponentially unstable modes
if and only if the eigenvalues of matrix Â, defined in (3.24), are inside the unit circle.

Note that the hybrid control system may have exponentially stable responses,
whereas the closed-loop state matrix A, defined in (3.17), may have unstable eigen-
values, which means under some circumstances, incorporation of signal transfor-
mation into an ordinary unstable feedback system may stabilize the closed-loop
responses.

Steady-State Behavior with Triangular Reference

The signal transformation converts the original triangular reference into a ramp sig-
nal. However, it is not desirable for the plant states to grow linearly with time. The
following theorem provides conditions under which the states of the plant remain
bounded in steady-state conditions.
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Theorem 3.4. Assuming the triangular reference input in Fig. 3.2, unity DC gain
for the plant, signal transformation parameters (3.1), and eigenvalues of matrix
Â inside the unit circle, the plant state in the hybrid control system will remain
bounded if and only if either of the following conditions is satisfied:

δc :=−CA−1B = 1 (3.36)

P(t ′) := [Inp ,0]eAt′ Î(I− Â)−1L+ 0.5L = 0, ∀t ′ ∈ (0,T ). (3.37)

Proof. Successive use of Eq. (3.19) leads to the following equation:

X−k+1 = ÂkX−1 +
k−1

∑
l=0

Âl[(k− l)J + H−0.5J], k = 1,2,3, . . . , (3.38)

which represents the state value just before a generic switching moment in terms of
its value just before the first switching moment. We can simplify solution (3.38) if
matrix (I− Â) is invertible. Given that eigenvalues of Â have magnitudes less than
1 this condition is met. Under such assumption, the following equalities hold:

k−1

∑
l=0

(k− l)Âl = [Âk+1− (k + 1)Â+ kI](I− Â)−2 (3.39)

k−1

∑
l=0

Âl = (I− Âk)(I− Â)−1. (3.40)

Substituting the right-hand sides of Eqs. (3.39), (3.40), and (3.18) into Eq. (3.38),
we obtain the closed-form formula:

X−k+1 = ÂkEX−1 +[Âk+1− (k + 1)Â+ kI](I− Â)−2J +(I− Âk)(I− Â)−1(H−0.5J),
(3.41)

which is valid for k = 1,2,3, . . ., and represents the overall state just before the
switching moment t = kT + T

2 in terms of the state just before the first switch-
ing moment initial state. For a stable closed-loop system, where the eigenvalues of
matrix Â are within the unit circle, limk→∞ Âk is zero and (3.41) is reduced to the
following relationship:

lim
k→∞

X−k+1 = (I− Â)−1[J(k + 0.5)+ H− (I− Â)−1J] (3.42)

Using (3.42) with k replaced by k−1, (3.20), and (3.30), the steady-state expression
for X(t) is obtained as

lim
k→∞

X

(
kT − T

2
+ t ′

)
= Q(t ′)k +U(t ′), t ′ ∈ (0,T ), (3.43)
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where

Q(t ′) = eAt′ [Î(I− Â)−1J + L+ 2A−1Ba0]−2A−1Ba0 (3.44)

U(t ′) = eAt′ [Î(I− Â)−1(H−0.5J)− Î(I− Â)−2J−0.5L]

+[(eAt′ − I)(A−1− T
2

I)− t ′I]A−1Bα. (3.45)

Since the DC gain of the equivalent plant in Fig. 3.9 is unity, and the DC gain from
input v to state vector Xe is −A−1

p Bp = [1,0, . . . ,0]T , the DC gain of the closed-loop
system from input r to the overall state X , considering no signal transformation, is

−A−1B =
[−A−1

p Bpδc

V

]
=

⎡
⎣ δc

0(np−1)×1

V

⎤
⎦ , (3.46)

where vector V describes the closed-loop DC gain from r to the compensator state
Xc, and δc is the closed-loop DC gain from input r to output y. Using (3.24), (3.22),
(3.46), and the fact that Î−1 = Î, the coefficient of k in (3.43) can be simplified to

Q(t ′) = eAt′ Î(I− Â)−1L(δc−1)−2A−1Ba0 . (3.47)

Using (3.8), (3.1), (3.15), and (3.43), one can show that the plant state in steady-state
can be described as

lim
k→∞

Xp

(
kT − T

2
+ t ′

)
= g1

{
[Inp ,0]Q(t ′)+ 2A−1

p Bpa0
}

k+g1[Inp ,0]U(t ′) . (3.48)

Using equality −A−1
p Bp = [1,0, . . . ,0]T , (3.47), and (3.46) in (3.48), the coefficient

of k in the steady-state solution of the plant state vector can be expressed in the
following form:

(−1)kP(t ′)(δc−1), (3.49)

which reveals that the plant state tends to a bounded value if and only if either the
closed-loop DC gain δc is unity, or all the elements in the time-dependent vector
P(t ′), defined in (3.37), are identically zero.

Since condition (3.37) is almost impossible to occur, condition (3.36) is almost a
necessary condition for boundedness of the plant state. The plant does not have any
pole at the origin because of its unity DC gain. Hence, the only way for the closed-
loop system to have a unity DC gain is that the compensator has at least one pole at
the origin. Thus, a sufficient and almost necessary condition for boundedness of the
plant state is that the compensator has at least one pole at the origin.

In the more general case of an arbitrary bounded reference signal xd , using (3.34),
the constant vector H − 0.5J in (3.38) should be replaced by the bounded vector
W (k− l,T )−0.5EL. In this case, the last term in the right-hand side of (3.41) should
be replaced by ∑k−1

l=0 Âl[W (k− l,T )− 0.5EL], which will not grow with k, because
the state matrix Â in the discrete-time LTI system (3.34) is stable. In this way, all of
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the terms in the right-hand sides of Eqs. (3.42), (3.43), and (3.48), which grow with
k, remain unchanged. Hence, the aforementioned condition about the boundedness
of the plant state is not restricted to the triangular desired waveform and is valid for
any arbitrary bounded reference signal xd as well.

Theorem 3.5. Assuming unity DC gain for the plant, signal transformation param-
eters (3.1), and eigenvalues of matrix Â within the unit circle, a sufficient and almost
necessary condition for the plant state to remain bounded in the hybrid control sys-
tem is that the compensator has at least one pole at the origin.
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