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Abstract—The discrete-time state estimation problem is studied
for networked control systems subject to random network delays
without time stamping. A new time delay model is presented
which allows the transmitted data to be received in bursts. Under
the assumption that the data bursts are not out of order, we
derive the optimal linear estimator which guarantees an unbiased
estimate with minimum and uniformly bounded estimation error
covariance. The estimator gains can be derived by solving a set of
recursive discrete-time Riccati equations. A simulation example
shows the effectiveness of the proposed algorithm.

I. INTRODUCTION

The problem of state estimation for systems with random
time delays has attracted great attention due to the wide
applications in signal processing, control and communication
systems [1-5]. The random measurement problem was studied
as early as in [6] for state estimation. In the recent years, many
results have been reported for networked control systems with
random time delays [7-11].

In [8] and [15], the least mean square filtering problem
was discussed for systems with a single random sampling
delay. Estimation problems for systems with random delays
and uncertain measurements are also investigated in [12-14].
Zhang and Xie [16] studied the optimal estimation problem for
discrete-time systems with time-varying delays in the measure-
ment channel, and the measurements are time stamped which
can take only one value at each time instant. Schenato [18]
proposed estimators subject to simultaneous random packet
delay and packet dropout, and this allows packets to arrive in
burst or even out of order at the receiver side, as long as the
measurements are time stamped.

Without using time stamps, Sun [19] proposed the optimal
filtering problem for discrete-time stochastic linear system
with multiple random measurement delays. Sun [20] also
investigated the estimation problem for systems with bounded
random measurement delays and packet dropouts, which are
described by some binary distributed random variables with
known probabilities. But in [20], the network model can
receive the same measurement multiple times, and at the same
time, an excessively high packet loss rate can occur, which
does not fit most communication protocols. In fact, for most
network protocols, random time delays mean that more than
one measurement may be received at each time instant. That
is, measurements are received in bursts of various sizes.

In this paper, we propose the optimal estimation problem
where observation packets are subject to bounded random
delays. This allows packets to arrive in bursts at the receiver
side. We assume that there are no packet dropouts and the
packets can not be received repeatedly. Without using time
stamping, a new network model is presented in which the
measurement bursts satisfy the assumption that different bursts
are not out of order. This is a realistic assumption for most
network protocols when time delays are not serious. We derive
an optimal estimator by minimizing the estimation error co-
variance subject to the constraints that the estimate is unbiased
and estimation error covariance is uniformly bounded. The
estimator gains are given in terms of Riccati equations.

This paper is organized as follows. Section II formulates
the optimal estimation problem and describes the network
model for random delays; Section III presents the solution for
the optimal estimation using the new network model. Section
IV gives a simulation example, and Section V draws some
conclusions.

II. PROBLEM FORMULATION AND NETWORK MODEL

Consider the following discrete-time linear stochastic sys-
tem:

xk+1 = Axk + υk (1)
yk = Cxk + ωk (2)

where xk ∈ Rn is the system state, yk ∈ Rm is the
measured output, υk ∈ Rn and ωk ∈ Rm are system
noise and measure noise, respectively. A,C are matrices of
the appropriate dimensions. The initial state x0 and υk, ωk

are Gaussian, uncorrelated, white, with mean (x̄0, 0, 0) and
covariance (P0, Qk, Rk), respectively. We also assume that A
is unstable, the pair (A,C) is observable, and R > 0.

In the networked system, the output of the system is
measured at every time instant and transmitted to the estimator
through a communication channel with a random time delay.
We consider that measurements are not time stamped through
network transmission. Thus, at the receiver side, the received
measurements can not be reordered as they can arrive out of
order. The information which can be only confirmed is that the
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number of received data and the missing date at each time. We
first make the following assumptions for the network system.

Assumption 1: Each measurement is received once and
once only. The transmission delay for each measurement
ranges from 0 to N , where N is the maximum delay which
is finite and known. In particular, there is no packet loss and
measurements are received in bursts with the size of each burst
ranges from 0 to N + 1.

Assumption 2: The measurements are not time stamped.
But the received measurement bursts are such that they are in
order. That is, the received bursts follow the first-in-first-out
(FIFO) principle, but the order of the measurements within
each burst is not known.

In order to understand the problem better, we first give the
state transition diagram for the case when N = 1 :

Fig. 1. the state transition for random time-delay.

let mk be the number of missing measurements at time k,
and rk be the number of the received measurements at time
k. There are two cases:
Case 1: mk = 0, i.e., yk−1 was received at k − 1. There two
subcases according to rk:

Case 1.1, when rk = 0, time delay for yk will happen, and
mk+1 = 1;

Case 1.2, when rk = 1 the measurement yk is received on
time, so mk+1 = 0.
Case 2: mk = 1, i.e. yk−1 was not received at k− 1, then we
have:

Case 2.1, when rk = 1, yk−1 must be received at k, and yk
must be missing, so mk+1 = 1;

Case 2.2, when rk = 2, yk, yk−1 are received simultane-
ously, then mk+1 = 0.

Form the above analysis, we know that the received mea-
surement can be precisely deduced in the Case 1 and subcase
2.1. But for Case 2.2, because of absence of time stamps, we
do not know the arrival order of {yk−1, yk}.

The state transition diagram for random time delay when
N > 1 can be also be given, as shown in Fig.2:

Fig. 2. the state transition with random delay bound N > 1.

The situation here is more complex. There is only one case
where the received measurements can be precisely known:

rk = 1, where the received measurement must be the first
missing one due to the FIFO assumption. In all other cases, the
exact locations of the received data are not known due to the
lack of time stamps. However, because the bursts are not out
of order, the receive data are known to be the earliest missing
data. The arrival sequences at time k is one of the permutations
of {yk−mk+1, yk−mk+2, · · · , yk−mk+rk} and will be denoted
by ỹki, (i = 1, 2, · · · , rk!). Thus, the measurements received
by the estimator can be modeled as:

ỹk = γ
(1)
k ỹk1 + γ

(2)
k ỹk2 + · · ·+ γ

(rk!)
k ỹkrk! (3)

where γ
(i)
k (i = 1, 2, · · · , rk!) is a scalar quantity independent

of k taking value 0 or 1, satisfying
∑rk!

i=1 γ
(i)
k = 1 with

prob{γ(i)
k = 1}= ρ

(i)
k , 0 < ρ

(i)
k < 1, and

∑rk!
i=1 ρ

(i)
k = 1.

We denote γk = {γ(1)
k , γ

(2)
k , . . . , γ

(rk!)
k }.

At time k, based on the observations ỹk in (3) and the most
recent estimate x̂k−mk+1, we design the linear estimator as
follows:

x̂k−mk+rk+1 = Fkx̂k−mk+1+[Hk1 Hk2 · · · Hkrk ]ỹk (4)

The estimator error and error covariance are defined by

ek−mk+rk+1 , xk−mk+rk+1 − x̂k−mk+rk+1 (5)
P̄k−mk+rk+1 , ExEγ [ek−mk+rk+1e

T
k−mk+rk+1] (6)

where Ex is the expectation with respect to υ, ω and x0; and
Eγ is expectation with respect to γ = {γ1, γ2, . . .}.
The estimate x̂k−mk+rk+1 needs to be optimal in the sense that
it minimizes the error covariance, i.e. it is desired to find the
estimator by minimizing (6). We demand that the estimator
is unbiased, i.e. ExEγek−mk+rk+1 = 0, and we also want
the estimation error covariance to be uniformly bounded, as
defined below.

Definition 1: the estimation error covariance is called uni-
formly bounded if there exists a constant M > 0 independent
of P0, such that

P̄k ≤ M (7)

for all k = 0, 1, 2, . . ..

III. ESTIMATOR DESIGN WITH RANDOM DELAYS

In this section, we will present the solution to the optimal
estimation with random delays.

The estimator error ek−mk+rk+1 is defined in (5), substi-
tuting (1), (3) and (4) into it, we have

ek−mk+rk+1 =xk−mk+rk+1 − x̂k−mk+rk+1

=Arkxk−m+1 +

rk−1∑
i=0

Aiυk−mk+rk−i

− Fkx̂k−mk+1 − [Hk1 Hk2 · · · Hkrk ]ỹk
(8)



Assume Πi is the i-th permutation matrix of the sequence

˜̃yk =

 yk−mk+1

· · ·
yk−mk+rk

. Then in (8),

[Hk1 Hk2 · · · Hkrk ]ỹk

=[Hk1 · · · Hkrk ][γ
(1)
k ỹk1 + γ

(2)
k ỹk2 + · · ·+ γ

(rk!)
k ỹkrk!]

=[Hk1 · · · Hkrk ][γ
(1)
k Π1

˜̃yk + γ
(2)
k Π2

˜̃yk · · ·+ γ
(rk!)
k Πrk!

˜̃yk]

=[Hk1 · · · Hkrk ][γ
(1)
k Π1 + γ

(2)
k Π2 + · · ·+ γ

(rk!)
k Πrk!]˜̃yk

=[γ
(1)
k H̃k1 + γ

(2)
k H̃k2 + · · · + γ

(rk!)
k H̃krk!]˜̃yk (9)

where H̃ki is the ith permutation of [Hk1 · · · Hkrk ], i =
1, 2, · · · , rk! . Then substituting (9) into (8), we get

ek−mk+rk+1 = Arkxk−mk+1 +

rk−1∑
i=0

Aiυk−mk+rk−i−

Fkx̂k−mk+1 − [γ
(1)
k H̃k1 + γ

(2)
k H̃k2 · · ·+ γ

(rk!)
k H̃krk!]˜̃yk

=Arkxk−mk+1 − Fkx̂k−mk+1 + noise

− [γ
(1)
k H̃k1 + γ

(2)
k H̃k2 + · · ·

· · ·+ γ
(rk!)
k H̃krk!]


C
CA
· · ·

CArk−1

xk−mk+1 (10)

where the ”noise” in (10) is the system noise and the mea-
surement noise with zero mean, and is not important for the
next deduction.

By the unbiased estimation property ExEγek−mk+rk+1 =

0, with the probability of γ(i)
k , we get

Fk = Ark − [ρ
(1)
k H̃k1 + · · ·+ ρ

(rk!)
k H̃krk!]


C
CA
· · ·

CArk−1


(11)

Substituting Fk back into (10), it is rewritten as

ek−mk+rk+1 = Arkxk−mk+1 + noise − [Ark−

[ρ
(1)
k H̃k1 + · · ·+ ρ

(rk!)
k H̃krk!]


C
CA
· · ·

CArk−1


 x̂k−mk+1

− [γ
(1)
k H̃k1 + · · ·+ γ

(rk!)
k H̃krk!]


C
CA
· · ·

CArk−1

xk−mk+1

= noise +
[
Ark − [ρ

(1)
k H̃k1 + · · ·+

ρ
(rk!)
k H̃krk!]


C
CA
· · ·

CArk−1


 ek−mk+1 − [(γ

(1)
k − ρ

(1)
k )H̃k1

+ · · ·+ (γ
(rk!)
k − ρ

(rk!)
k )H̃krk!]


C
CA
· · ·

CArk−1

xk−mk+1

(12)

Theorem 1 Consider the system (1)-(2), and the network
model as described earlier. A necessary condition for the
estimation error to be unbiased and estimation error covariance
to be uniformly bounded is that Hk1 = Hk2 = · · · = Hkrk

for all k. Consequently, the optimal estimator has the form:

x̂k−mk+rk+1 = Fkx̂k−mk+1 +Hk
1

rk

rk∑
i=1

yk−mk+i (13)

Proof: Since A is unstable, E∥xk∥ → ∞ as k → ∞,.
From Definition 1, in order for the error ek−mk+rk+1 to be
uniformly bounded, in (12) we must have

[(γ
(1)
k − ρ

(1)
k )H̃k1 + (γ

(2)
k − ρ

(2)
k ) · · ·

+(γ
(rk!)
k − ρ

(rk!)
k )H̃krk!]


C
CA
· · ·

CArk−1

 = 0 (14)

Then

[γ
(1)
k H̃k1 + γ

(2)
k H̃k2 · · · + γ

(rk!)
k H̃krk!]


C
CA
· · ·

CArk−1



=[ρ
(1)
k H̃k1 + ρ

(2)
k H̃k2 · · · + ρ

(rk!)
k H̃krk!]


C
CA
· · ·

CArk−1


(15)

Denote the right-hand side of (15) by W . Note that W is a
constant.
Since

∑rk!
i=1 γ

(i)
k = 1, we have:

H̃ki


C
CA
· · ·

CArk−1

 = W (16)

for all i. Recalling that (C,A) is observable, then:

1) When rk ≤ n,


C
CA
· · ·

CArk−1

 is full row rank, then from

(16), we get H̃ki is constant for i = 1, 2, · · · , rk!. So it follows
that

Hk1 = Hk2 = · · · = Hkrk (17)

2) When rk > n, then choose all the permutations such that

Πi =

[
Π̃i 0
0 I

]



with Π̃i ∈ Rn×n. From 1), we know that Hk1 = Hk2 = · · · =
Hkn.
Similarly consider the following permutation as

Πi =

 I1 0 0

0 Π̃i 0
0 0 I2


with I1 ∈ Rn1×n1 , Π̃i ∈ Rn×n and n1 < n, then it has
Hk(n1+1) = Hk(n1+2) = · · · = Hk(n1+n).
. Following the same idea, we get Hki1 = Hki2 = · · · =
Hkin for ∀ (ki1, ki2, · · · .) ∈ (k1, k2, · · · , krk). Thus, (17)
also holds.
Let 1

rk
Hk = Hk1 = Hk2 = · · · = Hkrk , substituting it into

(4), the estimator (4) is now equivalent to (13).�
Remark 1 : Theorem 1 basically means that, under the

requirements of unbiased estimation and uniformly bounded
estimation error covariance, we just need use the average of
all the received measurements in a burst to get the optimal
estimation. Equivalently, the measurement model received by
the estimator is given by:

yk =

{
1
rk

∑rk
i=1 yk−mk+i rk ̸= 0

0 rk = 0
(18)

Next, we will give the optimal estimation gain Hk. It is
clear that there is no packet received when rk = 0, there is no
need to update the state estimate in (13), i.e., the most recent
state estimate remains x̂k−mk+1, and the error covariance is
P̄k−mk+1. So we only consider rk > 0 in the sequel.

Theorem 2 Considering the system (1)-(2), and suppose the
estimation error covariance P̄k−mk+1 is given. The estimation
gain Hk that minimizes P̄k−mk+rk+1 is given by

Hk =rk(A
rk P̄k−mk+1(

rk−1∑
i=0

CAi)T

+

rk−1∑
i=1

i−1∑
j=0

AiQk−mk+rk−i−1A
jTCT )M−1

k (19)

where

Mk =

rk−1∑
i=0

CAiP̄k−mk+1(

rk−1∑
i=0

CAi)T+

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+i−j−1A
jTCT +

rk−1∑
i=0

Rk−mk+i (20)

The corresponding estimation the error covariance is given by

P̄k−mk+rk+1 =Ark P̄k−mk+1A
rkT −HkMkH

T
k

+

rk−1∑
i=0

AiQk−mk+iA
iT (21)

P̄0 = Ex0x
T
0 (22)

Proof: substituting Hk into (11), and
∑rk!

i=1 ρ
(i)
k = 1, we

have

Fk = Ark − 1

rk
Hk

rk−1∑
i=0

CAi (23)

From (1) (2) (13), the error is :

ek−mk+rk+1 = xk−mk+rk+1 − x̂k−mk+rk+1

= Arkxk−mk+1 +

rk−1∑
i=0

Aiυk−mk+rk−i − Fkx̂k−mk+1

− 1

rk
Hk

rk−1∑
i=0

CAixk−mk+1 −
1

rk
Hk

rk−1∑
i=0

ωk−mk+i+1

− 1

rk
Hk

rk−1∑
i=1

i−1∑
j=0

CAjυk−mk+i−j (24)

It is obvious that the noises are correlated, and the estimator
error covariance is

P̄k−mk+rk+1 = Ex[ek−mk+rk+1e
T
k−mk+rk+1] =

(Ark − 1

rk
Hk

rk−1∑
i=0

CAi)P̄k−mk+1(A
rk − 1

rk
Hk

rk−1∑
i=0

CAi)T

+

rk−1∑
i=0

AiQk−mk+rk−iA
iT +

1

rk2
Hk

rk−1∑
i=0

Rk−mk+i+1H
T
k

+
1

rk2
Hk

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+i−jA
jTCTHT

k

− 1

rk

rk−1∑
i=1

i−1∑
j=0

AiQk−mk+rk−iA
jTCTHT

k

− 1

rk
Hk

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+rk−iA
iT

= (Hk +H∗
k)Mk(Hk +H∗

k)
T −HkMkH

∗T
k

−H∗
kMkH

T
k −H∗

kMkH
∗T
k +Ark P̄k−mk+1A

rkT

+

rk−1∑
i=0

AiQk−mk+rk−iA
iT

− 1

rk
Hk

rk−1∑
i=0

CAiP̄k−mk+1A
rkT

− 1

rk
Ark P̄k−mk+1(Hk

rk−1∑
i=0

CAi)T

− 1

rk

rk−1∑
i=1

i−1∑
j=0

AiQk−mk+rk−iA
jTCTHT

k

− 1

rk
Hk

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+rk−iA
iT (25)

where Mk is (20), and
H∗

k = −rk(A
rk P̄k−mk+1(

∑rk−1
i=0 CAi)T

+
∑rk−1

i=1

∑i−1
j=0 A

iQk−mk+rk−i−1A
jTCT )M−1

k .
Then Hk = −H∗

k makes P̄k−mk+rk+1 minimum, and the
estimator gain (19) is obtained.
Substituting Hk back to (25), we get (21), with the initial
condition is P0 = Ex0x

T
0 .�

Remark 2: It is well-known that for a standard Kalman
filter, the estimation error covariance Pk+1 is a monotonic



function of Pk. Thus we want to know whether this property
extends to the proposed estimator. The answer turns out to be
affirmative, as shown below.

From (25), we have

P̄k−mk+rk+1 = Ex[ek−mk+rk+1e
T
k−mk+rk+1] =

(Ark − 1

rk
Hk

rk−1∑
i=0

CAi)P̄k−mk+1(A
rk − 1

rk
Hk

rk−1∑
i=0

CAi)T

+

rk−1∑
i=0

AiQk−mk+rk−iA
iT +

1

rk2
Hk

rk−1∑
i=0

Rk−mk+i+1H
T
k

+
1

rk2
Hk

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+i−jA
jTCTHT

k

− 1

rk

rk−1∑
i=1

i−1∑
j=0

AiQk−mk+rk−iA
jTCTHT

k

− 1

rk
Hk

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+rk−iA
iT (26)

We denote the mapping (26) from P̄k−mk+1 to P̄k−mk+rk+1

by F(·) : Sn
+ → Sn

+, i.e.,

P̄k−mk+rk+1 = F(P̄k−mk+1) (27)

Lemma 1 F(·) is a monotonic function, i.e., if P̄
(1)
k−mk+1 ≥

P̄
(2)
k−mk+1 > 0, then

F(P̄
(1)
k−mk+1) ≥ F(P̄

(2)
k−mk+1) (28)

Proof: denote the mapping (26) from P̄k−mk+1 and Hk to
P̄k−mk+rk+1 by G(·, ·) : Sn

+ × Rn → Sn
+, then since the

solution Hk in (19) is obtained by minimizing (26), that it is

Hk = argmin
H̃k

G(P̄k−mk+1, H̃k) (29)

with the suppose P̄
(1)
k−mk+1 ≥ P̄

(2)
k−mk+1, let H

(1)
k and H

(2)
k

be the corresponding Hk as obtained in (19) by (29), then

P̄
(2)
k−mk+rk+1 = G(P̄

(2)
k−mk+1,H

(2)
k )

≤ G(P̄
(2)
k−mk+1,H

(1)
k )

≤ G(P̄
(1)
k−mk+1,H

(1)
k )

= P̄
(1)
k−mk+rk+1 (30)

Hence, the lemma holds.�
In the above, the two equalities follow from (29). The first
inequality follows from (29) as well. The second inequality
follows from (26), i.e., G(P̄k−mk+1, H̃k) is linear in P̄k−mk+1

when Hk is fixed.
Remark 3: The implication of Lemma 1 is that the structure

for state estimator (4) is indeed an optimal choice for a
linear estimator. That is, it is sufficient to consider a linear
combination of x̂k−mk+1 and ỹk instead of considering a
linear combination of all the received measurement bursts.

Theorem 2 gives the optimal estimation of xk−mk+rk+1 at
time k. The next theorem extends this by providing an optimal

estimate of xk+1 at time k. We will denote this estimate by
x̂k+1|k.

Theorem 3 Considering the system (1)(2) with random time
delay bounded with N > 1 and the initial m1, the number
of received packets rk is given for all k. At time k, the
observation measurements is modeled in (18), then the optimal
estimator is given by:
• When rk = 0, there is no need to update the state estimate
and the error covariance. Therefore,

x̂k+1|k = Amk x̂k−mk+1 (31)

• When rk > 0, the update state estimation is obtained in
Theorem 2, based on these, the estimator x̂k+1|k is

x̂k+1|k = Amk−rk x̂k−mk+rk+1 (32)

with
mk+1 = mk − rk + 1 (33)

Proof: The (31) is obvious when there is no update measure-
ment, and we get the estimation just by prediction. When
rk > 0, the most recent update estimation is x̂k+lk−mk+1

which has been given in Theorem 2. Since the measurements
{yk−mk+lk+1, yk−mk+lk+1, · · · , yk} are missing or without
known order at time k, there is no measurement can be used to
estimate xk+1. Thus it can only use prediction for getting the
x̂k+1|k based on the last update estimation x̂k+rk−mk+1. The
number of missing packets is mk−rk, therefore, the prediction
state estimate is obtained in (32).�

IV. SIMULATION EXAMPLE

In this section, we present a numerical example for the case
of the maximum time delay N = 1.

Consider a system described in (1) and (2) with the follow-
ing specifications:

A =

[
1.1 −0.1
0.5 0.9

]
, C = [1 2]

and R = 0.1, Q = 0.25I2, P0 = 0.25I2, where I2 is the
identity matrix.

We know that rk is obtained according to the transition
diagram in Fig. 1, and suppose the transition probabilities are
as follows:

p00 = P (m(k + 1) = 0|m(k) = 0) = 0.85;

p01 = P (m(k + 1) = 1|m(k) = 0) = 0.15;

p10 = P (m(k + 1) = 0|m(k) = 1) = 0.75;

p11 = P (m(k + 1) = 1|m(k) = 1) = 0.25

Then Fig. 3 shows the comparison of the trace of the error
covariance for three scenarios:
method 1: standard Kalman filtering (without delays);
method 2: the proposed method in this paper;
method 3: when there receive two measurements, the estimator
just use the newest measurement.

It can be seen from the simulation results that the proposed
estimator in the paper has a better performance.
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V. CONCLUSION

In this paper, we have studied an optimal state estimation
problem for the case when the measurements are subject to
random network delays without time stamps. By assuming that
the received measurements are in bursts and the bursts are not
out of order, a new network model is deduced. This network
model mimics many real-world network protocols. An optimal
linear state estimator is derived with the properties that the
state estimate is unbiased and that the state estimation error
covariance is uniformly bounded and minimized. It turns out
that this estimator essentially employs the averaged received
measurements in each burst. The assumption that the received
measurement bursts are not out of order is void in the case
when the maximum time delay equals one because in this case
the received measurement bursts are always in order.
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