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Abstract—The distributed circumnavigation problem, in which
the task is to circumnavigate a target of interest by a network
of autonomous agents, has many applications in security and
surveillance, orbit maintenance, source seeking, etc. This paper
deals with the circumnavigation problem using a team of non-
holonomic unicycles. A novel distributed solution is proposed
based on cyclic repelling strategies to achieve a circular motion
around a target in a circular formation. This new approach
considers minimum number of information flow links and local
measurements only, yet a uniform distribution of unicycles ro-
tated around the target is accomplished. The asymptotic collective
behavior is analyzed based on the block diagonalization of
circulant matrices by a Fourier transform. Simulation results
also verify the validity of the proposed control algorithm.

I. INTRODUCTION

The circumnavigation problem, in which the task is to
circumnavigate a target or an area of interest, has many appli-
cations in security and surveillance, orbit maintenance, source
seeking, etc. The circumnavigation task can be performed by
either a single agent or a group of agents. For the single-agent
case, a control strategy is proposed for holonomic vehicles
in [1]. In that paper a nonlinear periodically time-varying
algorithm is devised to localize the target, which uses only the
agent’s own position and its distance from the target. In [2] a
similar problem is considered while bearing measurements are
used instead of distance measurements. For the unicycle-like
vehicle, a range-only strategy is presented by using a sliding
mode approach in [3].

However, due to the development of multi-agent systems,
the study of circumnavigation by a team of autonomous agents
has attracted a lot of attention in recent years. Compared
with the single-agent case, besides circumnavigating around
the target, the agents are also required to keep an optimal
configuration surrounding the target in order to minimize
the target’s escape window. Moreover, the agents are often
required to do so in a distributed way, i.e., each agent should
implement the control and measurement individually. Some of
the early works include [4] where a group of holonomic mobile

robots are used. A cyclic pursuit-based strategy is proposed
in [5] which achieves uniform distribution around the target
by decoupling the target tracking and inter-agent coordination
tasks. Guo et al. study a moving-target enclosing strategy in
[6] by using an adaptive scheme to estimate the velocity of the
target. The circumnavigation problem has also been extended
to nonholonomic robots, which pose more challenges on the
analysis since the kinematic constraints are taken into account.
For example, Ceccarelli et al. present a control law to drive
a group of unicycle-type vehicles to achieve circular motions
around a static target in [7]. However, this control law does not
lead to an even spacing formation. A hybrid control strategy
which can guarantee that the vehicles are eventually evenly
spaced on the circle is introduced in [8].

In this paper we study the problem of circumnavigating
a target of interest by a group of nonholonomic unicycle-
type vehicles. Rather than designing complicated control laws
which can be proved to perform the task globally, we notice
that even a much simpler distributed control law based on a
cyclic repelling strategy can also perform the circumnavigation
task well. The control law uses only local information and is
simple and easily implementable, which is important from a
practical viewpoint. However, although the closed-loop system
looks simple, at present a rigorous stability analysis of such
systems is generally an extremely hard task because of the
nonlinearity of the system. In this paper, we first extend the
pure cyclic pursuit strategy in [9] and [10] to a more general
scheme, which comprises both the cyclic pursuit and the cyclic
repelling cases. We then show that the collective behaviors of
the system can be shaped through appropriate control param-
eters, for which we provide a sufficient condition to guarantee
the boundedness of the system. The equilibrium configurations
of the system under different control parameters are calculated.
We show that by setting this control parameter to some specific
values which make the interaction between the agents to be
a cyclic repelling structure, the agents can eventually achieve
collective circular motions around the target and keep a regular
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polygon formation. The local stability of these equilibrium
polygons is investigated based on the block diagonalization of
circulant matrices by a Fourier transform. Numerical examples
are also given to demonstrate the effectiveness of the proposed
distributed control strategy.

II. PROBLEM SETUP

Consider a team of N autonomous unicycle-like robots
traveling in the plane. It is assumed that there is a point-like
static target or beacon 7 in the plane. Our objective is to
drive all robots to move on a circle centered at the target, to
uniformly distribute them along this circle, and to maintain
this formation in circular motions, based on relative position
measurements.

For each agent ¢ = 1,2,--- | N, we employ the following
unicycle-like robot model:

T; = v; cosb;,
y'i :fu,-sinﬂi., (1)
oi = Wi,
where (z;,y;) is the Cartesian coordinate of the ith robot in
the world frame and 6; gives the orientation of robot i, also
in the world frame. The longitudinal velocity v; and angular
velocity w; are the control inputs.

To accomplish the mission, each robot ¢ measures the
relative position u%f) of the target and the relative position
uS:) of another agent 7 + 1 (see Fig. 1 for illustration). Both
measurements are taken in robot 2’s local frame. Also, due
to the circular nature of the desired formation, modulo N
operation is used to identify robots, i.e., robot NV + 1 is the
same as robot 1.

auf) w
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Fig. 1. An illustration of the control law for a > 1, in which the triangle
represents the target.

The relationship between the relative coordinate and the
global coordinate in the world frame is given as
(1) _ LT — %4 (1) _ Lit1 — Li
u =R 01 ,ua =R 91 )
7 (6:) L/T_yi:| + (6:) L/m —yz}
where
R(0;) — cosb;
Y | —sin;
is the rotation matrix, and (z, y7) is the Cartesian coordinate
of the target.

sin 9,}

cos 0;

III. LOCAL CONTROL STRATEGY AND BOUNDEDNESS
ANALYSIS

In this paper, we propose and examine the following simple
continuous-time strategy:

V4 k, 0 i i
{ }_ {0 kJ (1= au +au],

£%3

2

where k, and k, are positive control gains.

o When a = 0, the control law (2) becomes the pure cyclic
pursuit control which has been studied in [10].

o When a € (0, 1), robot ¢ pursues both the target and robot
1+ 1.

o When a; = 1, each robot pursues the target independently
and it can be shown that (x;,v;) — (x7,y7) as t — o0.

e When a € (1,a) with @ > 1, robot ¢ pursues the
target while repelling itself from robot ¢ + 1. Without
the attraction from the target, it is obvious that cyclic
repelling will lead to divergence of (z;,y;). However,
due to both the attraction effect of the target and repulsion
effect between agents, a circular motion around the target
can be achieved for suitable a as we will see in the paper.

Using the pseudo-linearization as in [10], we will conclude
that the trajectories of all (x;,y;)’s are bounded under the
control law (2) when a takes value in a certain set.

To show that, we define

Zi| | n @ cost;| |zT
Ui| " |vi]  k, |sinb; yr |’
which is the relative position of a point with a distance &, /k,,

ahead of robot ¢ with respect to the target. Differentiating
(Z4,7;) and applying (2) result in

i) = lo-oGn] -G
Yi Yi+1 Yi
k2 cos ;11 cos b;
+ E {_(1 —a) |:Sin0i+]_:| + {sin@,} } ’
To describe the system more concisely, let us define z =

[Z1-- -iN]T, g = [t- --g}N]T, cos® = [cosb - --COSQN]T,
and sin @ = [sin 0y - - -sinOx]7. We then have

i SR 2 o
7 Y10 M| |yl k,|0 M| |sinf|’
where M =circ[l (a—1) 0 0]. Here in this paper
we use circ [4; Ay An] to represent a (block) cir-
culant matrix with the first (block) row [A1 Aq A N].
We will meet block circulant matrix in Section V.

We first recall a simplified version of Rayleigh-Ritz theo-
rem.

Lemma 1. [11] Suppose that A € R™*" is a real symmetric
matrix with eigenvalues \j; satisfying \p, > Ap—1 > -+ >
Ao > A1 Then \zTa < 2T Az < \,zTz.

Let us use sec(+) to denote the secant function and use |- |
and [-] to denote the floor and ceiling functions, respectively.



The following result shows the boundedness of the robot
trajectories.

Theorem 1. For a group of N unicycles (1) under control
law (2), their trajectories are ultimately bounded if

ac {0.,1—Sec (%))

Remark 1. In the above theorem, we can see that when N
is even, the right bound is 2 and when N is odd, the right
bound is slightly greater than 2.

Proof of Theorem 1: The case of a = 0 has been
proved in [10]. Here we consider the case of a € (0.,1 —

oo (20217)),
Let V = 3(27z + g7y). Taking the time derivative of V'

along the solution of (3), we obtain

: #AT v 0[] k2 [#]7[M 0] [cosf
V=—k |- I I I el .

U 0 M| |y ke, |U 0 M| |sin@
where

_ M+ MT
M:—FT

According to [12], the eigenvalues of M are

a—1
5 0 --- 0

= circ [1

O N 1 (a1 cos (2T
)\k—1+T(<,0k+<,0k )=1+(a 1)COS(N>.,

. We can see that the smallest eigenvalue
W) To make
2|N/2 jﬂ)
=)

where @), = e2I™F/N

ming(Ar) = A|ny2) = 14 (@ — 1) cos (
sure miny(\g) > 0, it requires that a < 1 — sec (
Hence with Lemma 1 we have

T r~ 2 r~1T
. . z| |z k; [z]" [M 0] [cos®
< — v
vs-smponi (21T 20
Then V' < 0 for [|Z]| > #£||M||v'N/mink()x). By the
ultimate boundedness result in [13, Section 4.8], it follows
that the trajectories are bounded. ]

IV. EQUILIBRIA OF INTEREST

In this section we analyze the collective behaviors at
equilibria for the system under control law (2) and then we
concentrate on finding a special class of equilibria of interest.

Without loss of generality, we let k, = 1 and k, = 1.
Instead of working on the original dynamics of x;, y; and 6;,
we will look at the dynamics of v;, w; and

Bii=0i41—0; “)
to investigate the collective behaviors of system (1) under
control law (2). Taking derivatives of (2) and [;, we have

v = (1 — a)viy1 cos B; — v; +w?,
wi = (1 — @)y sin B — viw, (5
Bi = Wi+1 — Wi

We are interested in those formations that satisfy v; = 0

and w; = 0 for all ¢, which correspond to uniform circular
motions.

Theorem 2. Suppose v; = 0, w; = 0. If a € |0,1 —

sec (%)) then
e all the agents move on concentric circles with equal
angular velocities or
o all the agents remain stationary at a single point.
If in addition, a # 0, then
o the center of concentric circles is the target (x7,yr1) or
o the agents keep stationary at the target (v7,y7). |

Proof: First, we show that all the angular velocities are
equal. Suppose v; = 0 and w; = 0 for all 7. Then according
to (5), it is obtained that

i) if @ = 1, then v; = 0 and w; = 0,Vi. Thus, §;’s are
constants.

it) if @ # 1, all §;’s should also be constants. To show that,
we differentiate ©; and w; in (5) and get

;= —(1 — a)vi415; sin B,
@; = (1 — a)vi1B; cos B;.

Since 9; = @; = 0, then (1 — a)?4?v?,, = 0, hence 3; = 0
or v;41 = 0. When v;; = 0, it consequently forces v; = 0
and w; = 0 and then v; = 0,w; = 0,Vi. Therefore we have
wi+1 = w; := w for all 7.

Secondly, we show that all the agents move on concentric
circles or remain stationary.

1) If @ # 0, then the trajectory of each ¢ can be written as

)l e o
0:(t) = do; + wt £ 7/2, N

where (Z;,7;) is the agent ¢’s center of circular motion and
r; = v; /@ the radius of the circle. The sign of 7/2 is positive
when the agent moves around the target counterclockwise and
negative when the agent moves clockwise.

According to (2), we have

a-ofut] =B ] =meo )

Substituting (6) into the above equality we get

a-a 5] - (o] valpr] =m0 [o] -
(1= o [Snllouns 480 , [coston 2]

Integrating both sides of the above equality from some time
instant ¢y to to + 27/, since the right hand side is zero, we

get
(1-a) {‘””1} - [x} ta {“’T} —0. (8)
Yi+1 Yi yT
So when a = 0, we get (Z;41,Fi+1) = (T4, y;) directly, which
implies the agents move on concentric circles.

'"When a = 0, the term in (2) which the target involves in vanishes so
there is no target.



To discuss the case of a # 0, we rewrite (8) as a recursion

relation:
(1-a) FMH —177’} _ {1_71 —JCT}
Yiv1 — YT Yi — Y1

Applying this relation N times, we get

(1—a) {‘” B ”} - {‘” B ‘”7} .
Yi — Yt Yi =yt
So when a € (0,1 (ZN2IT)) then (1 —a)N # 1 and
thus we can obtain that (Z;,7;) = (x7,y7), Vi. This means
the agents move on concentric circles centered at the target.
2) If w = 0, then we show that v; = 0 for all 7. Suppose
by contradiction that there exists v; # 0. Then it can be
inferred that the trajectory of robot ¢ approaches co since v;
is a nonzero constant nonzero and w; is zero. This contradicts
Theorem 1. Therefore, v; = 0,w; = 0, V7 and thus we get

(1-a) Tit1 — Ti +a IT =T
Yi+1 — Yi Yt — Yi
from (2). Thus similar to the analysis about the center of
concentric motions, we can get (z;41,%;+1) = (z;,y;) when

— sec

a =0 and (x;,v;) = (x7,yr) for all ¢ when a € (0,1 —

sec (%)) This case indicates that the agents remain

stationary at a single point and the single point is exactly the
location of the target if additionally a # 0. [ |

Theorem 2 shows that if a € (0,1 — sec (%) , then
at equilibria, the agents either form a polygon formation which
rotates around the target or the agents rendezvous at the target.
But if a is not in the set [0,1 — sec (%)), the agents
may have different behaviors. For example, when a = 2 and
N is even, the agents may run on eccentric circles.

Next we are going to look at a special class of equilibria that
corresponds to the uniform circular motions about the target.
Let & = [v;, wi, B,-]T and we can write each subsystem (5) as

& = f(&i Eiv1)- 9

,EX]T. Then the overall system can be

Let £ = [¢f,¢T,...
written as
£=f(9. (10)
The equilibria of system (10) are the solutions of a set of
3N nonlinear equations
(1 — a)vig1 cosB; —v; + w? =0,
(1 = a)viyq sin B; — v;w; = 0, (11)
wir1 —w; = 0,
where ¢ = 1,...,N. We have proved in Theorem 2 that
w; = w,Vi. However, it is still difficult to solve this set of
equations directly, but a special set of equilibria of interest
can be derived. That is,

V] =Vg = -+ =UN =1,
W] = Wy = =wnN =W, (12)
Bir =B =" =Bn:=5,

for some ¥,w and 3. When (12) holds, it follows from (11)
that

(1—a)vcosB — v +w? =0,

(1 —a)vsin B —vw = 0.

(13)

If v, = v = 0,w; = w = 0 for all 7, then from Theorem 2
we know all the agents stay at the target point, which is
also an equilibrium of the system. Nevertheless, we are more
interested in the case v; = ¥ # 0,w; = w # 0 for all ¢ that
represents the uniform circular motion around the target.

According to (4), we have (>, 8;) mod 2 = 0. If we
restrict §; € [0,27), then ), 5; = 2dr for some integer d €
{1,2,--- ,N —1}.

Theorem 3. The set

. e ..~ (1—a)?®sin? B
is an equilibrium set of system (10) with v = T (1=a)cos "
w=(1—a)sinf and B =

2d7r

Proof- This can be obtained by solving (13) with 3 =
directly. l
This set of equilibria corresponds to the collective behavior
that all the agents move on the same circle with even spacing
between neighboring agents. In other words, it corresponds
to the generalized regular polygons formed by the group of
robots in the plane. We provide the formal definition below.

Definition 1. [/4] Let d < N be a positive integer and R
the counterclockwise rotation in the plane about the origin
through angle =Y 247 gnd let z; # 0 be a point in the plane.
Then point z;y1 = Rz;,1 = 1,...,N — 1 and edges z;11 —
zivt = 1,..., N define a generalized regular polygon, which
is denoted by {%}

The polygon {%} is call positively oriented if d < N/2 or
negatively oriented if d > N/2.

V. STABILITY ANALYSIS

Stability of equilibrium polygons defined in Theorem 3 will
be investigated in this section. Let £ = 15 ® [0, @, 8] (where
v # 0,0 # 0) be an equilibrium point (14). The linearized
model about the equilibrium point for each subsystem (9) is
then obtained to have the following form

& = A& + By,

where & = & — [0,@, B]T and the Jacobian matrices A and
B are calculated as
-1 20 —(1-a)vsinf
A=|-w -0 (l—a)vcosp
0 -1 0
[(1—a)cosB 0 0
B=|(l—-a)sinf 0 0
0 10




Moreover, the linearized model of the overall system (10) has
the form

£= A,
where é =¢—¢€and A is the block circulant matrix

A =circ[A, B,03y3, ..., 03x3].

A block circulant matrix can be block diagonalized by
means of the Fourier Matrix [12]. This is stated in the
following lemma.

Lemma 2. The eigenvalues of A are the collection of all
eigenvalue of

A+ B, A+ ¢B, A+ ¢*B,..., A+ oV "'B,

where ¢ = e2I7/N
According to Lemma 2, each diagonal block in the diago-
nalized form of A is

Dz‘:AJr(Pi_lB-, ie{l,2,--- N}

To determine the local stability of each equilibrium polygon,
we need to locate the eigenvalues of all D;’s. This is not a
trivial step considering that D; is a complex matrix. However,
since to locate the eigenvalues of D, is equivalent to locate
the roots of its characteristic polynomial, we propose to use
the following theorem.

Theorem 4. [15, Theorem 3.16] Consider a complex polyno-
mial of the third degree

p(A\) = A2+ a1 A% + ag\ + as,

where ay, a2, a3 € C. Define the Hermitian matrix

ai + ax as — Ao as + as
H= |—as+ay aias+asa; —asz—as aza; — aias
as + as aias — azai aoa3 + azas

where ¢ denotes the complex conjugate of c. The polynomial
p(A) is asymptotically stable if and only if H is positive
definite.

We denote the leading principal minors of H as hy, ho, and
hs and recall the fact that a Hermitian matrix H is positive
definite if and only if its leading principal minors are positive.
We apply Theorem 4 to the characteristic polynomial of D;
with @ = 2 and obtain that

h1 =2(¢, ¢; — ¢ + 2),
hy =8(c, — 1)(¢, 3 — 2¢% ¢ + 2¢, ¢ + 32 ¢;
— 8¢ c; +2¢; — c? + 3¢, — 4),
hs = —32(c, — 1)%(c; — 1)(c; + ¢,)?
- (2¢, c? - 2cl2 - 4c$ci —5¢,¢; + 8Sc¢; + 503 + 2¢, — 8),
where ¢, = cos 8 and ¢; = cos
It is easy to check that ~; > 0. We can further prove that
e ho >0 and,

2(i—Dx
=

o the last term of hs: 2¢, ¢7 — 2¢7 — 4c2c; — ey ¢; + 8¢; +
5¢2 +2¢,. — 8 < 0.
Stability of a given D; is therefore dependent on the sign of

hs = (c; — 1)(ci + ).

Wheni=1,¢; =1and ﬁg = 0. Calculating the eigenvalues
of Dy we can find that this corresponds to a zero eigenvalue.
However, it does not affect the stability of the system. Similar
to [10, Lemma 2], this zero eigenvalue occurs because of the
definition of 3; which intrinsically satisfies ). 5, = 2km, k €
N

When i € {2,3,--- N}, hs > 0 is equivalent to ¢, < —¢;,
that is .
cos 2dm - 20— 1)m
N N
Thus, hs > 0 for all i € {2,3,---, N'} is equivalent to
2dm 2 2dm 2(N - 1)

cos — < —cos — and cos — < — cos
N N N N

from which we obtain
(N =2)r - 2dm - (N+2)7
N N N
and thus

N d N

E -l<d< E + 1.
A. Case I: N is odd.

Theorem 5. If a = 2 and N is odd, then among all the

equilibrium polygons {%} only {LN—]\/]QJ and {H\;VW} are

(15)

asymptotically stable.
Proof: This is a direct result of (15). [ |

B. Case II: N is even.

When ¢ = 2 and N is even, ﬁg > 0 for all 7 €
{2,3,---, N} requires that d = N /2, which is the case © = 0
and w = 0 by Theorem 3. Therefore we consider d = % +1
instead as this is a more interesting case corresponding to
the uniform circular motions. In this case, besides i = 1,
hs =0wheni=2andi= N — 1, i.e., ¢; = —c,. However,
with a minor modification of the parameter a, we show in the
following result that the equilibrium polygons {

} are
asymptotically stable.

_N
N/2E1

Theorem 6. If N is even and a = 2 — € where ¢ is a small
positive real number, then among all the equilibrium polygons

{% } only {ﬁ} are asymptotically stable.

Proof: The Taylor series of the third leading principal
minor hs at a = 2 is

(192¢) — 128c} — 897c] + 640c5 + 1536¢ — 1152¢;
— 1153¢3 + 896¢2 + 320c, — 256)(a — 2) + o(a —2). (16)
It can be proved that the term (192¢) --- — 256) < 0 when
d= N/241,s0 (16) is positive if a = 2 —¢ if £ > 0 is small
enough. [ |



Note that when the equilibrium polygon is positively ori-
ented, w < 0, so the agents move along the circle in a clock-
wise direction. Conversely, when the equilibrium polygon is
negatively oriented, w > 0, the agents move along the circle
in a counterclockwise direction.

One problem of this control law is that when N = 4n + 2
with some positive integer n, overlap of vehicles will happen.
There are several ways to overcome this situation. For exam-
ple, the agents can decide to let one of them exit the task
via a distributed negotiation mechanism. Or the vehicle can
just adjust their control gains to let themselves circumnavigate
the target on concentric circles with different radii. Another
solution might be rearrange the interaction topology between
the agents to form two cyclic repelling structures, each with
2n + 1 agents.

VI. SIMULATIONS

In this section, we conduct some simulations to demonstrate
our results. Here we set k, =1 and k, = 1.

Due to the space restriction, we only present the simulation
results when NV is odd. In Fig. 2, five robots are initialized at
a unstable equilibrium polygons {2}. From the simulations
we can see that the vehicles escape away from the original
equilibrium polygon and converge to a stable equilibrium
polygons {3}. Fig. 3 shows that five vehicles whose initial

Fig. 2. {3} = {3}

postures are randomly chosen converge to an equilibrium
polygon {2}.

VII. CONCLUSION

In this paper, a distributed control law for a network of non-
holonomic vehicles, which are deployed to achieve collective
circular motions around a target of interest, has been proposed.
We show that the collective behaviors of the multi-vehicle
systems can be shaped by choosing different control weights.
A sufficient condition for the boundedness of the trajectories
is provided. We then show that by setting the control weight to

30

10

’10-10 0 10 20 30

Fig. 3. Random — {g}

some specific values, the agents can achieve an evenly spaced
circular formation around the target.
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