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a b s t r a c t

The paper studies the general circumnavigation problem for a team of unicycle-type agents, with the goal
of achieving specific circular formations and circling on different orbits centered at a target of interest. A
novel distributed solution is proposed, in which the control laws are heterogeneous for the agents such
that some agents are repellant from the target while attractive to its unique neighbor and some agents are
attractive to the target while repellant from its neighbor. A systematic procedure is developed to design
the control parameters according to the specific radii of the orbits and the formations that the agents are
desired to converge to. Moreover, this control scheme uses a minimum number of information flow links
between the agents and local measurements of relative position only. Based on the block diagonalization
of circulant matrices by a Fourier transform, asymptotic convergence properties are analyzed rigorously.
The validity of the proposed control algorithm is also demonstrated through numerical simulations.
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1. Introduction

The circumnavigation problem, in which the task is to cir-
cumnavigate a target of interest by one agent or a network of
autonomous agents, hasmany applications in security and surveil-
lance (Shames, Dasgupta, Fidan, & Anderson, 2012), satellite for-
mation flying (Milam, Petit, & Murray, 2001), source seeking
(Moore & Canudas-de Wit, 2010), etc. In a space mission, a for-
mation made up of numerous micro satellites is desired to orbit
around a large satellite for the tasks of monitoring, maintenance
and repairing, in which the fundamental issue is the autonomous
formation by the micro satellites and also the relative orbit forma-
tion of these micro satellites with respect to the large satellite. In
a security and surveillance mission, it is often required to have a
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single or a group of agents to circle around a target or an area of in-
terest for monitoring or gathering information. Depending on dif-
ferent applications, there may be different control specifications,
but in general there is a fundamental requirement of achieving cir-
cular formations on specific orbits around a target of interest.

Many circumnavigation algorithms have been studied recently
in the literature for a single agent. For holonomic agents, a
continuous-time nonlinear periodically time-varying algorithm
is developed in Deghat, Shames, Anderson, and Yu (2010) and
Shames et al. (2012), which adaptively estimates the position of
the target and moves the agent to a trajectory encircling it based
on the distance or bearingmeasurement to the target. The bearing-
based circumnavigation algorithm is also extended to the unicycle-
like agent in Deghat et al. (2012). Moreover, for the unicycle-like
agent, a range-only strategy is presented inMatveev, Teimoori, and
Savkin (2011) using a sliding mode approach. The study of circum-
navigation by a team of autonomous agents has also attracted a lot
of attention recently. Comparedwith the single-agent case, besides
circumnavigating around the target on a specific orbit, the agents
should also achieve an optimal configuration surrounding the tar-
get through group coordination, e.g., to uniform the spacing next to
each other. A big challenge here is how to achieve coordination in a
distributed way. Some of the early works in this line include (Yam-
aguchi, 1999) where a group of holonomic mobile agents are used.
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A cyclic pursuit-based strategy is proposed in Kimand Sugie (2007)
which achieves uniformcircumnavigation bydecoupling the target
tracking and inter-agent coordination tasks.Moving-target enclos-
ing strategy is proposed inGuo, Yan, and Lin (2010) byGuo et al. For
nonholonomic agents, Ceccarelli et al. present a switching control
scheme to drive a group of unicycle-type vehicles to achieve circu-
lar motions around a static target in Ceccarelli, Di Marco, Garulli,
and Giannitrapani (2008). However, this control law does not re-
sult in an even spacing formation, which is achieved in Lan, Yan,
and Lin (2010) by using a hybrid control strategy. Moreover, there
are also a lot of works on circular formations (Chen & Zhang, 2011;
Marshall, Broucke, & Francis, 2004, 2006; Sinha & Ghose, 2007). Al-
though in these works the orbit center depends on the agents’ ini-
tial states rather than the target, the ideas developed are still very
helpful in dealing with the circumnavigation problem if the agents
also interact with the target.

However, most aforementioned works assume that the goal is
to achieve a circular formation on the same orbit for all the agents.
But in many applications such as satellite formation flying, the mi-
cro satellites may need to stay on different orbits to form a large
aperture; In the target enclosing problem, the agents may need to
stay on different orbits to perform different missions, for example,
the inner agents surveil the target while the outer agents protect
the inner ones against possible attacks. In this paper, we study the
general circumnavigation problem with provable stability proper-
ties for desired circular formations in which autonomous agents
can circle on different orbits around the target. A new distributed
control strategy is proposed, which combines attraction/repulsion
from its pursuing agent as well as the target of interest. The strat-
egy was originally developed in Zheng, Lin, Fu, and Sun (2013) to
achieve uniformdistribution on the same orbitwhen circling about
a specific target. But in order to solve the coordinated circumnavi-
gation problem on different orbits, this paper generalizes the idea
by considering non-identical control laws for the agents. That is,
under the proposed control strategy, some agentsmay be repellant
from the target while attractive to the pursuing agent, and some
agents may be attractive to the target while repellant from the
pursuing agent. We then show how the control parameters are de-
signed in a systematic way according to the specific radii of the or-
bits and the formations that the agents are desired to converge to.
Moreover, we show that among all equilibrium formations achiev-
ing uniformcircumnavigation, only twoof themare asymptotically
stable, corresponding to the clockwise or counterclockwise mo-
tions around the target. The stability analysis technique is based on
the block diagonalization of circulant matrices by a Fourier trans-
form. Simulations are also given to demonstrate the effectiveness
of the proposed distributed control strategy to achieve coordinated
circumnavigation formation.

The work is a generalization of cyclic pursuit strategies stud-
ied in Marshall et al. (2004), Zheng, Lin, and Yan (2009) and cyclic
repelling strategies studied in Zheng et al. (2013) so that the com-
bination of attraction and repulsion can be used to realize general
uniform circumnavigation around a target of interest on different
orbits. Moreover, different from the distributed circumnavigation
control laws for multiple unicycles developed in Ceccarelli et al.
(2008) and Lan et al. (2010) that are switching over time, the con-
trol law in this paper is time-invariant and continuous. In addition,
it uses only local information of relative positions and is simple
and easily implementable, which is important from the engineer-
ing standpoint.

2. Problem formulation

Consider a team of N autonomous unicycle-like agents mov-
ing in the plane R2 and suppose in the plane there is a point-like
stationary target or beacon T . Our objective is to make all agents
asymptotically converge to a formation while navigating on con-
centric orbits centered at the target. The task should be carried out
based on locally available informationwhich can be obtained by in-
dividual agents through onboard sensors, e.g., an omnidirectional
camera.

Denote N = {1, 2, . . . ,N}. The kinematic model of the
unicycle-like agent is described as follows subject to nonholo-
nomic constraints. For each agent i ∈ N,

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi, (1)
where (xi, yi) is the Cartesian coordinate of the ith agent in the
world frame and θi gives the orientation of agent i, also in theworld
frame. The longitudinal velocity vi and angular velocity ωi are the
control inputs which we need to design.

To accomplish the mission, we make the following assump-
tions:
(1) The agents interact each other forming a directed ring with

minimum information exchange. That is, agent i detects agent
(i mod N) + 1 in its local frame. Throughout the paper,
modulo N operation is used to identify agents, i.e., agent N + i
is the same as agent i.

(2) The global posture information (xi, yi, θi) is unavailable. The
difference of orientations θj − θi is also unavailable. Each agent
i can only measure the relative position µ(i)b of the target and
the relative position µ(i)+ of agent i + 1 in its own local frame.

(3) Each agent i knows the predefined radius ri of its circular orbit
and the one for its neighbor ri+1, obtained for example, through
local communication.

Remark 1. For simplicity, in the following analysis, it is assumed
that the target can be detected by all the agents all the time. This as-
sumption, however, can be relaxed in practice. For example, when
an agent cannot detect the target, it can just pursue its neighbor-
ing agent. If some of the agents detect the target, then eventually
all the agents can be steered to the vicinity of the target. In that
case, it is reasonable to assume that all the agents can detect the
target simultaneously.

Denote by (xb, yb) the coordinate of the target in the world
frame. The relationship between the relative measurements in lo-
cal frames and the global coordinate in the world frame is given as

µ
(i)
b = R(θi)


xb − xi
yb − yi


, µ

(i)
+ = R(θi)


xi+1 − xi
yi+1 − yi


,

where R(θi) =
 cos θi sin θi
− sin θi cos θi


is the rotation matrix. We define

ψi := atan2(yi+1 − yb, xi+1 − xb) − atan2(yi − yb, xi − xb) and
also let ψi ∈ [0, 2π).3

Nowwe are ready to give the formal problem statement for the
uniform circumnavigation problem studied in the paper.

The uniform circumnavigation problem For given radii r1, r2,
. . . , rN , design a local control law of vi and ωi for each agent i with
model (1) such that
(1) limt→∞ ∥(xi, yi)− (xb, yb)∥ = ri, i = 1, . . . ,N ,
(2) limt→∞ ω1 = · · · = limt→∞ ωN = ω̄,
(3) limt→∞ v1/r1 = · · · = limt→∞ vN/rN = v̄,
(4) limt→∞ ψ1 = · · · = limt→∞ ψN = ψ̄ ,
where v̄ and ω̄ are some constants and ψ̄ =

2dπ
N for some d ∈

{1, 2, . . . ,N − 1}.

Remark 2. In the uniform circumnavigation problem, formations
are not unique to satisfy the specifications. In general, there are
N − 1 possible formations because ψ̄ can be any value 2dπ

N for d ∈

{1, . . . ,N −1}. See Fig. 1 for an example of all possible four forma-
tions of five agents.

3 The function atan2(y, x) represents a two-argument arctangent function
returning the angle of point (x, y) as a numeric value in [0, 2π).
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(a) ψ̄ =
2π
5 (d = 1). (b) ψ̄ =

4π
5 (d = 2). (c) ψ̄ =

6π
5 (d = 3). (d) ψ̄ =

8π
5 (d = 4).

Fig. 1. Examples of uniform circumnavigation formations.
3. Controller synthesis and analysis

3.1. Controller synthesis

In this paper, we propose and examine the following simple
continuous-time control law:
vi
ωi


=


kv 0
0 kωδi

 
(1 − ai)µ

(i)
+ + aiµ

(i)
b


. (2)

In the equation above, kv and kω are positive control gains and
assumed to be identical for all agents, and δi is a positive design
parameter used to control the radius of the achieved circumnavi-
gating orbit. Moreover, by setting ai to be different values, different
individual actions are taken:

• When ai < 0, agent i pursues agent i + 1 while repelling itself
from the target.

• When ai = 0, agent i pursues agent i+1 irrespective of the tar-
get. Especially, when ai = 0 for all i, the control law (2) becomes
the purely cyclic pursuit control law which has been studied in
Zheng et al. (2009).

• When ai ∈ (0, 1), agent i pursues both the target and agent i+1.
• When ai = 1, agent i pursues the target independently and it

can be shown that (xi, yi) → (xb, yb) as t → ∞.
• When ai > 1, agent i pursues the target while repelling itself

from agent i + 1.

To solve the uniform circumnavigation problem on different or-
bits, each agent i needs to use (2) with different ai and δi, which
makes the analysis difficult. To overcome the difficulty, in the fol-
lowing we show that by designing ai and δi properly, the control
laws can be transformed to be identical. This is done by mapping
all the agents to virtual agents on the same orbit. Given positive
r1, r2, . . . , rN , each agent i’s corresponding virtual agent is defined
in the following way:

x̃i = (xi − xb)/ri, ỹi = (yi − yb)/ri, θ̃i = θi. (3)

So through the coordinate transformation (3), agent i is mapped to
a virtual agent with respect to the target T .

The following theorem states that the all virtual agents use
identical control laws when ai and δi are designed properly.

Theorem 1. For positive r1, r2, . . . , rN , if we design δi and ai in (2) as

δi = 1/ri and ai = 1 − c
ri

ri+1
(4)

for a constant c, then each virtual agents i is governed by

d
dt

x̃i = ṽi cos θ̃i,
d
dt

ỹi = ṽi sin θ̃i,
d
dt
θ̃i = ω̃i (5)

with identical control law
ṽi
ω̃i


=


kv 0
0 kω


R(θ̃i)


c

x̃i+1
ỹi+1


−


x̃i
ỹi


. (6)
Proof. Calculating the derivatives of (x̃i, ỹi, θ̃i) in (3) with respect
to time, we obtain
d
dt

x̃i =
vi

ri
cos θ̃i,

d
dt

ỹi =
vi

ri
sin θ̃i,

d
dt
θ̃i = ωi.

Replacing (xi, yi, θi)with (x̃i, ỹi, θ̃i) in (2), we obtain
vi
ωi


=


kv 0
0 kωδi


R(θ̃i)


(1 − ai)ri+1


x̃i+1
ỹi+1


− ri


x̃i
ỹi


.

When δi = 1/ri and ai = 1−c ri
ri+1

, combining the above two equa-
tions leads to (5) and (6). �

3.2. Boundedness analysis

In this subsection we show how to choose the system param-
eter c in (4) to guarantee that the trajectories of all (xi, yi)’s are
bounded.

Let us use sec(·) to denote the secant function and use ⌊·⌋ and
⌈·⌉ to denote the floor and ceiling functions, respectively. The fol-
lowing theorem establishes the boundedness of the agents’ trajec-
tories when c lies in certain range.

Theorem 2. For a group of N agents under control law (2) with two
parameters designed as in Theorem 1, their trajectories are ultimately
bounded if

c ∈ I :=


sec

2⌊N/2⌋π
N


, 1


.

We prove Theorem 2 by showing that the trajectories of all virtual
agents (x̃i, ỹi)’s are bounded. To do that, we define
ξi
ηi


:=


x̃i
ỹi


+

kv
kω


cos θ̃i
sin θ̃i


,

which is the relative position of a pointwith a distance kv/kω ahead
of the virtual agent i. Differentiating (ξi, ηi) and applying (6) result
in

[ξ̇i η̇i]
T

= kv


c

ξi+1
ηi+1


−


ξi
ηi


+

k2v
kω


−c


cos θ̃i+1

sin θ̃i+1


+


cos θ̃i
sin θ̃i


.

To describe the system more concisely, let us define ξ =

[ξ1 · · · ξN ]
T , η = [η1 · · · ηN ]

T , cos θ̃ = [cos θ̃1 · · · cos θ̃N ]
T ,

and sin θ̃ = [sin θ̃1 · · · sin θ̃N ]
T . We also use circ[A1 A2 · · · AN ]

to represent a (block) circulant matrix with the first (block) row
[A1 A2 · · · AN ](Block circulant matrix will also be used in
Section 3.4). It is obtained that
ξ̇
η̇


= −kv


M 0
0 M

 
ξ
η


+

k2v
kω


M 0
0 M

 
cos θ̃
sin θ̃


, (7)

where M = circ[1 −c 0 · · · 0].
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Proof of Theorem 2. Let V =
1
2 (ξ

T ξ + ηTη). Taking the time
derivative of V along the solution of (7), we obtain

V̇ = −kv


ξ
η

T 
M̄ 0
0 M̄

 
ξ
η


+

k2v
kω


ξ
η

T 
M 0
0 M

 
cos θ̃
sin θ̃


where M̄ =

M+MT

2 = circ

1 −

c
2

0 · · · 0 −
c
2


. Accord-

ing to the properties of circular matrix (Davis, 1994), the eigenval-
ues of M̄ are λk = 1 −

c
2


ϕk + ϕN−1

k


= 1 − c cos


2kπ
N


with k =

0, 1, . . . ,N − 1, where ϕk = e2jπk/N . To make mink(λk) > 0, it
requires that c ∈ I. Hence we have

V̇ ≤ −kv min
k
(λk)


ξ
η

T 
ξ
η


+

k2v
kω


ξ
η

T 
M 0
0 M

 
cos θ̃
sin θ̃


.

Then V̇ < 0 for

ξ
η

 > kv
kω

∥M∥
√
N/mink(λk). By the ultimate

boundedness result in Khalil (2002, Section 4.8), it follows that the
trajectories are bounded, so is the original system. �

3.3. Equilibrium formations

In this subsectionwe analyze how to design kv and kω for the lo-
cal control law (2) to achieve desired circumnavigation formations.

We investigate the collective behaviors of agents under local
control laws (2) by looking at the dynamics of vi, ωi, and βi :=

θi+1−θi. For collective behaviors satisfying the specifications given
in the uniform circumnavigation problem statement, it must hold
that v̇i ≡ 0 and ω̇i ≡ 0 for all i, which correspond to uniform
circular motions. Also, if all the agents perform concentric circular
motions around the target, then the value of βi becomes equal to
the value of ψi. Taking derivatives of [vi, ωi, βi]

T and considering
the choice of δi and ai as in Theorem 1, we have

v̇i =
ri

ri+1
ckvvi+1 cosβi − kvvi +

rikvω2
i

kw
,

ω̇i =
1

ri+1
ckωvi+1 sinβi −

kωviωi

rikv
,

β̇i = ωi+1 − ωi.

(8)

Let χi = [vi, ωi, βi]
T and we can write each subsystem (8) as

χ̇i = fi(χi, χi+1). (9)

Letχ = [χ T
1 , χ

T
2 , . . . , χ

T
N ]

T . Then the overall system can bewritten
as

χ̇ = f̂ (χ). (10)

For the overall system (10), it is not very hard to verify that
χ |vi = riv̄, ωi = ω̄, βi = β̄, ∀i


(11)

with v̄ =
ω̄2

kω(1−c cos β̄)
, ω̄ = kvc sin β̄ , and β̄ =

2dπ
N , d ∈ {1, . . . ,N−

1}, is an equilibrium of system (10) by substituting it to (8).
We say a group of N agents with local control law (2) achieves

uniform circumnavigation in the steady state on the orbits of radii
r1, r2, . . . , rN if at an equilibrium of (10) (namely, v̇i ≡ 0, ω̇i ≡ 0,
and β̇i ≡ 0), the specifications (1)–(4) given in the uniform circum-
navigation problem statement are all satisfied.

The following theorem reveals that uniform circumnavigation
can be achieved in the steady state with suitable choices of control
parameters kv and kω for local control law (2).

Theorem 3. For positive r1, r2, . . . , rN , suppose ai and δi are chosen
as in Theorem 1 with c ∈ I. A group of N agents with local control
law (2) can achieve uniform circumnavigation in the steady state on
the orbits of radii r1, r2, . . . , rN if

kv
kω

=
1 − c cos ψ̄
|c sin ψ̄ |

where ψ̄ =
2dπ
N with d ∈ {1, . . . ,N − 1}.

The proof of Theorem 3 requires the following lemma.

Lemma 4 (Zheng et al., 2013, Theorem 2). Suppose ai and δi are
chosen as in Theorem 1 with c ∈ I. If v̇i ≡ 0, ω̇i ≡ 0 for all i, then

• all the agents move on concentric circles with equal angular speed
around the target (xb, yb) or

• all the agents remain stationary at the target (xb, yb).

Proof of Theorem 3. It has been proven in Lemma4 that all agents
remain stationary at the target or move on concentric circles with
equal angular speed around the target when v̇i ≡ 0 and ω̇i ≡ 0.
Because the stationary equilibrium does not solve the uniform
distributed circumnavigation problem, it is not considered in this
paper. Moreover, as we point out in (11),
χ |vi = riv̄, ωi = ω̄, βi = β̄, ∀i


is an equilibriumof system (10). So it can be concluded thatψi = βi
for all i and so ψ1 = · · · = ψN = ψ̄ = β̄ =

2dπ
N with d ∈ {1, . . . ,

N − 1}. Furthermore, for concentric motions around the target we
can know that for any i,

∥(xi, yi)− (xb, yb)∥ =

 riv̄ω̄
 = ri

 kvc sin β̄
kω(1 − c cos β̄)

 . (12)

Therefore, if kv
kω

=
1−c cos ψ̄
|c sin ψ̄ |

, then ∥(xi, yi) − (xb, yb)∥ = ri, with
whichwe can then conclude that theN agents achieve uniform cir-
cumnavigation on the orbits of radii r1, . . . , rN . �

3.4. Stability analysis

In this subsection we investigate stability properties of each
equilibrium formation (11), that is, to show whether a group of N
agents can asymptotically achieve uniform circumnavigation and
which one is asymptotically stable. The main result below shows
that under the proposed control law (2) only two equilibria (11)
are asymptotically stable for specific values of c ∈ I.

Theorem 5. Consider the equilibria (11) with d ∈ {1, . . . ,N − 1}.
The following holds:

• Case I: There exists an ε > 0 sufficiently small such that when c =

1 − ε only the equilibria with d = 1 and d = N − 1 are asymp-
totically stable.

• Case II: For odd N, when c = −1 only the equilibria with d =

⌊N/2⌋ and d = ⌈N/2⌉ are asymptotically stable.
• Case III: For even N, there exists an ε > 0 sufficiently small such

that when c = −1 + ε only the equilibria with d = N/2 ± 1 are
asymptotically stable.

To prove Theorem 5, we let χ̄ = [r1v̄, ω̄, β̄, . . . , rN v̄, ω̄, β̄]
T be

an equilibrium (11). The linearized model about the equilibrium
for each subsystem (9) is then obtained, which has the following
form ˙̃χ i = Aiχ̃i + Biχ̃i+1, where χ̃i = χi − [riv̄, ω̄, β̄]

T and the
Jacobian matrices Ai and Bi are calculated as

Ai =


−kv

2kvriω̄
kω

−crikv v̄ sin β̄

−kωω̄
kvri

−kωv̄
kv

ckωv̄ cos β̄

0 −1 0

 ,
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Bi =


crikv cos β̄

ri+1
0 0

ckω sin β̄
ri+1

0 0

0 1 0

 .
Moreover, the linearized model of the overall system (10) has the
form ˙̃χ = S−1ÂSχ̃ , where χ̃ = χ − χ̄ , S = diag(1/r1, 1, 1, . . . ,
1/rN , 1, 1), and Â is the block circulant matrix Â = circ[A, B, 03×3,
. . . , 03×3] with

A =


−kv

2kvω̄
kω

−ckv v̄ sin β̄

−kωω̄
kv

−kωv̄
kv

ckωv̄ cos β̄

0 −1 0

 ,

B =

ckv cos β̄ 0 0
ckω sin β̄ 0 0

0 1 0

 .
(13)

Define Di := A + ϕi−1B, i ∈ N, where ϕ = e2jπ/N . Consider the
characteristic polynomial of Di:

pi(λ) := λ3 + ϱ1λ
2
+ ϱ2λ+ ϱ3, (14)

where ϱ1, ϱ2, ϱ3 are complex numbers. We define a Hermitian
matrix associated with pi(λ) as

Hi :=


ϱ1 + ϱ̄1 ϱ2 − ϱ̄2 ϱ3 + ϱ̄3

−ϱ2 + ϱ̄2 ϱ1ϱ̄2 + ϱ2ϱ̄1 − ϱ3 − ϱ̄3 ϱ3ϱ̄1 − ϱ1ϱ̄3
ϱ3 + ϱ̄3 ϱ1ϱ̄3 − ϱ3ϱ̄1 ϱ2ϱ̄3 + ϱ3ϱ̄2


,(15)

where ϱ̄1, ϱ̄2, and ϱ̄3 denote the complex conjugates of ϱ1, ϱ2, ϱ3
respectively.

The following lemmas are useful to prove Theorem 5.

Lemma 6. For c ∈ I/{0}, an equilibrium (11) is asymptotically sta-
ble if the leading principal minors hi1, hi2, hi3 of Hi are positive with
all i ∈ N/{1}.

We first provide two lemmas about hi1 and hi2.

Lemma 7. For i ∈ N/{1}, the inequality hi1 > 0 holds when
• N is odd and c ∈ [−1, 1) or
• N is even and c ∈ (−1, 1).

Lemma 8. For i ∈ N/{1}, the inequality hi2 > 0 holds when
• c = 1 and d ≠ N/2 or
• c = −1.

See Appendix for the proofs of Lemmas 6–8.

Proof of Theorem 5. Case I: According to Lemmas 7 and 8 and
considering the continuity of functions, we obtain that hi1 and hi2
are positive when c = 1 − ε, d ≠ N/2, and i ∈ N/{1},

Now we calculate hi3 with c = 1 and obtain

hi3|c=1 = 32k9v(cr + 1)2(ci − 1)(ci − cr)3(2crc2i + 2c2i
+ 4c2r ci − 5crci − 8ci − 5c2r + 2cr + 8),

where cr = cos β̄ and ci = cos 2(i−1)π
N .

It can be proven that the last term of hi3|c=1: 2crc2i +2c2i +· · ·+

2cr + 8 > 0. The sign of hi3|c=1 is therefore the same as h̃i3|c=1 =

(cr +1)2(ci−1)(ci−cr)3.When i ∈ N/{1} and d ≠ N/2, h̃i3|c=1 > 0
is equivalent to cos 2dπ

N > cos 2(i−1)π
N . Hence d = 1 or d = N − 1.

Notice that the equality holds onlywhen i = 2 or i = N . The Taylor
series of the third leading principal minor hi3|ci=cr at c = 1 is

−64k9v(cr − 1)3(cr + 1)5(3cr − 4)(c − 1)+ o(c − 1). (16)
Table 1
Specification and designed control parameters.

i 1 2 3 4 5 6

ri 2 2 2 3 3 3
ψ̄ 2π/3 or 4π/3

c −0.9
δi 1/2 1/2 1/2 1/3 1/3 1/3
ai 1.900 1.900 1.600 1.900 1.900 2.350
kv 2.750
kω 3.897

It can be checked that the coefficient of c−1 is less than 0. Sowhen
ci = cr , (16) becomes positive if c = 1 − ε where ε > 0 is small
enough. So when c = 1 − ε, only the equilibria with d = 1 and
d = N − 1 satisfy hi1, hi2, hi3 > 0 when i ∈ N/{1}. According to
Lemma 6, these equilibria are asymptotically stable.

Case II: Similar to Case I, it is obtained that both hi1 and hi2 are
positive when c = −1 and i ∈ N/{1}.

We calculate hi3 with c = −1 and obtain that

hi3|c=−1 = −32k9v(cr − 1)2(ci − 1)(ci + cr)3(2cr c2i
− 2c2i − 4c2r ci − 5cr ci + 8ci + 5c2r + 2cr − 8).

Similarly, it can be proven that the last term of hi3|c=−1: 2cr c2i −

2c2i −· · ·+2cr −8 < 0. The sign of hi3|c=−1 is therefore the same as
h̃i3|c=−1 = (ci−1)(ci+cr)3.When i ∈ N/{1}, h̃i3|c=−1 > 0 is equiv-
alent to cos 2dπ

N < − cos 2(i−1)π
N . fromwhich we obtain d = ⌊N/2⌋

or d = ⌈N/2⌉.
Case III: From the proof of Case II, when c = −1 and N is even,

h̃3|c=−1 > 0 for all i ∈ N/{1} requires that d = N/2, which is
the case v̄ = 0 and ω̄ = 0 by Theorem 3. Therefore we consider
d = N/2± 1 instead as this is a more interesting case correspond-
ing to the uniform circumnavigation formation. In this case, when
i ∈ N/{1}, h̃i3|c=−1 ≥ 0 and h̃i3|c=−1 = 0, onlywhen i = 2or i = N .
The Taylor series of the third leading principal minor hi3|ci=−cr at
c = −1 is

−64k9v(cr − 1)5(cr + 1)3(3cr + 4)(c + 1)+ o(c + 1). (17)

It can be proven that the coefficient of c + 1 is positive when ci =

−cr , so (17) is positive if c = −1 + ε and ε > 0 is small enough.
Hence equilibria with d = N/2 ± 1 are asymptotically stable. �

Algorithm 1 (Summary of Control Design). Given predefined radii
r1, r2, . . . , rN , each agent determines its control parameters as
follows:

(1) According to Theorem 5, for desired stable formations in uni-
form circumnavigation choose c to be either −1, −1 + ε, or
1− ε with ε > 0 sufficiently small to make h̃i2 and h̃i3 positive
for all i ∈ N/{1}.

(2) Choose ai and δi according to Theorem 1.
(3) Choose kv and kω according to the desired stable formations

and Theorem 3.

4. Simulations

In this section, we give an example of six agents to demon-
strate how to design the control parameters based on given spec-
ifications and validate our obtained results. Their predefined radii
ri and desired ψ̄ are given in Table 1. Then the control param-
eters c, δi, ai, kv and kω are designed following Algorithm 1. For
those control parameters, the trajectories of the agents are shown
in Fig. 2. The initial postures of the agents are represented by blank
wedges and final postures by filled wedges. From Fig. 2, we can see
that the desired formation is achieved on the desired orbits.
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Fig. 2. Trajectories of the robots under the control parameters given in Table 1.

5. Conclusions

In this paper, a distributed control law for a network of non-
holonomic agents, which are deployed to achieve collective cir-
cular motions around a target of interest, has been proposed. We
show that the collective behavior of the multi-agent system can
be shaped by choosing different control parameters. A sufficient
condition for the boundedness of the trajectories is provided. We
then show that by setting a particular control parameter to differ-
ent values, the agents can achieve various circumnavigation pat-
terns around the target.

Several interesting developments of this work can be regarded
as future topics.
• From a theoretical point of view, it would be of great signifi-

cance to provide global stability analysis for the collective be-
haviors.

• Another topic is to consider an undirected ring interaction
amongst the agents. In a previous work (Zheng, Lin, & Cao,
2011), we showed how a pursuit strategy drives a group of
unicycles with general connected and undirected graph to ren-
dezvous. If undirected ring-coupled unicycles pursue the target
while repel their neighbors, it is expected a static circular for-
mation around the target can be formed.

• From the analysis in Section 3.3, it is known that every config-
uration in the set (11) is an equilibrium of the system. In this
paper, we give rigorous stability analysis for specific values of c
by using the idea of perturbation analysis. To study the stability
of all c ∈ I is muchmore difficult andwe are still working on it.

• Under the proposed controller, desired circumnavigation for-
mations can be achieved onlywhen all themember agentswork
normally. It is of practical signification to consider the case
when some agents fail. In this case, to perform the task suc-
cessfully, for example, a new interaction network involving the
normal agents may be rebuilt through a distributed negotiation
mechanism.
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Appendix

The proof of Lemma 6 requires the following three lemmas.

Lemma 9 (Davis, 1994). The eigenvalues of

Â = circ[A, B, 03×3, . . . , 03×3]

are the collection of all eigenvalues of Di = A + ϕi−1B with all i ∈ N
where ϕ = e2jπ/N .
Lemma 10. For A and B defined in (13), the eigenvalues of D1 =

A + B are

λ1 = 0, λ2 = kv(−1 + c cos β̄), λ3 =
−kvc2 sin2 β̄

1 − c cos β̄
.

Lemma 11 (Barnett, 1983, Theorem 3.16). The polynomial pi(λ)
defined in (14) has all roots of negative real parts if and only if Hi
defined in (15) is positive definite.

Proof of Lemma 6. When c ∈ I/{0} and i = 1, Lemma 10 tells us
that D1 has one zero eigenvalues λ1 and two negative eigenvalues
λ2 andλ3. However, the zero eigenvalue can be proven to not affect
the stability of the system. Similar to Zheng et al. (2009, Lemma 2),
this zero eigenvalue occurs because of the definition of βi which
intrinsically satisfies


i βi = 2kπ, k ∈ N.

So to determine the local stability of each equilibrium, we need
to locate the eigenvalues of Di’s with all i ∈ N/{1}. This is not a
trivial step considering that Di is a complexmatrix. However, since
to locate the eigenvalues of Di is equivalent to locate the roots of
its characteristic polynomial pi(λ), Lemma 11 is then used. We de-
note the leading principal minors of Hi as hi1, hi2, and hi3 and recall
the fact that a Hermitian matrix Hi is positive definite if and only
if its leading principal minors are positive, which accomplishes the
proof. �

Proof of Lemma 7. We calculate hi1 = 2kv(c2
1−c2r
1−c·cr

+ 1− c · crci),
where cr = cos β̄ and ci = cos 2(i−1)π

N .
When c ∈ (−1, 1), we have (1− c2r )/(1− c · cr) > 0 and 1− c ·

crci > 0, so hi1 > 0. When N is odd and c = −1, we have hi1 =

2kv(cr ci − cr + 2). Moreover, notice that cr < 1, so hi1 > 0. �

Proof of Lemma 8. We calculate hi2 with c = ±1 and obtain that

hi2|c=1 = 8k4v(cr + 1)(crc3i + 2c2r c
2
i + 2crc2i − 3c2r ci

− 8crci − 2ci + c2r + 3cr + 4),

hi2|c=−1 = 8k4v(cr − 1)(crc3i − 2c2r c
2
i + 2crc2i + 3c2r ci

− 8crci + 2ci − c2r + 3cr − 4).

We consider hi2|c=1 first. By checking the value of f =
hi2|c=1
8k4v

, it is
found that f ≥ 0 and f = 0 when cr = −1 or (cr = 1) ∧ (ci = 1).
When d ∈ N/{N}, cr ≠ 1. So if cr ≠ −1, i.e., d ≠ N/2, then
hi2|c=1 > 0. Similarly, we can prove that hi2|c=−1 > 0. �

References

Barnett, S. (1983). Polynomials and linear control systems. Marcel Dekker, Inc.
Ceccarelli, N., DiMarco,M., Garulli, A., & Giannitrapani, A. (2008). Collective circular

motion of multi-vehicle systems. Automatica, 44(12), 3025–3035.
Chen, Z., & Zhang, H. (2011). No-beacon collective circular motion of jointly

connected multi-agents. Automatica, 47(9), 1929–1937.
Davis, P. J. (1994). Circulant matrices. American Mathematical Society.
Deghat, M., Davis, E., See, T., Shames, I., Anderson, B., & Yu, C. (2012). Target

localization and circumnavigation by a non-holonomic robot. In Proceedings of
2012 international conference on intelligent robots and systems (pp. 1227–1232).
IEEE.

Deghat, M., Shames, I., Anderson, B. D. O., & Yu, C. (2010). Target localization and
circumnavigation using bearingmeasurements in 2d. In Proceedings of 49th IEEE
conference on decision and control (pp. 334–339). IEEE.

Guo, J., Yan, G., & Lin, Z. (2010). Local control strategy for moving-target-enclosing
under dynamically changing network topology. Systems & Control Letters,
59(10), 654–661.

Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
Kim, T. H., & Sugie, T. (2007). Cooperative control for target-capturing task based

on a cyclic pursuit strategy. Automatica, 43(8), 1426–1431.
Lan, Y., Yan, G., & Lin, Z. (2010). Distributed control of cooperative target enclosing

based on reachability and invariance analysis. Systems & Control Letters, 59(7),
381–389.

Marshall, J. A., Broucke, M. E., & Francis, B. A. (2004). Formations of vehicles in cyclic
pursuit. IEEE Transactions on Automatic Control, 49(11), 1963–1974.

Marshall, J. A., Broucke,M. E., & Francis, B. A. (2006). Pursuit formations of unicycles.
Automatica, 42(1), 3–12.

http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref1
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref2
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref3
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref4
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref5
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref6
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref7
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref8
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref9
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref10
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref11
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref12


R. Zheng et al. / Automatica 53 (2015) 23–29 29
Matveev, A. S., Teimoori, H., & Savkin, A. V. (2011). Range-onlymeasurements based
target following for wheeled mobile robots. Automatica, 47(1), 177–184.

Milam, M., Petit, N., & Murray, R. (2001). Constrained trajectory generation for
micro-satellite formation flying. In Proceedings of AIAA guidance, navigation and
control conference (pp. 328–333).

Moore, B., & Canudas-de Wit, C. (2010). Source seeking via collaborative
measurements by a circular formation of agents. In Proceedings of 2010
American control conference (pp. 6417–6422). IEEE.

Shames, I., Dasgupta, S., Fidan, B., & Anderson, B. D. O. (2012). Circumnavigation
using distance measurements under slow drift. IEEE Transactions on Automatic
Control, 57(4), 889–903.

Sinha, A., & Ghose, D. (2007). Generalization of nonlinear cyclic pursuit. Automatica,
43(11), 1954–1960.

Yamaguchi, H. (1999). A cooperative hunting behavior by mobile-robot troops. The
International Journal of Robotics Research, 18(9), 931–940.

Zheng, R., Lin, Z., & Cao, M. (2011). Rendezvous of unicycles with continuous and
time-invariant local feedback. In Proceedings of 18th IFAC world congress, Vol. 18,
(pp. 10044–10049).

Zheng, R., Lin, Z., Fu, M., & Sun, D. (2013). Distributed circumnavigation by unicycles
with cyclic repelling strategies. In Proceedings of the 9th Asian control conference,
Istanbul, Turkey.

Zheng, R., Lin, Z., & Yan, G. (2009). Ring-coupled unicycles: boundedness,
convergence and control. Automatica, 45(11), 2699–2706.

Ronghao Zheng received his bachelor degree in Electri-
cal Engineering and master degree in Control Theory and
Control Engineering both from Zhejiang University, China
in 2007 and 2010, and Ph.D. degree in Mechanical and
Biomedical Engineering fromCity University of Hong Kong
in 2014. He is currently with the Department of Systems
Science and Engineering, Zhejiang University, China. His
research interests lie in the area of distributed algorithms
and control, especially the coordination of networkedmo-
bile robot teams with applications in automated systems
and security.

Zhiyun Lin received his bachelor degree in Electrical En-
gineering from Yanshan University, China, in 1998, master
degree in Electrical Engineering from Zhejiang University,
China, in 2001, and Ph.D. degree in Electrical andComputer
Engineering from the University of Toronto, Canada, 2005.
He was a Postdoctoral Research Associate in the Depart-
ment of Electrical and Computer Engineering, University
of Toronto, Canada, from 2005 to 2007. He joined the Col-
lege of Electrical Engineering, Zhejiang University, China,
in 2007. Currently, he is a Professor of Systems Control in
the same college. He is also affiliated with the State Key
Laboratory of Industrial Control Technology at Zhejiang University. He held visiting
professor positions at several universities including The Australian National Uni-
versity (Australia), University of Cagliari (Italy), University of Newcastle (Australia),
andUniversity of Technology Sydney (Australia). His research interests focus on dis-
tributed control, estimation and optimization, coordinated and cooperative control
of multi-agent systems, hybrid and switched system theory, and locomotion con-
trol of biped robots.

He is a senior member of IEEE. He is currently an associate editor for Hybrid
systems: Nonlinear Analysis and International Journal of Wireless and Mobile Net-
working.

Minyue Fu received his Bachelor’s degree in Electrical En-
gineering from theUniversity of Science andTechnology of
China, Hefei, China, in 1982, and M.S. and Ph.D. degrees in
Electrical Engineering from the University of Wisconsin-
Madison in 1983 and 1987, respectively. From 1987 to
1989, he served as an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering,Wayne State
University, Detroit, Michigan. He joined the Department
of Electrical and Computer Engineering, the University of
Newcastle, Australia, in 1989. Currently, he is a Chair Pro-
fessor in Electrical Engineering. Hewas aVisitingAssociate

Professor at University of Iowa in 1995–1996, a Senior Fellow/Visiting Professor at
Nanyang Technological University, Singapore, 2002, and Visiting Professor at Tokyo
University in 2003. He has held a ChangJiang Visiting Professorship at Shandong
University, a visiting Professorship at South China University of Technology, and a
Qian-ren Professorship at ZhejiangUniversity in China. Hewas elected to a Fellowof
IEEE in 2003. His main research interests include control systems, signal processing
and communications. His current research projects include networked control sys-
tems, smart electricity networks and super-precision positioning control systems.
He has been an Associate Editor for the IEEE Transactions on Automatic Control, Au-
tomatica, IEEE Transactions on Signal Processing, and Journal of Optimization and
Engineering.

Dong Sun is currently a chair professor and head of theDe-
partment of Mechanical and Biomedical Engineering, City
University of Hong Kong. He received the Bachelor and
Master’s degrees from Tsinghua University, Beijing, China,
and the Ph.D. degree in Robotics and Automation from
the Chinese University of Hong Kong, Hong Kong. He then
was a Postdoctoral researcher at the University of Toronto,
Toronto, ON, Canada, and a Research andDevelopment En-
gineer in Ontario industry. He has particular research in-
terests in robot control and robot-aided cell manipulation
in recent years. He has served editorial boards formany in-

ternational journals including IEEE Transactions on Robotics and IEEE/ASME Trans-
actions on Mechatronics. He is a fellow of IEEE.

http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref13
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref15
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref16
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref17
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref18
http://refhub.elsevier.com/S0005-1098(14)00571-8/sbref21

	Distributed control for uniform circumnavigation of ring-coupled unicycles
	Introduction
	Problem formulation
	Controller synthesis and analysis
	Controller synthesis
	Boundedness analysis
	Equilibrium formations
	Stability analysis

	Simulations
	Conclusions
	Acknowledgments
	Appendix
	References


