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Abstract— The paper presents a linear approach for forma-
tion control of multiple autonomous agents in d-dimensional
space. The generalized notion of graph Laplacian, associated
to a graph with possibly negative weights on the edges, is
introduced aiming to solve the formation problem of controlling
a network of point agents to form a given pattern (including
rotation, translation, and scaling). By assuming the number of
agents is larger than d+ 1, we derive that a linear distributed
control law exists for this purpose if and only if certain algebraic
conditions hold (or equivalently, the graph is globally rigid).
Next, it is shown that the generalized graph Laplacian used to
stabilize the formations can be obtained by solving a convex
optimization problem. Further results are also provided to
reveal the conditions under which the attained formations are
congruent to or just translations of the desired one.

I. INTRODUCTION

Multi-agent systems represent a class of systems com-

posed of many autonomous agents, interacting locally to

achieve desirable collective behaviors, among which forming

a group pattern is a typical one. Such behaviors have been

observed a lot in nature such as bird flocking, fish schooling

etc. In addition to these amazing phenomena, there are also a

bunch of potential applications in engineering. For example,

use unmanned aerial vehicles (UAVs) to form a team pattern

for surveillance or localization, use autonomous underwater

vehicles (AUVs) for ocean data retrieval or exploration, and

use smaller satellites in formation flying to view research

targets from multiple angles or at multiple times.

In coordination control of multi-agent systems, the concept

of graph Laplacian, perfectly reflecting the topological inter-

connection and the usage of local relative information, natu-

rally leads to distributed linear control strategies in consensus

[1]–[3], row straightening [4], [5], and containment control

[6], [7]. The Laplacian based control laws are modified in

[8] and [9] to accomplish circular and rectilinear formation

motions in the plane. The ideas are then generalized in [10]–

[13] by formally introducing complex Laplacians, based on

which the formation control problem in the plane is solved

using linear distributed control laws for both undirected

and directed graphs. However, the extension to distributed

formations in three or higher dimensions is still missing.

On the other hand, there have also been other techniques

for formation characterization and formation control in the

1State Key laboratory of Industrial Control Technology, College of
Electrical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou,
310027 P.R. China

2School of Electrical Engineering and Computer Science, University of
Newcastle, Callaghan, NSW 2308 Australia

The work was in part supported by National Natural Science Foundation
of China under grant 61273113 and by the Australian Research Council
under Grant DP130103039.

plane [14]–[17] or in three dimensional space [18], [19]. The

mainstream is to use graph rigidity [20] and gradient-descent

nonlinear control laws [21] to achieve rigid formations.

However, global stability analysis is always a critical issue

using the gradient-descent nonlinear control laws. So far,

there are only a few known results ensuring global or almost

global stability of spatial formations in the plane by assuming

particular topologies [22], [23] or simple formations [24].

Deriving distributed local control laws ensuring global con-

vergence towards desired formation shapes in three or higher

dimensional space is still challenging.

The paper aims to present a new approach for forma-

tion control with global convergence properties ensured,

by calling for a generalized graph Laplacian. That is, the

weights on the edges of the graph can be negative numbers,

based on which linear distributed formation control strategies

are developed. The approach overcomes the two technical

challenges: attaining formations in high dimensional spaces

and ensuring global asymptotic stability. Under the proposed

linear control strategies, the achievable formations are out-

comes of a desired configuration via affine motions if and

only if certain rank condition of the graph Laplacian holds,

or equivalently the graph is globally rigid. The design of the

generalized Laplacian for formation control is transformed to

solve a convex optimization problem, which can be solved

efficiently and globally. Moreover, we reveal that in order

to achieve a formation subject to rigid motions or sole

translations, only a small number of agents is required to

have additional control while the rest can remain to use the

same Laplacian based linear control. Thus, it offers a new

approach for rigid formation control by controlling only a

portion of agents to meet certain distance or relative position

constraints. Two simulation results (one in the plane and

the other in the three dimensional space) are presented to

demonstrate the correctness of the analytical results.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce several notions from

graph theory and then formulate the problem we study.

A. Notations

The following notations are used throughout the paper.

R — The set of real numbers.

1n — The n-dimensional vector of ones.

Id — The d× d identity matrix.

span{p1, . . . , pn} — The linear span of vectors p1, . . . , pn.
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B. Graph and framework

A graph is a set of n nodes V and m edges E , denoted as

G = (V , E). A graph is connected if, for all pairs of nodes

i and j, there exists a path of nodes starting from i and

ending at j. A graph is k-connected if deleting any subset

of k − 1 nodes and edges incident on those nodes results

in a connected graph. A graph is called a complete graph if

every pair of distinct nodes is connected by an edge.

A configuration in R
d (or simply called a configuration

in this paper) of a set of n nodes V is defined by their

coordinates in the Euclidean space R
d, denoted as p =

[pT

1, . . . , p
T

n]
T, where each pi ∈ R

d for 1 ≤ i ≤ n. A

framework in R
d (or simply called a framework in this paper)

is a graph G equipped with a configuration p in R
d, denoted

as F = (G, p).
We say that two frameworks (G, p) and (G, q) with G =

(V , E) are equivalent, and we write (G, p) ∼= (G, q), if ‖pi−
pj‖ = ‖qi − qj‖, ∀(i, j) ∈ E . We say that two frameworks

(G, p) and (G, q) are congruent, and we write (G, p) ≡ (G, q)
(or simply p and q are congruent, p ≡ q), if ‖pi − pj‖ =
‖qi − qj‖, ∀i, j ∈ V . A framework (G, p) is called globally

rigid if

(G, p) ∼= (G, q), ∀q ∈ R
nd ⇔ (G, p) ≡ (G, q).

A configuration p is generic if the coordinates {p1, . . . , pn}
do not satisfy any nontrivial algebraic equation with rational

coefficients ( [25]). By abuse of notion, we also say a graph

G is globally rigid if for any generic configuration p the

framework (G, p) is globally rigid. In [26], it has been proven

that if a graph G is globally rigid in R
d, then it is (d + 1)-

connected, which also implies, every node has at least d+1
neighbors. However, the reverse is not true.

C. Problem formulation

We consider a group of n agents in d-dimensional space

(for example, mobile robots in the plane, unmanned aerial

vehicles in the 3-dimensional space). The positions of the

n agents are denoted by z1, · · · , zn ∈ R
d. We consider that

each agent i has a point kinematic model given by the single

integrator

żi = ui, (1)

where ui ∈ R
d is the velocity control input. Define the state

z = [zT

1
, · · · , zT

n]
T
, as a column vector in R

nd.

Suppose each agent i has an onboard sensor allowing it to

measure the relative positions of some of the other agents,

namely, zj − zi when agent j lies in the sensing field of

agent i. Assume that the agents can sense mutually. We then

use an undirected graph G = (V , E) to model the sensing

relationship with each i ∈ V representing an agent and an

edge (i, j) ∈ E meaning that the two agents i and j can be

mutually sensed. Denote Ni the set of neighbors of agent

i. Thus, we use zij = zi − zj, j ∈ Ni to denote the

measurement available to agent i.

Consider a target configuration p = [pT

1
, . . . , pT

n]
T in R

d,

where each pi ∈ R
d for 1 ≤ i ≤ n. It has been proved in

[27] that a generic framework (G, p) in R
d with d + 1 or

fewer nodes is globally rigid if and only if G is a complete

graph (i.e., a simplex). Therefore in the paper we assume

that our graph has d + 2 or more nodes, i.e., n ≥ d + 2.

This also implies that a generic framework does not lie in

a proper affine subspace of R
d. Moreover, we assume that

pi 6= pj for i 6= j, indicating that there is no overlap for any

two points in R
d.

We are interested in the problem whether there exists a

distributed and local control law using only the available

measurement zij , j ∈ Ni, for each agent such that all the

agents converge to the affine image of p, i.e.,

A(p) :=

{

q = [qT

1, . . . , q
T

n]
T

∣

∣

∣

∣

qi = Api + a, A ∈ R
d×d

a ∈ R
d, and i = 1, . . . , n

}

or equivalently,

A(p) :=
{

q = (In ⊗A)p+ 1n ⊗ a
∣

∣A ∈ R
d×d, a ∈ R

d
}

.

Notice that a real matrix A can be factorized by singular

value decomposition as A = UΣV where U and V are

unitary matrices, and Σ is a d× d diagonal matrix. It means

that a configuration in A(p) is attained via an affine motion

from p, namely, a translation a, followed by a rotation V , a

scaling along different axis by Σ, and then another rotation

U .

If the matrix A in the definition of A(p) is an unitary

matrix, the affine image A(p) is called a rotation/translation

image, denoted as R(p). In other words, if z ∈ R(p),
the agents achieve a rigid formation, meaning that their

configuration is congruent to the target configuration.

Moreover, if the matrix A in the definition of A(p) is an

identity matrix, the affine image A(p) is called a translation

image, denoted as T (p). That is, if z ∈ T (p), the agents

achieve a rigid formation with the same orientation as the

target configuration.

From the relationships among the affine image, rota-

tion/translation image, and translation image of a target

configuration discussed above, it is clear that the rota-

tion/translation image and translation image lie in the affine

image. In other words, if a few extra constraints can be

reached by a portion of agents, then the whole team can

achieve a rigid formation subject to rotation/translation or

translation only. Therefore, controlling a group of agents to

an affine image of a target configuration not only is of its

own interest, but also serves as a starting point and provides

a new approach for rigid formation control.

More precisely, the control objective is formulated as

follows.

Control objective: For the n agent dynamics (1) and a

desired framework (G, p), we aim to design a linear control

ui = −
∑

j∈Ni

kijzij , i = 1, · · · , n (2)

with possibly negative kij’s, also called the weights on the

edges (i, j)’s, such that the trajectories of the closed-loop

system satisfy

lim
t→∞

z(t) = z∗
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where z∗ ∈ A(p) is the configuration p with translation,

rotation, and scaling.

Moreover, we aim to reveal the conditions under which

z∗ ∈ R(p) is the configuration p with translation and

rotation, and the conditions under which z∗ ∈ T (p) is the

configuration p with sole translation.

III. DISTRIBUTED MULTI-AGENT FORMATIONS

In this section we will explore necessary and sufficient

conditions (both algebraic and topological) for the corre-

spondence of the affine image of a generic configuration

and the equilibrium set of a closed-loop multi-agent system.

The design problem for an asymptotic stabilizing controller

will also be investigated. Further results will be presented

to reveal the conditions under which the attained formations

are the desired configuration with translations and rotations,

and the conditions under which the attained formations are

the desired configuration with sole translations.

A. Necessary and sufficient conditions for A(p) to be the

equilibrium subspace

Considering the distributed local control (2), we obtain the

overall closed system

ż = −(H ⊗ Id)z (3)

where H ∈ R
n×n is the generalized Laplacian matrix

corresponding to the graph with possible negative weights

kij ’s attributed on its edges. It should be pointed out that

the weights kij here might be negative, so it is different

from the consensus control protocol.

First, we present a necessary and sufficient condition for

the equilibrium set of the generalized Laplacian based control

system to be the affine image of a desired configuration.

Theorem 3.1: Consider a generic configuration p =
[pT

1, . . . , p
T

n]
T in R

d. The equilibrium set of system (3) is

the affine image A(p) if and only if rank(H) = n − d − 1
and (H ⊗ Id)p = 0.

Proof: (Sufficiency) Firstly, since rank(H) = n − d − 1, it

is then known that the null space of H ⊗ Id has dimension

(d + 1)d. Secondly, from (H ⊗ Id)p = 0, it turns out that

for any A ∈ R
d×d and a ∈ R

d,

(H ⊗ Id)[(In ⊗A)p+ 1n ⊗ a] = (H ⊗A)p
= (In ⊗A)(H ⊗ Id)p
= 0,

which means the affine image A(p) belongs to the equi-

librium set. Since the null space of H ⊗ Id has the same

dimension (d+1)d as A(p), it is certain that the equilibrium

set of system (3) is exactly the affine image A(p).

(Necessity) If the equilibrium set of system (3) is exactly

the affine image A(p), then we take p ∈ A(p) and can obtain

that (H ⊗ Id)p = 0. Moreover, since it can be verified that

A(p) is a linear subspace of dimension d2+d, it then follows

that rank(H) = n− d− 1. �

Second, we present a necessary and sufficient topological

condition for the equilibrium set of the generalized Laplacian

based control system to be the affine image of a desired

configuration.

In [28], a symmetric matrix H satisfying H1n = 0 and

(H⊗Id)p = 0 is called the stress matrix. Next we introduce

a result that a generic framework is globally rigid if and only

if it has a stress matrix with kernel of dimension d+1. The

sufficiency is shown in [28]. The necessity is conjectured in

[28] and proven in [25].

Theorem 3.2 ( [25], [28]): Suppose a graph G has n

nodes with n ≥ d + 2 and p = [pT

1
, . . . , pT

n]
T is a generic

configuration in R
d. Then the framework (G, p) is globally

rigid if and only if there exists a stress matrix H whose rank

is n− d− 1.

With the help of Theorem 3.2, we are now ready to present

a topological condition to ensure that the equilibrium set of

system (3) is the affine image A(p).
Theorem 3.3: Suppose a graph G has n nodes with n ≥

d + 2 and p = [pT

1, . . . , p
T

n]
T is a generic configuration in

R
d. Then there exists an H such that the equilibrium set of

system (3) is the affine image A(p) if and only if the graph

G is globally rigid.

Proof: From Theorem 3.2 we know that if the graph G is

globally rigid, then there exists a stress matrix H (satisfying

(H ⊗ Id)p = 0) whose rank is n − d − 1. Thus applying

Theorem 3.1 we could get that if we use the stress matrix in

system (3) then its equilibrium set is the affine image A(p).
The necessity is also straightforward. �

B. Stability and stabilization analysis

We come to design kij’s for a given globally rigid graph

G such that the affine image A(p) is exactly the equilibrium

set of system (3), and moreover the equilibrium set is

asymptotically stable.

Denote q1 the n-dimensional vector by aggregating

the first components of p1, . . . , pn. Similarly, we denote

q2, . . . , qd the corresponding aggregate vectors. Then we let

Q be an (n− d− 1)×n matrix with orthornormal rows that

are each orthogonal to 1n, q1, . . . , qd; that is

Q1n = 0, Qq1 = 0, . . . , Qqd = 0, QQT = In−d−1.

Then we are ready to present a stability criteria that can be

used in the control design.

Theorem 3.4: The system (3) is asymptotically stable with

respect to its equilibrium set A(p), i.e., limt→∞ z(t) = z∗

for z∗ ∈ A(p) , if and only if λmin(QHQT) > 0 where

λmin(·) represents the smallest eigenvalue of a symmetric

matrix.

Proof: Since A(p) is the equilibrium set of system (3), it

can be verified that

H1n = 0, Hq1 = 0, . . . , Hqd = 0.

Therefore, QHQT inherits all eigenvalues of H except the

ones at zero. Thus the conclusion follows. �

Based on Theorem 3.4, we reformulate the control design

problem as an optimization problem in the following.

We suppose the graph G has m edges, with labels

1, . . . ,m. We arbitrarily assign an orientation for each edge.
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The choice of orientation does not change the analysis. The

incidence matrix B ∈ R
n×m is defined as

Bil =







1 if edge l starts from node i,

−1 if edge l ends at node i,

0 otherwise.

Since we consider symmetric weights, each edge l of the

graph is associated with a single weight wl = kij = kji,

where edge l is incident to nodes i and j. We let w ∈
R

m denote the vector of weights on the edges. Using this

notation, the matrix H can be written as

H(w) = Bdiag(w)BT

where diag(w) stands for the m×m diagonal matrix with the

lth diagonal entry being wl. Thus, the control design problem

turns out to be the design problem of the weight vector w

subject to certain equality or inequality constraints, to meet

the stability requirement of the multi-agent formation. That

is,
maximize

w
λ

subject to QH(w)QT ≻ λIn−d−1,

H(w)qi = 0, i = 1, . . . , d

where A ≻ B refers that A − B is positive definite. The

optimization above is a semi-definite programming that can

be efficiently and globally solved by using polynomial-time

interior point methods.

C. Extra conditions to make rigid formations

In this subsection, we will show that if the agents are

in the affine image A(p) and if additionally an agent and

its neighbors are able to maintain the desired distances or

the desired relative positions, then the whole group is in a

formation subject to rotations together with translations, or

translations only.

Theorem 3.5: Suppose G is globally rigid and p =
[pT

1
, . . . , pT

n]
T is a generic configuration in R

d. For any

equilibrium z∗ = [z∗
1

T, . . . , z∗n
T]T of system (3), if there exists

an agent k such that

‖z∗k − z∗j ‖ = ‖pk − pj‖ for all j ∈ Nk,

then the equilibrium z∗ is a rotation/translation image of p,

i.e., z∗ ∈ R(p).
Proof: Note from Theorem 3.1 that if z∗ is an equilibrium

point of system (3), then z∗ is in the affine image A(p). In

other words, there exist A ∈ R
d×d and a ∈ R

d such that

z∗i = Api + a for all i. Moreover, recall from the condition

that for all j ∈ Nk, ‖z∗k − z∗j ‖ = ‖pk − pj‖. Thus, we have

for all j ∈ Nk,

‖pk − pj‖
2 = ‖z∗k − z∗j ‖

2 = (pk − pj)
TATA(pk − pj)

and

(pk − pj)
T(I −ATA)(pk − pj) = 0.

Since G is globally rigid, it then follows that G is (d + 1)-
connected [26], which implies, every node has at least d+1
neighbors. Moreover since p = [pT

1, . . . , p
T

n]
T is a generic

configuration in R
d, then it is certain that the linear span of

(pk − pj), j ∈ Nk equals to R
d. Thus,

(pk − pj)
T(I −ATA)(pk − pj) = 0

for all j ∈ Nk implies

I −ATA = 0.

As a result, for any i and j, we have

‖z∗i − z∗j ‖
2 = (pi − pj)

TATA(pi − pj) = ‖pi − pj‖
2,

meaning that the distance between any pair of nodes is

preserved, i.e., the equilibrium z∗ is congruent to p. �

Theorem 3.6: Suppose G is globally rigid and p =
[pT

1
, . . . , pT

n]
T is a generic configuration in R

d. For any

equilibrium z∗ = [z∗1
T, . . . , z∗n

T]T of system (3), if there exists

an agent k such that

z∗k − z∗j = pk − pj for all j ∈ Nk,

then the equilibrium z∗ is a translation image of p, i.e., z∗ ∈
T (p).
Proof: Similar to the proof of Theorem 3.5, for any equilib-

rium point z∗ of system (3), we have A ∈ R
d×d and a ∈ R

d

such that z∗i = Api + a for all i. If in addition,

z∗k − z∗j = pk − pj for all j ∈ Nk,

then we have for all j ∈ Nk,

pk − pj = z∗k − z∗j = A(pk − pj)

and

(I −A)(pk − pj) = 0.

For the same reason as given in the proof of Theorem 3.5,

it is known that the linear span of (pk − pj), j ∈ Ni, equals

to R
d. Thus,

(I −A)(pk − pj) = 0 for all j ∈ Nk

implies

A = I.

As a result, for any i and j, we have

z∗i − z∗j = pi − pj

meaning that the formation corresponding to the equilibrium

point z∗ is a translation of the configuration p. �

Remark 3.1: From the proof of Theorem 3.5, we can see

that as long as a number of d neighbors (not necessary

all neighbors) of a node k are able to preserve the edge

lengths, I − ATA = 0 holds, which means the equilibrium

is a realization of globally rigid formation p subject to only

rotations and translations. Therefore, if we could additionally

control d + 1 agents (which play the role of leaders in the

network) to attain the desired distances, then the whole group

of agents with the proposed linear distributed control law can

achieve a globally rigid formation.

Remark 3.2: Similarly, in addition to make the agents

converge to the affine image A(p), if we could control

d + 1 agents to attain the desired relative positions in a
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common reference frame, then the whole group of agents

with the proposed distributed control law can achieve a

globally rigid formation subject to only translations. This

can also be interpreted from the dimension of the affine

image A(p) and the number of constraints. In a generic

sense, the preservation of relative positions for d edges in R
d

results in d2 linearly independent constraints, which reduces

the (d2 + d)-dimensional equilibrium subspace A(p) to a

subspace of dimension d, corresponding to the translation

motions. However, the distance constraints in Theorem 3.5

are nonlinear with respect to z∗. Though there are totally

d independent constraints at least, it reduces the (d2 + d)-
dimensional equilibrium subspace A(p) to a smaller dimen-

sional manifold corresponding to the rigid motions (transla-

tions and rotations).

IV. SIMULATIONS

In this section, we present two simulation results of five

agents to demonstrate the correctness of our results: one is

in the plane and the other is in the three dimensional space.

For the simulation in the plane, the desired framework

(G, p) is given in Fig. 1, for which it can be checked that the

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

x

y

Fig. 1. A desired framework (G, p) in the plane.

graph is globally rigid. Thus, according to Theorem 3.3, there

exists a generalized Laplacian matrix with possibly negative

weights such that the closed-loop system has its equilibrium

set equal to the affine image of p. Moreover, by solving the

convex optimization problem in the preceding section, we

obtain that the following weights

k12 = k21 = 2.5792, k14 = k41 = −2.5792,
k15 = k51 = 4.1732, k23 = k32 = 1.5940,
k25 = k52 = −1.5940, k34 = k43 = 2.5792,
k35 = k53 = −1.5940, k45 = k54 = 4.1732

attributed on the edges of G result in a general-

ized Laplacian matrix H , with its spectrum σ(H) =
{0, 0, 0, 5.7672, 12.8958}. Therefore, the closed-loop sys-

tem (3) under the proposed distributed control law is asymp-

totically stable with respect to its equilibrium set. A simu-

lation result is presented in Fig. 2 for a randomly generated

initial state.

Next, we consider distributed formations in the three

dimensional space, whose desired framework is given in

Fig. 3. The graph G is a complete graph and thus it is globally
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1

2

3

4

5

6

7

8

9

1

2

3

4

5

x

y

Fig. 2. An achieved formation in the plane. Small circles represent the
initial states of the agents.
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Fig. 3. A desired framework (G, p) in R
3.

rigid in R
3. By the same procedure, we obtain the following

weights

k12 = k21 = −1.2491, k13 = k31 = −1.2491,
k14 = k41 = 1.8736, k15 = k51 = 1.8736,
k23 = k32 = −1.2491, k24 = k42 = 1.8736,
k25 = k52 = 1.8736, k34 = k43 = 1.8736,
k35 = k53 = 1.8736, k45 = k54 = −2.8104,

which can make the equilibrium set be the affine image

A(p) and ensure asymptotic stability of the closed-loop

system (3). The spectrum of H using the above weights is

σ(H) = {0, 0, 0, 0, 9.3682}. The Laplacian matrix L has

only one positive eigenvalue, coinciding with Theorem 3.1.

Two simulation results are presented in Fig. 4 and Fig. 5 with

different initial states. It is shown that both asymptotically

converge to an equilibrium in the affine image though the

final configurations are different depending on their initial

states.

V. CONCLUSIONS

The paper proposes a novel approach to study distributed

formations based on the generalized graph Laplacian with

possibly negative weights at its entries. Linear distributed

control laws are developed for the problem of formation

control using only local measurements, yet ensuring globally

asymptotic stability. The design of the generalized Laplacian

in solving the formation control problem is transformed to a

convex optimization problem. Necessary and sufficient (alge-
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Fig. 4. An achieved formation in R
3 – I.
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Fig. 5. An achieved formation in R
3 – II.

braic and topological) conditions are explored to characterize

the equilibrium set for the system with the Laplacian based

control. Moreover, it is shown that with a small number of

agents playing the role of leaders to additionally control their

distances or relative positions, the whole group is able to

achieve globally rigid formations subject to rotations and

translations, or sole translations. However, it is left for future

study on how to design effective control laws for leaders for

these purposes.
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