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Abstract: In this paper, we develop a method for
adaptive stabilization without a minimum phase
assumption and without lnowledge of the sign of the
high frequency gain. In contrast to recent work by
Martensson [8], we include a compactness requirement
on the set of possible plants and assume that an upper
bound on the order of the plant is known. Under these
additional hyphotheses, we generate a piecewise linear
time—-invariant switching control law which leads to a
guarantee of Lyapunov stability and an exponential
rate of convergence for the state. One of the main
objectives in this paper is to eliminate the
possibility of "large state deviations" associated
with a search over the space of gain matrices which is
required in [8].

1. INTRODUCTION

The recent literature on adaptive stabilization
includes a mmber of papers indicating a variety of
situations where one can dispense with some of the
so—called classical assumptions; e.g., see [1]-[8].
In contrast to earlier research in adaptive control,
the emphasis in this new work has been on reducing the
a priori information which is required of the system.
That 1s, the issue of concern is to determine the
extent to which one can relax the requirements that
the plant's degree and relative degree are known, the
plant is minimm phase and the sign of the high
frequency gain is knowm.

This new line of research can be traced back to
a paper by Morse [1] which raised a rumber of open
questions involving the classical assumptions in
parameter adaptive control. Subsequently, in [2],
Nussbaum paved the way for adaptive control in the
absence of information on the sign of the high
frequency gain. He considered the problem of finding
a smooth stabilizing controller

2(t) = f(y(t),2(t));

u(t) = gly(t),z(t)) (1.1)
for the one-dimensional system

x(t) = ax(t) + qu(t);

y(t) = x(t) (1.2)

with both g # 0 and a > O unknown. 1In his paper [2],
Nussbaum describes a whole family of controllers of
the form (1.1) which achieve the desired stabilization
for system (1.2).

Following this work, a rumber of more general
results emerged for adaptive stabilization of higher
order linear time-invariant systems with uniknown high
frequency gain; see, for example, the papers by Byrnes
and Willems [3], Mudgett and Morse [4], Willems and
Byrnes [5]) and Lee and Narendra (6]. Another
breakthrough is contained in a recent paper by Morse
[7] where it is shown that adaptive stabilization is
possible with even less a priori information than

*The work was supported by the National Science
Foundation under Grant No. ECS-8419429,

heretofore required. In his paper, Morse developed a
"universal controller" which can adaptively stabilize
any strictly proper, minimum phase system with
relative degree not exceeding two.
Another surprising result is due to Martensson
[8]. For a set of minimal plants, it is established
that adaptive stabilization is possible with only one
rather weak assumption: Namely, it is assumed that
there exists same non—negative integer & having the
property that each possible plant admits an %-th order
stabilizing compensator. Subsequently it is shown how
even this assumption can be relaxed. As Martensson
points out, however, his controller is severely
limited from an implementation point of view. The
first limitation stems from the fact that the
controller may end up performing a rather exhaustive
on-line search over the space of candidate gain
matrices before "latching on" to an appropriate
stabilizer. Consequently, Lyapunov stability can not
be guaranteed; it is only shown that the state is
bounded and converges to zero. Hence, there is no
control over large excursions in the state space even
when the initial state is arbitrarily small. From a
practical point of view, the consequence of this
exhaustive on~line search may be excessive overshoot.
This situation is illustrated in Figure 1 for the
scalar plant in (1.2). For this system, a suitable
Martensson-type controller is described by
2{t) = y2(%); 2z(0) 2 1;
u(t) = y(t)nz(t) 4 [sin niz(t)) %+ 11cos B(z(t))
(1.3
where

h(z) = logl/zz.

Notice in Figure 1 that for the initial condition of
x{(0) =1, z(0) = 1 and parameter values a = 1 and

g = -1, the peak overshoot in y(t) is 300,000! A
second practical limitation of the Martensson
controller stems from the susceptibility of the
so-called Nussbaum gain to measurement noise. This
limitation is also inherent in [2]-[8] where a similar
Nussbaum structure is used. To illustrate, we again
consider plant (1.1) with the adaptive Nussbaun-type
stabilizer (see [4])

2(t) = y2 (%),

u(t) = y(t)zz(t)cos z(t) (1.4)
and suppose that the measured output y(t) is addi-
tively corrupted by some "small" additive disturbance
¢(t); say for example, ¢(t) is white noise and
y(t) = %(t) + ¢(t). (1.5)
Then it is easy to see from (1.4) that z(t) may tend
to infinity if ¢(t) has non-vanishing covariance.
This will happen when ¥2 (t) is nonintegrable as a
consequence of variations in g(t). Therefore, the
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control gain may not converge and we see that an
arbitrarily small persistant measurement perturbation
may destabilize the system. Figure 2 demonstrates
this phenomenon for the initial condition x(0) =

Z(0) = 0, parameters a = 1 and 4 = 1 and measurement
disturbance ¢(t) = 0.25sin 100t.

Given the motivation above, the objective in
this paper is to develop a controller which not only
stabilizes the system (as in [2]-[8]) but does so in
the sense of Lyapunov. This distinction is important
because with Lyapunov stability we can get a handle on
the types of undesirable "overshoot" behavior
described above.

The results of this paper are obtained by
strengthening Martensson's hypotheses for the sake of
generating a more "practical" controller. To this
end, there are two more assumptions which we impose
beyord those in [8]: Our first assumption is that an
upper bound on the order of the plant is known.
Secordly, we make a compactness assunption on the set
of possible plants. Within this framework, we achieve
the stated stability objectives using a switching
control law which is a piecewise linear time-invariant
feedback. It is shown that only a finite number of
switches occur and then the controller remains fixed
with a constant compensator gain matrix.

II. SYSTEM AND ASSUMPTIONS

A finite upper bound on state dimension n
is specified ard each possible plant is a 1
-invariant system

< o
ime

k(t) = Ax(t) + Bu(t);

y(t) = Cx(t): tc[0, =) (2.0.1)
with state x(t)eR for scme n<n , control u(t)el'\'m
and measured output y(t)eR The given set of
possible plants ¥ consists of triples (A,B,C) and we

use the notation ):n to denote the subset of T
consisting of those plants having dimension n; i.e.,

2 {(A,B,C)ex: dim A = n x n}
forn=1,2, Thrmaglmtthispaper,itis
assumedthatz Excanpactforn—lz and
that every possible plant (A,B,C)ex is a mi 1
realization.

Remarks 2.1: The assunmptions above guarantee
that for every possible plant (A,B,C)eX, there exists
an %-th order linear time—invariant dynamic compen:
sator (& is of course depending on the dimension of A)

2(t) = Fz(t) + Gy(t);

u(t) = Hz(t) + Ky(t) (2.1.1)

so that with state

x(t)
x(t) & .
z(t)

the closed loop system

A+BKC BH

x(t) = x(t) (2.1.2)

GC F
is asymptotically stable. Since the upper bound on
the state dimension n is assumed to be known, the
order % of this compensator can be taken to be
same for all (A,B,C)ex. This follows because if
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(A,B,Clex and dim A = n x n, then stability can be
guaranteed using an n-th order Luenberger observer
which implies that a compensator of dimension n
also be used to guarantee stability. This higl
dimensional compensator is trivially obtained by
augmenting the n-th order Luenberger observer with a
stable subsystem of order n__ - n with states decoup-
led from the states of the rver. This observation
will be used to our advantage in Lemma 3.1 to follow.

The compactness assumption on each £  implies
that the class of systems under considerat¥on does not
include singular perturbations. In another words, the
model does not handle parasitics. A simple example
illustrating this restriction is given by the
singularly perturbed system

can

ek(t) = x(t) +u(t); ¢€l0, ¢ 1:
vit) = x(v). (2.1.3)
It is straightforward to verify that
1 1
= {( oo 1): {0, zm] } (2.1.4)

which is not compact. It should alsc be noted that
the campactness assumption on the ¥ implies that some
bowd is available on the system ters. This
assumption is what distinguishes this work from the
cited literature on adaptive stabilization.

Notation for the Closed Loob System 2.2: Given
any fixed triple (A,B,C)eS and a set of gain matrices
(F,G,H,K) for an %-th order compensator, the closed
loop system is described by

%(t) = A x(t) + B u(t);
y(t) = C x(t);
u(t) =K y(t) (2.2.1)
where
A O B O co K H
Asg : Bg i C¢& i Ke ;
00 oI 01 GF
x(t) 2 [®(t)" 2(t)')'; u(t) 2 fu(t)' 2(t)]'.

To denote the deperdence of the closed loop system
matrix on the chosen compensator gain matrix K, we use
the notation

A, (K)2A+

III. A PRELIMINARY LEMMA

BKC.

The following technical lemma will be useful in
Section IV where we construct a switching compensator

leading to Lyapunov stablity with an exponential rate
of convergence for the state.

Lemma 3.1: Let (decay rate) Y > O be arbitrari-
1y specified. Then, there exist a (compensator

dimension) a € n___, a constant M, > O, a_\_flmte
number of or gain matrices K; .K>,...,
(24+m) x ({+r) .
€R and compact sets =, %f ...,z* fsu<:h that
£
1) uz* =3; (3.1.1)

i=1

ii) For each ie€{1,2,...,f} and each (A,B,C)ez;,



”eA*(Ei)t It

I = Me (3.1.2)

for all te[0,»).

Proof: Recalling the remarks in Section 2.1, it
suffices to take the compensator dimension & =n in
the proof to follow. Note, however, that it mayng
possible to use a lower order compensator as far as
implementation is concerned; e.g., see Example 1 in
Section 7.

We first choose ¢ > 0 to be any fixed mumber.
Now, given any ¥ > O and any triple «=(A,B,C)ex, we

can select K eR(9.+m)x(9.+r) so that the eigenvalues of
the closed i_sop system matrix

A(K)=A+BKC

all have real part less than -(Y + ¢).
Let n be the dimension of A and note that by
contimiity &f the eigenvalues of A, (K ) with respect

to the system matrices, we can find an open neighbor
~hood Va of systems around o (all having dimension

nc) satisfying the following condition: For each
'5=('ii,§,'é)eva, the eigenvalues of & + B Koﬁ also have

real part less than -(Y + ¢). Consequently, for each
ne{l,2,...,n___}, we generate an open covering of I
by taking thgai‘fnion of the sets Vo as ¢ ranges over

5. . Now, using compactness of each Zn, we can extract

N, s : -
a finite set of gain matrices l—(n,l'gn,2' o "Kn,f(n)

guaranteeing that for each (A,B,C)eX_, there exists
sane 1 € f(n) such that A,“(gl_1 i) has all its

eigenvalues with real part less than -(Y + ¢).
To camplete the construction of the compensator
gain matrices, we simply take the set (K, .Kp,...,

K.}
to be the union of the sets {I_(n 1’]-<n 2""'5n f(n;?

as n ranges from 1 to noox Now, for any fixed
ie{1,2,...,f}, define
Z; £ {(A,B,C)ez: all eigenvalues of A,,(gi)
have real part < —(Y + ¢)}.
Again, using compactness of the ¥ and contimuity of
eigenvalues of A*(Ki) with respect to the system
matrices, it follows that ZI is compact. Then the
definition of Z; guarantees that for each
+=(A,B,C)ex¥,

TPRE- SRATIR A

as t » », Hence, (3.1.2) is satisfied by taking
M, 2 max{ max &Y 121,2,.0.,8). .
0€T} te(0,)

IV. CONSTRUCTION OF THE SWITCHING COMPENSATOR

In this section, we provide the formal construc-
tion of a switching compensator which achieves the
desired Lyapunov stability with exponential decay
rate. First, however, we give same heuristic motiva-
tion for the basic idea behind the construction: We
begin at time zero with compensator gain matrix K and
use the output information to construct a "monitoring
function" V(t,T,); see Step 4 to follow. This func-
tion, being related to the state of the system, is
used to decide when to switch fromX; to K;. Once
this switch has taken place, we then use V(t,t;) to
decide when to switch from K, to K;: this process
contimues with switching from K, to K¢, K to K;, etc.
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Eventually (see the proof of Theorem 5.1) the compen-
sator gain matrix will "latch" onto some (p<f)
which does indeed stablize the system. tly,
no further switching occurs. The proof of stability
of the compensated system is relegated to Section V
where the main result of this paper is stated.

Step 1: Select any desired decay rate Y > 0 and
take K, K, ..., KR ) ang 5o
fying the requirements of Lemma 3.1.

X FEIN ,z; satis-

Step 2: For each i€{i1,2,...,f} and each triple
«=(A,B,C)ex*, define the observability Gramian

T 1
W (1,0) & f Px (B0 ceha (B g (4.0.1)
0

and the scalar function

Pi(T IG) g
-1/2_AL (K. )T A (KT s1/2

xmax[wi('r,c) e i Wi(-r,c)e 1 Wi(-r,c) ]
where )\nax(min)['] denotes the operation of taking
largest (smallest) eigenvalue.

Step 3: For each fixed i€{1,2,...,f} and each
¢=(A,B,C)ex*, we claim that Pi(‘r,o‘) »0as7T >,
To this end, for fixed o=(A,B,C)eI*, we first notice
that ||wi(1-,a)ll = xmax[wi(-r,c)] is non-decreasing.
Also, since A*(Ei) is asymptotically stable, ||wi(-r,c)||

is bounded with respect to v. Hence, for any fixed 7,
and T 2 To, We use norm inequalities and Lemma 3.1 to
obtain

?i(Tlc) = "wl(T’o)_l/ZEA*(Ei)TWi(T;0)1/2 “z

A

- 2
1w, (g o)1~ e BT o, (@00

-1 2 =21t
9, (g o) W, (=0 )My

iA

From this inequality, it follows that Pi(T,a) - 0 as

T - », Now, we further bound Pi(T,o) independently of
¢. That is,

py(T,0) S max(IM, (rq )| W, (o, e

*
aezi

Using this bound, we conclude that for each
ie{1,2,...,f}, there exists a finite constant Ty >0
such that

(4.0.2)

w

1>mxp,(r,,0) 8p, .
o€x} it i
Step 4: The generation of the controller is
accomplished by defining a switching index h(t) and an
associated sequence of switching times to.t; ,...,tp.
First, using the available ocutput y(t), the controller
generates the signal

&(t) 2 |ly(t)hz. (4.0.3)
Next, we define
Vit,T) & ¢(t) - ¢(t - 1) (4.0.4)

for te[0,») and T€[0,t] and initialize the controller
by taking to¢80. Now, for i = 1,2,...,f-1, define



+ 2T

ti 2 sup{t: t 2 ti—l It
V(t,Ti) < PiV(t-*ri,'ri)} (4.0.5)
and the switching index
h{t) ¢ i (4.0.6)
for te[ti_l,ti). Subsequently, the control is

recursively generated using the formula
u(t) & g‘(t)x(t)-

Incase t, =« for same 1 < f - 1, the generation of
t, is terfiinated and the control gain matrix Eh(t)
r&rains constant at 51_1.

Remark 4.1: In effect, the control u(t) given
by (4.0.7) is a piecewise linear time-invariant
feedback. In Sectiaon V below, our objective is to
show that the control u(t) above leads to an
exponential rate of convergence (hence Lyapunov
stability) for the closed loop system.

(4.0.7)

V. MAIN RESULT

We are now prepared to state and prove the main
result of this paper.

1: Consider the set of possible
0.1) with control u(t) given by
there exist constants M > O and x > 0
for all (A,B,C)ex, all initial conditions

,2(0)) and all te[0,»), it follows that

Ix(t)z < Me Y| x(0))2. (5.1.1)
Proof: Let ¢=(A,B,C)€T be any possible system

with arbitrary initial condition_x(0) and note that

in accordance with Lemma 3.1, cezg for some i € £,

Our first claim is that the switching index h(t)
converges to some p € 1. This claim is established by
noting that if h(t) = i, then for all t 2 t, + 27,
we have -1 i
t
VitT,) = e(t) - ety = [ jgmpza
‘c-'ri

i)

Rt - T W (T,0)K(t - Ty)

1,

Pi(T1'°)v(t"1'Ti) < p V(- ,7my). (5.1.2)

In view of this inequality and the definition of the
switching instants, it follows that t = and

h(t) =1 for all t2 t -1 Hence, let t,,t;,...,t
denote the finite set SF'switching instants which P
result and note that p £ iandtp ®,

The next step of the proof involves bounding the

state x(t). Indeed, with aez; as above ard j < p -1,
we consider the time interval
2 .t
Ty & [tyrty)
= [tj—l’tj—l + 2Tj) V] [tj_l + 2Tj,tj)
2 Tj,l V] Tj,2'

For teTj, we use control u(t) = K.y(t) and consider
two cases whose results will be combined at the end.

Case 1: teT In this case, it is apparent that

3.3

EX(6)2 < Bikx(ty )2 (5.1.3)
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where

(K

By e max(je K3 (a,B,C)ex; 1€[0,7,1). (5.1.4)

Note that Bj is finite because [O,TJ] arnd the }:i are

compact and the matrix exponential is continuous with
respect to ¢ and 1.

Case 2: teT

first bound V(t,1
Y 2 1 such that

j,2° In order to bound x(t), we
j)' To this end, select the integer

tj_

and let

1-4-(u+1)-r ct<t + (M + 2)7

h] J-1 A

det-t - ¥+ l)Tj. (5.1.5)

-1
By definition of U, it follows that 66[0,1-:]) .
Recalling expressions (4.0.1) for Wj(Tj,c) ard
(4.0.4) for V(t,-rj) , we obtain a bound

x;inﬁi(t-'rj)uz < V(t,Tj) < x;ﬁxug_(t-'rj)“z(s.l 6)

where

¥

&
£ max
max

-1
Note that X;:ax and ";:in are positive (by invariance of

observability under output feedback) and finite (by
campactness of ¥ and continuity of W(Tj,a) with res-

pect to o). Now using the state bound (5.1.4) and the
bounds ch(t,-rj) in (5.1.2) ard (5.1.6), we obtain

Wirso)]; x*._ 2min» . [W.(T,,0)].
J min ves min®"j' J

B,
IB(ON2 < Byls(t-r N2 < 55 Vit )
min

Py o
“ain I

1)

V(t—)J'rj,'rj)
PN i
max
N Bijllz(t -+ 1)“'3)"2

A

¥
= —ax o U
Ser Byt + )2

¥ 2
max
ﬁBjrjllg(tj_l)nz. (5.1.7)

A

To complete the analysis for case 2, we note that
pie(o,l) makes it possible to choose xj > 0 such that

“N.T .

JJ .

P
Hence, (5.1.7) becomes
x*

max
A\¥

I&(e)2 < By TS Ix(ey_)I2. (5.1.8)

Now using the definition of 3 in (5.1.5), we can
further bourd the state; i.e.,

Bie 3 Ty

N (T -
5 h

< "'é)e“ tj) '

Ix(t))2 Ix(ty_y )02

and recalling that § < Tj' we finally obtain

bx(onz < Me™3 7 Fa) ey gz (509



where

*
>‘ 2 2.7

B e i3, (5.1.1)

Combining Cases 1 and 2: We claim that the state
bound in (5.1.8) is actually valid over all of T, even
though it was only developed for teT To see-this,
note that x;ax/x;in > 1 and that t —jt < 21- for

-1
te'rj 1 Consequently, if teT 4+ We can further bourd
the state in (5.1.3).

jl
Namely,

Lx(6)iz < Bylx(t,
x* £ -

s =gy et T S e e
min

= w3 T Sy e (5.1.11)

Finally, to complete the proof of the theorem, let

MngMz"'M; xémin(xl,xz,---,x ).
£ £

Now, given any te{0,»), it follows that teT, for some

j < p. By using (5.1.11), we obtain 3

Ix(t)f2 < Mje’*('c - tj~1)u£(tj_1)"2
<m0 Sl e

Contimiing recursively in this manner and noting that
eachM exceeds unity by (5.1.10) and (5.1.4), it
follows that

Ix(o)z < (dMe

VI. EXTENSIONS

<m>\t

“yx(0) )2 1x(0))2 .

In this section, we briefly indicate two
extensions of the theory: First, the results are
strengthened for the special case of full state
feedback. Secondly, the theorvy is extended to deal
with additive measurement noise.

Full state Feedback 6.1: One of the key ideas
underlying the switching control (4.0.7) is the
construction of the function V(t,t) which provides
information making it possible to decide when to stop
switching; i.e., to decide if the controller is using
the “right" gain matrix. Note, however, that the
controller "waits" for a period 2T before deciding

whether to switch frc‘mgi to giﬂ and also recall that
the 1 ; vere chosen to guarantee the decreasing
property of V(- ,Ti) which is essential to attainment

of the main result. In view of these remarks, it is
of interest to know under what conditions one can
reduce the waiting period 21'i so as to "speed up" the

system response. We claim that under the strengthened
hypothesis of full state feedback, the "waiting
period" can in fact be made arbitrarily small. For
brevity, we omit a rigorous proof and anly provide a
sketch of the main ideas behind this extension to the
theory.

When the full state x(t) is available for
feedback, we use a static compensator (of dimension &
0) and can therefore omit underbars when referring
to system and compensator matrices. Since C = I for
all possible systems, we now use the notation (A,B)
instead of (A,B,C). First, it is noted that we can
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extend Lemma 3.1 and generate a finite number of gain
matrices K, ,Kz,.. ,Kf, a finite number of compact sets
z:,z;,...,z;, and a finite number of Lyapunov matrices
P, ,P,....,P; such that for each (A,B)ex}, the
following condition holds:

(A + B'Ki)‘Pi + Pi(A + BKi) < -I. (6.1.1)

Hence, for each (A,B)€x*, the Lyapunov function
defined by

Vi(x) 2 X'P,X

i

decreases along state trajectories when control
u(t) = Kix(t) is used. Next, analogous to Section IV,

the function Vi(x(t)) can be used instead of V(t,-ri)
in the construction of the switching control. Indeed,

for any arbitrarily small desired waiting pericd T,
define the switching times

(6.1.2)

F-3 .
£ sup(t: t >t  +T

Vi(X(t)) < PiVi(x(t""))} (6.1.3)
for i =1,2,...,f-1 , where
p.2 e (T maxlPil) (6.1.4)

1

Then, it can be shown that with the switching index
given by (4.0.6) and switching control given by
(4.0.7), we obtain Lyapunov stability with exponential
convergence rate as in Theorem 5.1.

Modification for Measurement Noise Rejection
6.2: We now provide a brief sketch indicating how the
controller can be modified to handle measurement noise
as discussed in Section I. In this case, the switch-
ing index h(t) in (4.0.6) may never converge because
V(t,Ti) may be dominated by noise when jy(t)) is
small Therefore, the decreasing property (5.1.2) of

) may be destroyed and the switching index may
keep ﬁumping indefinitely leading to instability. To
overcame this problem, we modify the switching index
in such a way that

i) the state tends to a bourded neighborhood of
the origin if the measurement noise is bounded;

ii) the size of the neighborhood in i) to which
the state is confined vanishes as the noise amplitude
vanishes.

This modification is simply accomplished by re-
initializing h(t) to 1 whenever h(t) exceeds f. The
basic idea behind this type of modification can be
heuristically motivated: First, note that the
measurement noise will not affect the decreasing
property of V(t,r.) when jy(t)}} is sufficiently large.
Therefore, for oufputs with large norm, the modified
switching rule leads to a "good" compensator gain
matrix and ||x(t)}} is reduced until it reaches the
peint that it is "comparable” to the amplitude of the
measurement noise. It can be readily shown that the
size of the neighborhood to which the state converges
can be bounded in norm by M'g where M' > 0 is a
constant and ¢ is the uppe of the norm of
the measurement noise.

VII. EXAMPLES AND SIMULATIONS

Two examples are provided in this section to
illustrate the behavior of systems subjected to the
switching control (4.0.7). 1In the first example, we
indicate a typical construction of the controller and
provide sample state trajectories for various possible
plants in the given collection. In the second



example, we return to system (1.2) and consider the
problem of measurement noise rejection recalling the
motivating instability problem described in Section I.
Using the modification of the switching control as
prescribed in Section VI, it is seen that the state
trajectories are no longer unbounded. As a matter of
fact, the state tends to a bounded neighborhood of the
origin whose size is camparable with the amplitude of
measurement noise.

Example 1: Consider the set of possible systems
2 described parametrically by the state equation

11 q

%(t) = x(t) + u(t); Q£ [-0.5,0.5];
01 1

y(t) = [1 0]x(t); te[0,=). (7.1.1)

It is straightforward to verify that for each
triple (A,B,C)eX, the system is controllable and
observable. Also, the system order is fixed at n = 2
and 3, is compact by inspection. Hence, Theorem 5.1
applies and we can use the recipe in Section IV to
obtain a stabilizing compensator. First, we need to
generate a finite mumber of compensator gain matrices
K; Kz ,...,K. as prescribed in Lemma 3.1. To this end,
we construEE a reduced order Luenberger observer
(parameterized in g); we assign the poles of the state
®(t) at -1 and -2 and the pole of the observer at -4.
Then the compensator gain matrix has the form

-5 + 6g
-30q2 +31q -9

-31 + 30g
Klq) =
-150g2 + 185q - 56
Now, to satisfy the requirements of Lemma 3.1, we take
Y = 0.30, and perform a lengthy but straightforward

calculation and verify that the requirements of Lemma
3,1 are satisfied by taking f = 5 and

-46 -8
K= K(-0.5) = ;

-186 -32
-38.5 -6.5
K,= K(~-0.25) = ;
-111.625 -18.625
-31 -5
K= K(0) = ;
-56 -9
-23.5 ~3.5
K,= K(0.25) =
~19.125 ~3.125

-16 ~2
= K(0.5) = :
e <[]

Now, to satisfy the requirement on the Py (see
(4.0.2)), we increase the 7, and find that for

Ty = 2.1, 7, =1.8, 153 = 1.&, Te = l.2amd T, = 1.2,
we have p, < 1 for i = 1,2,3,4,5. Hence, the para-
meters of the switching control in (4.0.7) are now
completely specified. Figures 3 - 5 are obtained by
computer similation using different values of the
parameter geQ. Sample state trajectories and the

switching behavior of the control are indicated.

le 2: We consider system (1.2) fora =1
and ge(-1,1} with additive measurement noise. Again,
the campactness of the set of possible plants and

boundedness of the state dimension are trivially
verified. The state feedback control derived in
Section 6.1 is used since the ocutput and the state are
the same. To satisfy the requirements of Lemma 3.1
for any ¥ < 1, we use two campensator gains K; = 2 ard
K; = -2. The simple Lyapunov function

Vix) & ®

is chosen to satisfy the condition (6.1.1). The
"waiting period" is taken to be vy =1, = 0.5.

To illustrate the behavior of the closed-lcop
system, the same destabilizing disturbance
¢(t) = 0.25sin 100t which we previously considered is
added once again. This time, however, the system is
campensated by the modified switching control
described in Section 6.2. The simulation result given
in Figure 6 indicates that the state no longer '"blows
up." In fact, x(t) settles into a small neighborhood
about zero as predicted by the theory.

VIII. CONCLUSION

Theorem 5.1 strengthens recent results on
adaptive stabilization to include a guarantee of
Lyapunov stability with an exponential rate of
canvergence for the state. Furthermore, using the
modification of the control law described in Section
IV, the state remains bounded in the presence of
measurement noise and the norm bound on the system
state tends to zero as noise bound tends to zero. We
do, however, pay a price for this "more practical”
controller. That is, to obtain stronger results, we
have to impose additional requirements, beyond those
in {8], on the set = of possible plants: campaciness
and an a priori upper bourd n on the order of

max
plants in .

From an implementation point of view, the
switching controller in (4.0.7) has the desirable
feature that it is a piecewise linear time-invariant
feedback. Moveover, after a finite number of
switches, the controller becomes a classical linear
time~invariant feedback and remains as such there-
after. On the other hand, there is cne potential
"stumbling block" when performing numerical computa-
tions. Namely, the construction of the gain matrices
K K2,...,K. (see Lemna 3.1) may be computationally
prohibitive. As indicated in the proof of the lemma,
these gain matrices are obtained by extracting a
finite subcovering from a specially constructed open
covering of £. In view of this limitation, it is felt
that future research should be aimed at developing
alternatives to Lemmma 3.1. In other words, it would
be wortlwhile investigating alternative procedures for
construction of the controller while preserving the
desirable properties obtained for the closed loop
system. The stability result established here should
really be viewed as a benchmark against which to
campare new control schemes.
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Figure 1: Simulation Using Controller (1.3)
for System (1.2)
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Figure 2: Simulation Using Controller (1.4) for System

(1.2) with Additive Measurement Disturbance
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Figure 3: Simulation for Example 1: g =-0.5
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Figure 5: Simulation for Example 1: g = 0.5
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Figure 6: Simulation for Example 2



