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Abstract— Preview Control design is proposed in order to
reduce the settling time of Dual-Stage Actuators (DSA’s). It
is shown that a significantly better performance is achieved
by exploring the extra degree of freedom provided by the
secondary actuator before the output transition instant. Given
the information of the immediate future reference point, the
proposed strategy allows the slow actuator to move ahead
of time while the fast actuator maintains the total output at
the desired reference. Experimental results demonstrate the
effectiveness of the proposed methodology when compared to
a conventional form of DSA control design.

I. INTRODUCTION

In this paper we address the issue of reducing the output

transition time interval of Dual-Stage Actuators (DSA’s)

from an initial reference ref(t ≤ τ) = refi to a final reference

ref(t > τ) = refi+1. The proposed approach makes use

of the information on future reference points in order to

compute a pair of inputs to be applied before the transition

instant (t = τ). This preview control strategy improves the

performance of any system that accounts with redundant

actuators and prior knowledge of future reference points, and

is particularly interesting for systems facing the successive

set point scenario.

The class of systems to be considered are Dual-Stage

Actuators such as dual-stage Hard-Disk Drives (HDDs) [1].

These systems are defined as two actuators connected in

series, a primary (slow) actuator, responsible for providing

the system with a long range, and a secondary (fast) actuator,

responsible for improving the accuracy and speed of the

system. The primary actuator is considered a rigid body

of mass M and it is assumed that the friction acting on

this actuator (if any) is actively compensated by a friction

compensator. The secondary actuator is treated as a body of

mass m connected to a spring of constant k with damping

c. The secondary actuator is connected in series with the

primary and has a range of actuation bounded by ±r (r > 0).
Typically, DSA’s have the features that M ≫ m, y1/y2 ≫ 1,

and |u2/u1| ≫ m/M , thus, the coupling forces between the

primary and the secondary actuators may be neglected for

simplicity.
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In this way, the DSA of interest is modeled as a linear

decoupled dual-input single-output (DISO) system, which is

represented in a state-space form as:

Σ1 : ẋ1 = A1x1 +B1u1, x1(0) = 0, |u1| ≤ ū1

Σ2 : ẋ2 = A2x2 +B2u2, x2(0) = 0, |u2| ≤ ū2

y = y1 + y2 = C1x1 + C2x2, (1)

where x1 = [y1 ẏ1]
T is associated with the primary

(coarse) actuator and x2 = [y2 ẏ2]
T with the secondary

(fine) actuator, and ūi is the control saturation level for ui.

Furthermore,

A1 =

[

0 1
0 0

]

, B1 =

[

0
b1

]

, C1 =
[

1 0
]

,

A2 =

[

0 1
a1 a2

]

, B2 =

[

0
b2

]

, C2 =
[

1 0
]

,

with a1 = −k/m, a2 = −c/m, b1 = 1/M and b2 = 1/m.

As opposed to DSA control design, a vast number of im-

portant achievements regarding settling time reduction can be

found in the literature for single stage systems. While Time

Optimal Control (TOC) performance is still not achievable

without the problems related to chattering and robustness,

the past few decades have provided us with a number of

controllers that are able to approximate TOC performance.

More specifically, an important adaptation of TOC was

proposed by Workman [3] under the name of proximate time-

optimal servomechanism (PTOS). This control law enables

to system to avoid problems related to chattering inasmuch as

it only uses the maximal acceleration of the actuator when it

is practical to do so: as the system approaches the reference

point the controller switches to a linear feedback control

gain. More recently, a different approach was presented by

Lin et al. [4], and then Chen et al. [5] where the composite

nonlinear feedback (CNF) was developed. This controller is

able to achieve an improved performance without increasing

the system bandwidth, once it uses dynamic damping to do

so. Unfortunately, neither these control strategies are readily

adaptable to DSA’s nor make fully use of the redundancy of

actuation.

The first attempt to integrate and adapt both the CNF

and PTOS to DSA’s was proposed by Zheng et al. [6].

This combined controller improves the overall performance

of the system while accommodating the saturation of the

secondary actuator. The PTOS control law is applied to

the primary actuator so that it yields a closed-loop system

with a fast rise time and certain allowable overshoot; the

CNF control law is applied to the secondary actuator in
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order to eliminate the overshoot generated by the primary.

Conversely, conventional work on DSA tracking control is

based on designing a primary actuator control loop to yield

a small or no overshoot, and a secondary actuator controller

to follow the position error of the primary [8] and [9]. While

the association of PTOS and CNF generates a significantly

better performance, both the conventional and the nonlinear

strategies do not take into account the possibility of pre-

actuation.

Due to the redundancy of actuators, dual-stage systems

present liberty of movement outside the transition time inter-

val, i.e., outside the time interval when the system output is

moving from one reference point to another. As shown in Fig.

1, we take advantage of this extra degree of freedom provided

by the secondary actuator and allow the primary actuator to

move ahead of time [7]. The main contribution of the paper

is the development of this pre-actuation strategy based on

the immediate future reference point in order to reduce the

settling time of the system. Moreover, it is shown that the

proposed preview control methodology is fully compatible

with the nonlinear state-of-art DSA design proposed in [6].

In fact, a continuous switching between both controllers

is achieved for the primary actuator. Experimental results

demonstrate the effectiveness of the proposed design, which

can achieve an improvement of up to 75 % regarding the

settling time when compared to a conventional form of DSA

control.

As opposed to the problem of pure settling time reduction,

the minimum time/energy output-transition problem was

already studied in the preview control framework in [10],

where a form of pre-actuation is allowed. This technique,

however, is not used to solely reduce the settling time of the

system and does not consider the saturation of the secondary

actuator, which is a hard constraint in the design of fast

tracking controllers for DSA’s.

To present the proposed methodology, the paper is divided

into the following sections: Section II formulates the problem

and introduces the general idea, the proposed solution is

given in Section III, experimental results are presented in

Section IV, and Section V concludes the paper.
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Fig. 1. Schematic representation of the Preview Control Strategy: after
tS1

seconds in S1, y1 must move to S2 with reduced transition time tr .

II. PROBLEM FORMULATION

An intrinsic characteristic of DSAs is that the coarse

and fine actuators are complementary to each other: while

the primary actuator is slow and has a large travel range,

the secondary actuator is fast but has a limited range of

actuation. Due to these complementary characteristics of the

DSA it will be assumed that, within the travel range of the

secondary actuator, the tracking error of the primary actuator

is sufficiently smooth to be compensated with negligible

error.

In other words, if we define a manifold Si,

Si = {y1 ∈ R : |y1 − refi| ≤ r}, (2)

where refi is the i-th reference point and ±r is the range

of the secondary actuator, then, whenever y1 is within the

manifold Si, the total output of the system y will be at the

i-th reference point with negligible error due to the actions

of the secondary actuator. Moreover, if the output y must

stay at an initial reference point ref1 for tS seconds before

moving to another given reference ref2, then y1 must stay in

S1 for tS seconds before moving to S2 (Fig. 1).

Therefore, we will address each actuator control design

separately as follows.

A. Primary actuator control problem:

For a given initial condition x1(0) = [ref1 0]T, two

manifolds S1 and S2 determined by (2), and a control

saturation level ū1, find a controller

|u1(t)| ≤ ū1, t ≥ 0 (3)

and a preview control time τ ≥ 0, such that, the output y1 of

the primary actuator is driven from S1 to S2 with a reduced

transition time tr, in the following sense:

y1(t) ∈ S1, 0 ≤ t ≤ τ. (4)

y1(t) ∈ S2, t ≥ τ + tr, and lim
t→∞

y1(t) = ref2. (5)

B. Secondary actuator control problem:

For a control saturation level ū2, find a controller

|u2(t)| ≤ ū2, t ≥ 0 (6)

for the secondary actuator to compensate for the error gen-

erated by the primary actuator, i.e., to achieve y = y1+y2 =
refi when y1 ∈ Si.

Remark 2.1: Notice that if one chooses τ = 0 one falls in

the conventional control strategy for DSA where no preview

control is applied. Conversely, there must be an upper bound

in the preview control time inasmuch as tS − τ must be

long enough such that the primary actuator can be driven

sufficiently close to the reference before any pre-actuation is

applied.
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III. PROPOSED SOLUTION

In order to solve problem II-A the proposed control

strategy will be composed by two different control laws, i.e.,

u1(t) =

{

u1−(t), 0 ≤ t ≤ τ
u1+(t), t > τ

. (7)

In particular, 1) a preview control law, denoted by u1−,

will be responsible for the pre-actuation of the system; 2)

a nonlinear feedback control law, denoted by u1+, will be

applied in order to achieve y1 → ref2, as t → ∞. Practically,

we can assume that y1 approaches ref2 in a short time (not

necessarily t → ∞), say in τ1 + tr + tS2
− τ2 as denoted

in Fig. 1. More specifically, the primary actuator’s status

becomes [ref2 0]T at this moment. Taking this moment as

the new reference time t = 0, the proposed controller (7)

may apply recursively in a successive step tracking scenario.

Problem II-B will be solved by a single composite nonlinear

control law that allows the secondary actuator to compensate

for the error generated by the primary both during u1− and

u1+. Next, we will study the solvability of II-A and II-A

respectively with the emphasis on the former.

A. Solvability of II-A

In order to simplify the notation, let us define

p := y1, v := ẏ1,

so that x1 = [p v]T and the primary actuator equation

becomes

ṗ = v, v̇ = u1/M. (8)

1) PTOS Controller u1+: In literature, e.g., [9], a well

known proximate time-optimal servomechanism (PTOS)

control is applied to the primary actuator. This is a near

time-optimal control strategy that can accommodate plant

uncertainty, measurement noise and actuator saturation. The

control law is given by:

u1+(t) = sat[σ(t)f(ref2 − p(t))− k2v(t)] (9)

where the non-negative continuous function f is defined as

f(x) =

{

k1|x|, for|x| ≤ ū1/k1
2
√

k1α|x|ū1 − ū1, for|x| > ū1/k1
,

σ(t) = sgn(ref2 − p(t)), 0 ≤ α ≤ 1 and sat(·) is with the

saturation level of ū1. The constants k1 and k2 are positive

and they can be designed by any linear control technique,

e.g., pole-placement method. The role of the PTOS controller

(9) can be summarized as follows for the need of this paper.

Lemma 3.1: For given parameters τ , pτ , vτ , ref2 and S2

determined by (2), the controller (9) with t ∈ [τ,∞) drives

the primary actuator from x1(τ) = [pτ vτ ]
T into S2 in the

sense of (5). In particular, the transition time tr is called

PTOS-optimized w.r.t. (vτ , ref2 − pτ ).

The main objective of this paper is to reduce the transition

time tr. Clearly, for a given system and a given PTOS

controller, tr depends on the initial velocity vτ and the initial

step level ref2 − pτ . Without loss of generality, we assume

ref2 > ref1. Roughly speaking, tr is reduced if vτ is larger

and ref2 − pτ is smaller. In a conventional control design,

the PTOS controller applies with vτ = 0 and pτ = ref1. In

other words, tr is PTOS-optimized w.r.t. (0, ref2 − ref1). In

this paper, a preview controller is introduced such that tr is

PTOS-optimized w.r.t. (vτ , ref2− ref1− r) for some vτ > 0.

2) Preview Controller u1−: The preview control strategy

is based on the knowledge that after tS seconds at ref1
the total output y will move to ref2. As already mentioned

in Section II, two manifolds S1 and S2 are built around

the respective references, and the problem, in the primary

actuator perspective, becomes to move from S1 to S2 while

satisfying the constraints (3) and (4). In order to reduce the

transition time from one manifold to another, a pre-actuation

will be applied to the primary actuator such that at the

transition instant tS the output y1 is at the border of S1

moving toward S2 (Fig. 1). We assume the preview control

time is defined as τ , i.e., the pre-actuation starts τ seconds

before the transition instant. In this context, a trajectory must

be designed such that the primary actuator changes from a

given initial condition x1(0) = [p0 0]T to a desired condition

x1(τ) = [pτ vτ ]
T. Specifically, p0 = ref1 and pτ = ref1 ± r

in the present scenario. Among many possible trajectories,

the one with a minimum input effort is selected.

Lemma 3.2: For any given τ > 0, p0, pτ , and vτ , the

minimum effort input that takes the primary actuator from

the initial condition x1(0) = [p0 0]T to the final condition

x1(τ) = [pτ vτ ]
T, is given by:

u1−(t) = M(at+ b), 0 ≤ t ≤ τ

a = 6(τvτ − 2∆p)/τ3, b = −2(τvτ − 3∆p)/τ2 (10)

where ∆p := pτ − p0.
Proof: This follows from standard calculus of variations

in optimal control theory. For a detailed proof please refer

to [2].

The controller (10) generates a smooth trajectory for

the primary actuator while taking it from initial conditions

x1(0) = [p0 0]T to final conditions x1(τ) = [pτ vτ ]
T. This

controller, however, does not always satisfy the constraints

(3) - (5). Moreover, at the instants t = 0 and t = tS
there will be switchings from the PTOS controller (u1+) to

preview controller (u1−) and vice verse, which may cause

discontinuity in the overall controller (7). Theorem 3.1 shows

that with a proper choice of the preview time τ and the

final velocity vτ , the controller (10) not only satisfies the

constraints but also provides a continuous switching between

the preview controller and the PTOS controller.

Theorem 3.1: For any given r > 0, refi and Si determined

by (2), i = 1, 2, let δ := ref2 − ref1, σ = sgn(δ), and

ξ = δ−σr, and assume |δ| ≥ 2r. Consider a primary actuator

with the initial condition x1(0) = [ref1, 0].

(i) For any τ and vτ satisfying τ > 0 and σvτ > 0, the

controller (7) composed of (9) and (10) with p0 = ref1
and pτ = ref1+σr drives the primary actuator from S1
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to S2 in the sense of (5). Moreover, the transition time

tr is PTOS-optimized w.r.t. (vτ , ξ).
(ii) In (i), if τ and vτ satisfy

τvτ = 3σr, vτ = σ
√

ρsat(v̄2τ/ρ) (11)

where

v̄τ =
√

(ρk2/2)2 + ρf(ξ)− ρk2/2, ρ := 3r/(2M),

the controller (7) is continuous over [0,∞) and the

constrains (3) and (4) are satisfied. Thus, the problem

II-A is solved.

Proof: (i) During the time interval [0, τ), Lemma 3.2

shows that the primary actuator is driven by the controller

(10) from x1(0) = [p0 0]T to x1(τ) = [pτ vτ ]
T. During

[τ,∞), the initial velocity for the PTOS controller (9) is vτ
and the initial step level is ξ. Obviously, the transition time

tr is PTOS-optimized w.r.t. (vτ , ξ) by Lemma 3.1.

(ii) Because the first equation of (11) implies b = 0 in

(10) by noting pτ − p0 = σr, the controller (10) becomes

u1−(t) = Mat and hence u1−(0) = 0.

At the time τ , we have

u1−(τ) = Maτ = σv2τ/ρ (12)

u1+(τ) = sat(σf(ξ)− k2vτ ). (13)

To show u1+(τ) = u1−(τ), we consider two cases.

(a) If |ξ| and hence f(ξ) is large such that v̄2τ ≥ ρū1.

From the second equation of (11), we have vτ = σ
√
ρū1.

As a result, on one hand, (12) gives

u1−(τ) = σū1;

on the other hand, (13) gives

u1+(τ) = σsat(f(ξ)− k2
√
ρū1).

It suffices to show

f(ξ)− k2
√
ρū1 ≥ ū1 (14)

to prove u1+(τ) = u1−(τ). Indeed, v̄τ ≥ √
ρū1 gives

√

(ρk2/2)2 + ρf(ξ) ≥ ρk2/2 +
√
ρū1

and hence (14).

(b) If |ξ| and hence f(ξ) is small such that v̄2τ < ρū1.

From the second equation of (11), we have vτ = σv̄τ . Then,

(12) gives

u1−(τ) = σv̄2τ/ρ,

and (13) gives

u1+(τ) = σsat(f(ξ)− k2v̄τ ).

It suffices to show

f(ξ)− k2v̄τ = v̄2τ/ρ < ū1

to prove u1+(τ) = u1−(τ). Indeed, the equation holds from

the definition of v̄τ and the inequality from the assumption

directly.

From above, we have proven u1−(0) = 0 and u1+(τ) =
u1−(τ), i.e., the controller (7) is continuous over [0,∞).

Next, notice that the control law (10) is monotonic (b =
0) and v(0) = 0, then y1 moves from y1(0) = ref1 to

y1(τ) = ref1 + σr monotonically. Therefore, the constraint

(4) is satisfied.

Finally, by noting v2τ ≤ ρū1 from the second equation of

(11), we have

|u1−(t)| = |Mat| ≤ |Maτ | = v2τ/ρ ≤ ū1

which proves the constraint (3). The proof is thus complete.

�

In Theorem 3.1, we assume |δ| ≥ 2r (or, |ξ| ≥ r) which

means that the two manifold S1 and S2 do not overlap. When

|δ| < 2r (or, |ξ| < r), the controller in Theorem 3.1 may

not work directly because a small |ξ| gives a small f(ξ)
and hence a small v̄τ which implies a large τ . In particular,

when |δ| = r, we have ξ = 0 and τ = ∞. However, τ
should be small enough such that tS − τ is sufficent for the

previous PTOS to settle down. Nevertheless, the controller

in Theorem 3.1 still works with a slight modification by

resetting a smaller r = |δ|/2. With this modification, we

will show that there is an upper boundary for τ , which is

independent of r, ref1, and ref2. The result is given below.

Corollary 3.1: For a given r̄ and any r ∈ (0, r̄], the

preview control time τ set in Theorem 3.1-(ii) has an upper

boundary, i.e., τ ≤ τ̄ , where τ̄ is independent of r, ref1, and

ref2. In particular,

τ̄ = 3/min{
√

ρ̄ū1/r̄,
√

(ρ̄k2/2)2 + ρ̄k̄1 − ρ̄k2/2}
ρ̄ = 3/(2M), k̄1 = min{k1, ū1/r̄}.

Proof: In Theorem 3.1, we assume |δ| ≥ 2r which implies

|ξ| ≥ r. From the definitions of f and k̄1, we have

f(ξ)/r ≥ f(r)/r ≥ k̄1. (15)

Since the equations (11) give τ = 3/
√

(ρ̄/r)sat(v̄2τ/(ρ̄r)), it

suffices to prove
√

(ρ̄/r)sat(v̄2τ/(ρ̄r)) ≥

min{
√

ρ̄ū1/r̄,
√

(ρ̄k2/2)2 + ρ̄k̄1 − ρ̄k2/2}. (16)

If v̄2τ/(ρ̄r) ≥ ū1, the inequality (16) holds obviously.

Otherwise, we have

lhs = v̄τ/r =
√

(ρ̄k2/2)2 + ρ̄f(ξ)/r − ρ̄k2/2 ≥ rhs

using (15). The proof is thus complete. �

B. Solvability of II-B

The secondary actuator controller is a form of Composite

Nonlinear Feedback (CNF) borrowed from [6]. Its control

law is given by:

u2 = u2L + u2N (17)

where u2L is a linear feedback law which stabilizes the

secondary actuator with a higher bandwidth than that of

5171



the primary, and u2N is a nonlinear feedback law which

improves the performance of the overall DSA system. The

linear controller is given by standard state feedback gain,

u2L = Wx2, (18)

where W = [w1 w2] may be calculated by any linear control

technique. The nonlinear feedback controller is given by:

u2N = γ(ref2, y)H

[

p− ref2
v

]

(19)

where H is chosen as:

H =
1

b2

[

(a1 + b2w1 + b1k1) (a2 + b2w2 + b1k2)
]

, (20)

with constants k1 and k2 from (9), and the nonlinear function

γ(·) is:

γ(ref2, y) = e−β|ref2−y|, (21)

where β is a tuning parameter.

Due to the proper choice of H and γ(ref2, y), the DSA

closed-loop dynamics change from the primary to the sec-

ondary actuator control loop as the system approaches the

reference point. This transition results in an improved per-

formance inasmuch as the secondary actuator is designed to

have a high bandwidth and a small damping ratio, allowing

it to compensate the overshoot generated by the primary

actuator [6]. Therefore, for the DSA system in (1) with the

primary actuator under the control law (7), the secondary

actuator under the nonlinear control law (17) is able to

compensate for the error generated by the primary actuator

under constraint (6), i.e., problem II-B is solved.

IV. EXPERIMENTAL RESULTS

The proposed control scheme was implemented in the

experimental DSA setup in [6]. The system is comprised of a

linear motor (LM) as the primary stage and a piezo actuator

(PZT) as the secondary stage. The LM has a 0.5 m travel

range and a 1µm resolution glass scale encoder. The PZT

has a maximum travel range of ±15 µm and an integrated

capacitive position sensor with 0.2 nm resolution to measure

the relative displacement between the LM and the PZT. The

resonance of the PZT is actively damped by its integrated

control electronics.

In order to compensate for the friction present in the LM, a

model-based friction compensator was employed [11]. Thus,

the primary actuator is modeled as a double integrator and

the DSA is fully described by the set of equations in (1).

For this particular system u1 = 1 V and u2 = 5 V, and the

parameters a1, a2, b1 and b2 were identified experimentally

and are given by

a1 = −106,
a2 = −1810,

b1 = 1.5× 107,
b2 = 3× 106.

(22)

When working in its linear region, the PTOS control law

becomes a linear feedback gain K = [k1 k2] which may be

parameterized as,

K =
1

b1
[(2πω1)

2 4πω1ζ1] (23)

with ω1 and ζ1 the natural frequency and damping ratio of

the primary actuator closed-loop system. By pushing ω1 =
30 Hz, the PTOS linear region is given by |ref2 − p(t)| ≤
422 µm. Similarly, the PZT gain is calculated by choosing

ω2 = 300 Hz. The gains are given by,

K = 10−3 × [2.4 0.0225],
W = −[0.8385 0.0005],
H = −[1.1602 0.001].

(24)

In the nonlinear function (21) the free parameter is chosen

as β = 0.001.

In order to add robustness to the preview control strategy,

the feedback/feedforward scheme in Fig. 2 was implemented.

The preview control input u1− is applied to an internal

reference model, from which the desired trajectory x̂1 is

obtained. Then, this trajectory is tracked by applying the

designed preview input as a feedforward reference and by

stabilizing the system with a linear feedback gain Q =
[q1 q2], which may computed by a standard linear control

technique.

Plant

Model Q

u y1−

x1

+
+

x1

+
−

1

Fig. 2. Preview control strategy implemented in the primary actuator.
A feedforward/feedback scheme is used in order to add robustness to the
controller.

Three forms of DSA control strategy were compared in

the experimental setup: (a) a conventional form of DSA

control, where the primary actuator is tuned to have no over-

shoot [12]; (b) the nonlinear feedback control without pre-

actuation, where the primary actuator is allowed to present

some overshoot for improved performance [6]; and (c) the

proposed preview control strategy. In order to implement

controllers (a) and (b), different values of ζ1 in (23) were

chosen accordingly. All controllers were implemented by a

DSP system (dSPACE-DS1103) with the sampling frequency

of 5 kHz, and settling time was defined as the time it takes

for the total position output y to enter and remain within

±2 µm relative to the setpoint.

Figures 3 and 4 show the step responses for references of

30 µm and 100 µm, respectively. The top plot (a) shows

the conventional control, the middle plot (b) shows the

nonlinear feedback without pre-actuation, and the bottom

plot (c) shows the proposed preview controller. In those

plots the thick line is the total output of the system (y), the

dashed line is the primary actuator output (y1), and the dash-

dotted line is the secondary actuator output (y2). The 30 µm

(100 µm) comparative improvement is of 83% (81%) over

a single stage actuator; 75% ( 70%) over controller (a) and

70% ( 64%) over controller (b). Fig. 5 shows the response

of the three different controllers for the successive set point
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Fig. 3. Responses for a 30 µm step reference, the proposed control design
(c) has a settling time of 3.8 ms and a preview control time of 20.0 ms.

scenario. These plots demonstrate the effectiveness of the of

the proposed design.

V. CONCLUSION

A form of preview control for DSA systems was pre-

sented in this paper. Based on the information of future

reference points, a control strategy was developed so that

inputs were applied before the transition time interval. This

control strategy takes full advantage of the redundancy of

actuators enabling the DSA system to achieve an improved

performance. Experimental results showed the effectiveness

of the proposed approach which is able to significantly

reduce the settling time of the overall DSA system.
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