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Finite-Horizon Robust Kalman Filter Design

Minyue Fu Senior Member, IEEECarlos E. de Souz&enior Member, IEEEaNd Zhi-Quan (Tom) Ludviember, IEEE

Abstract—In this paper, we study the problem of finite-horizon  the system involves uncertainties. More precisely, a filter that
Kalman filtering for systems involving a norm-bounded uncertain - produces a small state estimation error at tinmeay worsen the
block. A new technique is presented for robust Kalman filter de-  gate astimation at timie+ 1. Similarly, a filter that minimizes
sign. This technique involves using multiple scaling parameters the stat timati th timal f timati f
that can be optimized by solving a semidefinite program. The use ¢ S_a € es I_ma lon error may n(_) i e Qp Imal for ?S lma ion o
of optimized scaling parameters leads to an improved design. A re- the signal of interest, even when it is a linear combination of the

cursive design method that can be applied to real-time applications state.

is also proposed. A commonly used technique for robust Kalman filter design
Index Terms—Adaptive filtering, Kalman filtering, robust s to apply the so-called S-Procedure, which replaces the un-
filtering, robust signal processing. certainty block with a scaling parameter. This yields an upper
bound for the covariance of the estimation error. Two types of
|. INTRODUCTION scaling parameters have been used: constant and time-varying.

A constant scaling parameter)(is used in [3], [4], and [6] and

FINITE-horizon Kalman filters, —including recursive g gt syjitable for infinite-horizon or stationary filtering prob-

i Ieast-squa_lres fllte_rs asa special case, are V_V"?'e'y us_eqeplq.'s_ One serious problem with using a constant scaling pa-
signal processing applications. Compared with infinite-norizql o ter s that the entailed conservatism can aggregate quickly
Kalman filters, the finite-horizon ones can offer a bettefs (ime eyolves and may lead to a very poor estimator. Time-
transient performance, which is an important property fQf,ving scaling parametersy) are more flexible, and if they are
applications where signals are nonstationary. carefully chosen, the amount of conservatism can be reduced.

One pf the prol_)Iems with Kalman fllter_s_, which has been We-HWO papers have used time-varying scaling parameters. In [5],
recognized now, is that they can be sensitive to system data, Oé'é‘imple formula is given, but the scaling parameter is not opti-

other words, they may lack robustness. A typical phenomengp, o in any way. In [2], the scaling parameter is chosen using
is that the performance of the filter, although being optimal fo go migefinite program. However, as we will reveal later, the
a“nominal” system, may deteriorate very quickly as the systejing parameter obtained at tifnasing [2] may lead to a poor

data_ drift; see, e.g., [4]. This is, of course, not acceptablg f8&timation at future times. In addition, the semidefinite program
applications where a good system model is hard to obtain @rpa solved in [2] is quite cumbersome.

the system drifts. Motivated by _this problem, a number qf Pa- | this paper, we intend to carry out some deeper study on
pers have attempted to generalize the classical Kalman f'lterﬁ"ﬁte-horizon Kalman filtering for systems involving a norm-

systems involving a norm-bounded uncertain block; see [2]-{§)o;nded uncertain block. Our focus will be on how to choose

Note that norm-bounded blocks are used to represent inaCClér@ailing parameters. A summary of our results is given as fol-
cies in the system model. The resulting filters are often calleq, o

robust Kalman filters.

The design of robust Kalman filters faces a major obstacle in * We show that optimal scaling parameters for timemay
comparison with the classical Kalman filters. There are two pre- €ad to poor estimation at future times. Subsequently, two
vailing properties possessed by classical finite-horizon Kalman ~ types of scaling parameters are suggested: one optimal
filters. First, an optimal filter at timé leads to an optimal filter for time £ and one used for the future. In fact, at each
atk-+1. Thatis, an optimal filter at produces a minimum state ~ ime &, all the scaling parameters, ..., 7. need to be
estimation error ak (in the variance sense), which is the best ~ reoptimized.
initial condition for the filter design at + 1. Second, the op-  * The design of the estimator has the following separation
timal filter for state estimation is also optimal for estimation of ~ Properties.
any other signal, provided it is a linear function of the state. Un-—  The covariance of the estimation error/at- 1 de-

fortunately, neither of the two properties carries through when pends only on the scaling parametess ..., 7, and
the system data and not on other parameters in the

, _ , _ _ filter. Thus, the scaling parameters can be optimized
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» We show that optimal scaling parameters can be compufEkden
using a semidefinite program. The size of the program is

moderate and grows at the rateAn suboptimal schemeis  21(70) = %1, Zi(r0) > 0, V0 <10 < [[EoXoEg|| ™"
also given that requires a constant amount of computation (2.10)
at eachk. .

In addition

Il. COVARIANCE ANALYSIS - . _

_ . . Ly < Ly = inf { L(C1 21 (70)CY): 0 < 70 < || EoTo Ep|| 71}

Consider the following uncertain system: (2.11)
i1 = (Ax + HeFy Ex)zx + Brws andL; = L, if ¢y is a row vector. Further, the optimaj} for

2, = Crxy, (2.1) L, canbe found by solving the following semidefinite program:

wherez;, € R™ is the statez; € R? is a linear combination of L; = min L(C, X CY)
T A € R™", Hy, € R™¥4, By, € RI*™, B, € R™™ and

xn ; ; ; ixj X — BoBj§ A Hy
C), € RP*™ are given matrices with full row ranlg;. € R**J t A v BE o |l >o
represents norm-bounded time-varying uncertainty, i.e., st 9 0 T T0BoR0 =
HO 0 7'0.[

andw;, andxy are zero-mean and independent and satisfy the Proof: We first consider the general case whétemay
following second-order statistics: not be a row vector. Obviously

I, itk=1I t t
wh) = ’ . 1y = . . 31 = (Ao + HoFoEp)20(Aog + Ho o E ByBy.
E(wpwy) {07 otherwise E(xorg) = X0 > 0. (2.3) 1= (Ao + HoloEo)Xo(Ao + HoloEo)" + BobB

Without loss of generalityE;, # 0 for all k£. To assure that the It follows that

order of the system is not degenerate, we further assume Li < min L(C,XCY)
rank[AgHyBy] =n Yk (2.4) S.t.X 2 (Ao + HoFoEo)So(Ao + HoFoEo)'
+ BoB¢, v Fy

Denote byX; andX. , = C,X;C} the covariance matrices
of zy, andz, respectively. Théworst-case) covariance analysis
problemis as follows: Giveril” > 0, determine the worst-caseysing the S-Procedure (Lemma 2.1), the above is equivalent to
2 T4, 1€, (2.12). The equivalence between (2.12) and (2.11) follows from

Schur’'s complements.
— . t
Lyyy =max {L(Z. r1): BFL < TLOSKE<T} (25 7 Eorihe case wher€; is a row vector

X =Xx".

whereL(Y) is any given linear function of. In particular, it is L — Ol An + HoFn S
common to choosé&(>) = trace ). L F:Jl};}ér 1(Ao + HoFoEp)Xo
We first mtrodupe the so-called S-Procedure (see, e.g., [1]). (Ao + HyFyEy)tCt + CLByBLCE.
Lemma 2.1:Given M, A, ¥ € R™*", H € R"™**, and
E € RI*™ with ¥ = % > 0, the following inequality holds:  Given any? > 0, we haveL, < / iff

M~ (A+ HFE)X(A+ HFE) >0 {—CBoByCl —C1(Ao+HoFoEo)Yo(Ao+HoFoEo)'Cl <0
Xy t <
VEEeR™, FIm <1 (2.6) forall Fo F¢ < I. Using the S-Procedure again, the above holds
if and only if there exists > 0 such that iff there exists some, > 0 such that
M A H /— ClBoB(t)C{ C()Ao C()Ho
At s-1_+gE o | >o0. 2.7) AL St —mEE, 0 | >20. (2.13)
Ht 0 I - H606 0 7'0]
Next, we give a solution to the covariance analysis proble%bviOUSIy

for the casel’ = 0.

, Ly =min/
Theorem 2.1: Define LT A5
Y1(70) = AoSo AL + BoBb + 75 P HoHY, 7 €R subject to (2.13). Writing = C; X Ct for someX = X' > 0,
(2.8) Itis easy to see the optimization problem above is equivalent to

where (2.12).
To show (2.10), we first note th& above is an upper bound

So = Yo + XoE (15t — EoXoES) ™ EoXo. (2.9) for ¥;. For eachr, the optimal X equalsX; (7). Hence,
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31(m0) > X1. Next,21(r9) > 0 follows from %, > 0, (2.4), Let

and a rewriting of (2.8) as follows:
(I)k,s = (Ak + HkaEk) Tt (As + HSFSES)

Al 0<s<k (2.23)
1(70) = [Ao Ho Boldiag{So, 7' 1, I} | H{ | - and
36 Yk IBTB:tp + (I)T,TBT—IB:tZ“—l(I)CtF,T
n + 4 Pr a1 Be BT - (2.24)

The role of the scaling parametey is to identify the
worst-casel. Then
Returning to the problem in (2.5) far > 0 where more than - —® Anl -1
. . = + HoFoEqUp)IL
onelrl}, terms are involved, it turns out that they can be replacedT+1 ot [( -0 oFoEolio)Ll,
by additional scaling parameters to computeLr41. This is

detailed as follows. . It follows thatX > Sp_q iff
Theorem 2.2:Denoter = [rg, ..., 7r] and define

- (AoUo + HoFoEolo)' + BoBj| % | + Y1.

X > @7 1 [(AolUo + HoFo EoUp)ILy "

Yo(m) =%o - (AU + HoFoEolo)' + BoB{) @4 | +Y1.

Sit1(7) = BeBf, + 7 \HRHf + A Se(r) 4], (2.14)

(2.25)
fork=0,1,..., T, where Using the above and the S-Procedure (Lemma 2.1), (2.25) holds
" .
Si(1) =Zk(r) + Bu(7)ES for all FoF§ gA I iff
. (Tk_l_[ — EkEk(T)Ei)_l EkEk('r) (215) |: X (I)T, 1AOU0 >0 (226)
i U§AR®Y . Ilo — ToUSE§Eoln | —
with :
for somery > 0, where
Syt (r) =S5 (r) — TuELEy.. (2.16)

X =X Y1 — &7 1 BoBy®Y | — 75 ' &1, 1 HoHy®Y ;.

In addition, define
Then, use Schur’'s complements to convert the abovdInte

QI{T:O<Tk<HEkEk(’F)EiH_l,k‘:O,...,T}. 0and
@17 X > @, UI'UIS,  + 1
I(I)T72 [(Allfl +H1F1E1lf1)ﬂl_l
Ep1(r) 2 Bpgr, Spa(r) >0, VreQ 0<k<T. - (AUr + HiFLE\Uy)' + B1 B 5 + V>

Then

Next, an upper bound fakr 44 is given by
_ ) . and we return to a form similar to (2.25). In general, the optimal
Lryi=inf L (Cri1Sr41(T)05 ) - (2.19) 7, depends oy, Fy, ..., but if we assumey is constant, the
process above can be done recursively, and it will eventually
Further, the optimum above can be found by solving the fokive (2.20). The reason for (2.20) to give an upper bound only
lowing semi-definite program: is because;, are assumed to be a constant in the recursion.
- . " To show the equivalence between (2.20) and (2.19), we note
L4y = minL (Or41X0ryy) that the optimalX for (2.20) is

st [U;i_l ll_ﬁ;:j 20 X = UT+1H:Fi1U:tF+1~
X=X 7120 (2.20)  Thys, it suffices to show by induction that
whereUr andllr are defined recursively as k() = U I UG, VEk>0.
g(; z Izgl Zhii(iasncertainly true fok = 0. Suppose that it is true for some
41 = diag{Il}, — U} EL ExUs, 15, L} '
Ut1 = [AvUr Hi By, k= 0. Uk+1H1:i1Ul€+1
(2.21) = AU (D — UL ELERU) LU AL

+ By By + 7 P Hy HY,
= AU (I + 1 ULEL (7 T = By UL ULER) ™
win max {L(Cry1 XCpy): Pk <1, 0k < T} - ByUILY) UL AL + BuBY + 7 HiHj,
st.X > ET+1. (222) = Ek—l—l("_)-

Proof: The problem in (2.5) is equivalent to
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Finally, X7y1(7) > 37y, forallT € QbecauseX > Xr.;. wheree, is the estimation error, and
SinceT is arbitrary, we must hav&;;(7) > X4 for all

7 € €. In addition, ;1 (7) > 0 follows from £, > 0 and i g i w
(2.4), as shown in the proof of Theorem 2.1. [ | Tk = | } ) L= [U‘ }
Remark 2.1: Theorem 2.2 suggests thaheeds to be recom- -k *
puted asI’ changes. This is indeed the case. In fact, we will - [ Ag 0
show in Section VI that an optimalat a given time” may not A = BiCy n  As — BoCy J
be optimal at a different time. Because of this property, we will i ’ ’
denote the optimat, attime?” by 71 4, k = 0, ..., T when- B — (B 0 - | Hik
ever necessatry. k= L 0 BJ ’ " | BLH,
Remark 2.2:1n Theorem 2.2, we have assumed nonsingu- 3 3 ’
larity of Xq. If 3 is singular, we can always decompose it into Ep,=[Ey 0; Cr=0C [l 1]

Uolly 1U3 for somel/, andlly. With thesel/, andlIl,, the re-

cursion in (2.21) will still be valid. We will denote by%y, 3, x andX, , the covariance matrices

of Thy Tk — Lk andek.

IIl. ROBUSTFILTER DESIGN. PROBLEM STATEMENT Similar to the previous section, scaling parametarswill
We extend the system (2.1) to the following: be used to replace the uncertainty blogk, which yields
parameterized covariance matrices,11(7), Xz, x+1(7),
and X, 441(m) that serve as the upper bounds 1,

it = (A + Hy wFrBy )y + Brwy Y k1 and X, xy1, respectively. If this is done recursively,

Yk = (C2, 1k + Ho 1 Pl Ex )Tr + vk i.e., 70, 71, ..., 7% are used, then these upper bounds depend
z = C1 ki (3.28) on all these scaling parameters. In this case, we will denote
these upper bounds By, 11(7), £, x41(7), andZ. g41(7),

wherey, € R is a measured outputy , € R™", Hy , € [eSPectively. _ _
R"*%, 4, is a zero-mean measurement noise, which is indepen-W'th the discussion above, we propose a number of technical

dent ofw;, and with statistics problems as follows: X
P1) GivenX; andy, find the optimal filter atk (i.e., Ay
itk and By,) such thatL(S., 11 (7)) is minimized.
O {0’ otherwise (3.29) P2) Givenyy, find optimal 7, A, and B, such that

’ ' L(3. ky1(7%)) is minimized.

P3) GivenT’, 3, find optimal 73, and the optimal filter at
allk, k=0, ..., TsuchthatL(X. 741(7)) is mini-
mized.

Obviously, our aimis to solve P3, whereas P1 and P2 are imme-

diate steps.

Other matrices are defined accordingly. In the design problem,
2k 1s alinear combination of;, to be estimated. Similar to (2.4),
it is assumed that

A Hin Dy

rank
[02, r Hox O

} =n-4r, Vk. (3.30)
IV. ROBUST FILTER DESIGN. SOLUTIONS
We further assume that; ; have full row rank for allt. Solutions to the three problems P1-P3 are given in this sec-
We consider amth-order robust linear filter of the following tion.

form: Problem P1:
Theorem 3.1:Suppose

Erg1 = Agdy + Bi(yx — Co,xix)

=0 Yy = Tak+ Yok 2ok , for someX, 1 > 0
2 = Oy d (3.31) Xok  Z2 ’
kT MLk R ‘ Sk >0 (4.33)

Note that the use of the santg ; and C, ; does not lose
any generality. More precisely, it can be easily shown that al
nth-order linear time-invariant estimator fer, with input ¢y, =14
and zero initial state can have a state-space realization in th@iven as follows:
form of (3.31).

Given the filter above, the augmented system involving Ap = Ay + As (4.34)
andz; is given by

é‘?/hi(:h holds at: = 0), and0 < 7, < ||ExX1 wEL|| 7, where
1.k = Za k + 22 %. Then, the optimal solution to Problem 1

Ap =(Ax — BrCa, 1) Y0,k ELViEy (4.35)

Ery1 = (A + HFREx) iy, + By By = (7, Hy Hj 1 + AxSiCh 1)
er = Crii (3.32) (7 Hy p HY g+ Co i SiCh )7 (4.36)
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where * First, only®,. i, rather than the wholE,,, is directly re-
quired for the filter design at tim&. However, the term
Vi =(r t = By kB> 0 (4.37) Y2 i is used in constraining the range far. R
; * The optimalr is solved independently of the optima},
Sk =%k + 20 By Vi Bk Xa k. (4.38) and By, although the latter depends epn
* The optimal X in (4.45) is indeed the optimal, ;+:.
In particular, the optimal filter is independent®©f .4, (or the Further, ifX, ; is replaced with any of its upper bound,
signal to be estimated). Further, the optimal filter given above  the resulting optimak.,,. ;1 will be worsened.
preserves the structure in (4.33), i.e., These observations, together with the results in Section I,
lead us to the main result of the paper.
S | E k() + 22 k1 (Th) Xo g1 (Tr) Theorem 4.3:Let ¥y > 0 andZ” > 0. Denote
Eppr(m) = | 77 ’ ’
o ky1(Th) Yo kt1(7k)
(4.39) 7 =70, .-+, 1]
Le, ik =C1, 180 kCY 1.
with
DefineX, o(7) = Xo. LetZ, 41(7) andZy ,4+1(7) be given
Yo kt1(mk) = BrB}, + Tk_lHl,ka,k + ApSiAL as in (4.37), (4.38) and (4.40)-(4.43) for= 0, 1, ..., except
_gpte-ly (4.40) that¥, x, X2 r andX, ; arereplaced by, r(7), X2 »(7)and
Kok Sk ' 31, x(7), respectively. Then, an upper bound for ;- is given
and by
Yo kt1(Th) + 22 pt1(7k) B
= BkBltc + Tk_lHl,ka,k Lery1= 71&115 L (Ol,T+12w,T+1(T)Of,T+1) (4.47)
+ AR(STh — e ELE) T Ay, (4.41)
’ where
where -1
Q= {r0<n < |ESumBE| ™ k=0,.... T}
Sp=I1+7, ' Ho o H j +CoxSiCh . (4.42) (4.48)
Zx =7y HokHi ), + Co xS AL (4.43) In addition, define
Finally, we have (Uz0=1;
I, 0o=1I1 0= I
Ye kt1(mk) > 0, Ex,kﬁ;(@ > k1, 22, k41(mk) =0 We =1, 1 — TkU;;,kEltcEkUm,k%
VO < < ||EpZy gl 7 (4.44) Wi 4 :Hl,k—TkU£7kEiEkUr,ké
Proof: See Appendix A. n . Wor O Uz vCs ok
_ z, ’ ’ 4.4
Problem P2: I, k41 = diag { { 0 7l . (4.49)
Theorem 4.2:Under (4.33), the optimal solution to Problem ’
2 is given as in Theorem 4.1 with the optimal solving the
) e } - [Co wUp i Hok)y I
following semidefinite program:
. ) I gg1 =diag{W1 &, 7o, Inn}
min L(Cy x 41 XCT 411) (Uporq1 = [AxUs, e Hix Bal-
X — ByB;, Ap Hi g _
st Al 5;1 +0%  Ca CL  Ho > Note thatll, ; is affine in7. Then, the optimaL. 7 can be
H, HékCQ - TkIJr’Hi Hy | found by solving the following semi-definite program:
X =X, 0< 7 <||EXL w Byt (4.45) Lo, 1 = min L(CL 1 X pyy)
. . . . X U.’L‘ T4+1
whereS,, is given in (4.38) with s.t. + : >0
Uprpr Heryr ] =
St =% — EL By (4.46) Wi, >0, k=0,...,T
X=X T>0. (4.50)
Proof: See Appendix B. [ |

Problem P3: Before we give the solution to P3, several kednce the optimat is found, the optimal filter at tim&’ is given
observations about Theorem 4.2 are needed. as in Theorem 4.1, witkl, + = X, (7).
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Proof: See Appendix C. m  where|d,| < 1is the uncertainty. We assume that the initial
Remark 4.1:Note that the optimat;, for each? may be state covariance matriX, = 1.
different. Using a fixedr,, may lead to conservative designs, To match the system description in (3.28), the uncertain term
but the optlmaIAT and By does not explicitly depend on pastis represented by the matrices
filters, i.e., they depend on the optimahnd the system data at

T.
0

H, = M , Hy=0, E=[00.03] (6.52)
V. RECURSIVEROBUST FILTER DESIGN
Stationary filters are designed in [2], [5], and [6] to compare
There is one unpleasant feature about the solution in Theorgiigh the so-called “nominal” Kalman filter where the uncer-

4.3, that is, the size of the semidefinite program in (4.50) growsinty is ignored. An infinite-horizon filter is used in [6] with
linearly in k. To avoid this, we propose a suboptimal solutioryuaranteed stability, which gives a great improvement over the
i.e., a recursive method that optimizes only a fixed number apminal design. The design in [5] is based on finite horizon.
most recent scaling parameters. The motivation for this apprax-our setting, this design is similar to the recursive case with
imate solution stems from a simple fact about Kalman filteringindow size equal to one, except that the scaling parameser
that the contribution of the initial covarianég to the estima- preselected. The performance turns out to be superior to [6]. The
tion error at timel” decays as time evolves, provided that thgesign in [2] is similar to [5], except that the scaling parameter
augmented system (3.32) is asymptotically stable. The recursi@ptimized at each iteration using a semidefinite programming
method involves solving a semidefinite program of a constagichnique, yielding some small improvement over [5].

size. Therefore, it is suitable for real-time applications where Design results using our new methods are given as follows.
the information of the system dynamics (i.4;,, B, etc.) may

not be available priori.
The recursive algorithm given below is simply modified from

1) (Design 1) For recursive design with window size equal
to one, our design leads to a performance similar to [2],
which is not surprising. Finite-horizon designs have the

Theorem 4.3. inherent instability problem, but this can usually be fixed
Step 1) LetV + 1 be thewindow sizéfor recursionN > 0. by adding additional cost to the performance function.
For0 < T < N, apply (4.49) and (4.50). 2) (Designs 2 and 3) By increasing the window size, both
Step 2) Forl’ > N, still apply (4.49) and (4.50), but re- the performance and stability can be improved dramati-
place the constrain, , > 0, Yk = 0,..., T cally with the tradeoff of more computation for the filter
by Wor, 2 0, VE =T — N, ..., T and reini- design.

tialize U, r—y = [ andIl, 7_n = (Zh_n)71,

X ) . Design 1: R ive Desi it = 1: First, desi
where . is the optimalXz_(7) determined esign ecursive Design wi Irst, we design a

filter using the given system data. The resulting filter turns out to

atr —N. _ be unstable. This demonstrates the inherent instability of finite-
Remark 5.1:1n general, all the matriceB;,  andUs x,k = horizon designs. A main cause of instability is that the optimal
T—N, ..., T+1needto be recomputed at each iteraflon 7, may be such that it minimizes the cost functiorkat 1 but

N. This seems to requir@(N?) amount of computation. We drivess:,,,, () too large, thus worsening the future costs. This
point out that it is possible to update. 71 andU.. r+1 USiNg  problem has been recognized by other researchers. For example,
only a constant amount of computation, but this would requifs] solves this problem by using a fixed (conservative) scaling
some messy notation and hence, will not be done here. HQygrameter, whereas in [2], the covariance matixs required

ever, for stationary systems whe#g,, By, Ci ., Cao x, Hi &, to be bounded.

Hy, ., and E, are constants (b, can still be time-varying), Alternatively, we treat the aforementioned problem by re-

the update o, 741 and®,, 1, is specially simple. This is stricting the range of the scaling parameters as follows:
becausé/, 741 would remain constant and théf 4, would

have only one new element relatedd) ,._ . .
0<7i/pp < ||ESy,n(n)EY|, VEk (6.53)

VI. EXAVPLE for some0 < p, < 1. We also take an additional measure for

To illustrate the results in this paper, we consider the fo'lmprovlng stability by adding a term to the performance cost.
Tdeed we take

lowing example, which has been used as a “benchmark” in [ﬁ

[51, [6]

1 0
C, = [0 5} (6.54)
0 —-0.5 —6
Tpq1 = N T + w . PN .
1 140368 1 and the performance cost is trdcg £(exc;,)Ct }. Effectively,

the new term prevents,;(7) from getting too large, thus
helping future costs. It is observed in the simulations that in-
2z =[1 O]z (6.51) creasing: can dramatically improve the stability and the steady-

Yk = [—100 10]$k + v
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TABLE |
STEADY-STATE PERFORMANCE COMPARISON

Filter 6=-1 é6=0 4=1 Bound
Nominal Filter 551.2  36.0 83528 -
Robust Filter of [6]  64.0 614 644 98.7
Robust Filter of [5]  46.6 452 541 54.3
Robust Filter of 2] 50.8 494 535 N/A
Proposed Design 1 39.19 39.65 40.26 44.27
Proposed Design 2 38.11 38.66 39.40 42.03
Proposed Design 3 37.75 3819 38.83 41.46

For the same fix of”; in (6.54), the steady-state filter has

Ak:[‘)

—0.5178 ~ —0.002 561
1 1.0391 |’

Bi = —0.004366} (6.56)

Fig. 1. Performances for recursive robust filter designs. Design 1: Top curve;

Design 2: Middle curve; Design 3: Bottom curve.

10

scaling parameters

10 . L L L . L
0 40 50 60 70 80 90
time

o] 10 20 30 100

Fig. 2. Scaling parameters for recursive robust filter designs. Desi

1: 7+ r—Bottom curve; Design 27+ r_;—Third curve from the top;
77, r—Second curve from the bottom; Designi3: r_», 7, +_1—Two top
curves;rr, —Third curve from the bottom.

state performance with a minor tradeoff of the initial perfor-

mance.
To demonstrate various recursive designs, we splect).7

ande = 0.2. The corresponding filter is stable and converges

a stationary one as — oo, and it is given by (3.28) with

A= [0 —0.0166} 7

1 —0.003032
1 1.0365

Bi = —0.003330] (6.55)

The steady-state scaling parametgrr = 1.0981. The results
are shown in Figs. 1 and 2 as well as in Table I.

Design 2: Recursive Design witN = 2: Recall that with
N = 2, two scaling parameters r_; andrr r are involved
at eachl’. The first one is for estimating., r from X, r_1,
and the second one is used to estimaier,; and to design
the filter.

The steady-state scaling parametersiafg—; = 4.3966 and
7r.r = 1.5101. The results are also shown in Figs. 1 and 2
as well as in Table I. Note that this filter gives a much better
performance.

Design 3: Recursive Design witN = 3: The filter for
N = 3 and the same fix of’; is also stable and has steady-state
matrices

Ak:[o

—0.5544 . [—0.002603
1 11197|> TFT

~0.004 272} - (657)

Now, the scaling parameters convergerior_, = 4.7172,
Trr—1 = 48874, 70 r = 1.6699. Once again, results are
given in the same figures and table. However, the improvement
in performance is virtually invisible. This means thét= 2 is
sufficient for this example.

Remark 6.1: We would like to point out one interesting fea-
ture of our design. That is, for recursive designs without a rela-
tively small window size, it is often quicker to compute the op-

¥imal scaling parameters using (4.47) rather than the semi-defi-

nite program (4.50). This is because (4.47) involves only a few
scaling parameters and that the cost function is convex in
fact, all the designs in this section are done using (4.47).
Remark 6.2: We suggested earlier that the motivation for re-
optimizing the scaling parameterg_1, 7r_», ... is that their
previous optimal values may not lead to an optimal solution at

gc’). This fact is implicitly supported by Designs 2 and 3, where

17 r—1 (the optimalry_; at?) and7r_; r—; (the optimal
7r_1 atT — 1) are clearly different.

VII. CONCLUDING REMARKS

In this paper, we have proposed a new design technique for
finite-horizon robust Kalman filters. This technique allows us
to effectively treat systems with norm-bounded uncertainty
blocks. The uncertainties are dealt with using the so-called
S-Procedure, which vyields a set of scaling parameters to
optimize. The corresponding optimization problem is convex
and can be solved either directly or via semidefinite program. A
recursive design method that is mostly suitable to applications
with nonstationary processes or signals is also presented. The
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proposed technique gives less conservative designs in comparere
ison with existing techniques for robust Kalman filtering. This

property has been demonstrated using an example.

APPENDIX A
PROOF OFTHEOREM 4.1

Let (4.33) hold. We first show that the optimal solution to
Problem 1 is given by (4.34)—(4.38). Following Theorem 2.1,

we consider the upper bound B, given by

Yiq1(m) = BiBL + 7V HyHY + Ay®, AL (A58)
where
p = Sp 4+ S ELVRER D (A.59)
with
Vi = (1o — ExSa B L (A.60)
Note that
Vi = (171 — ExS1 B > 0. (A.61)

It follows from (A.58) that

Lo, kt1(Tk)
— [ —ISsa(r) { _II}
= BB + ByB. + 7. (Hy 1, — BpHo 1)
(Hy 1—BiHo 1) +[Ar — BiCa,1 BiCa,1— Ar]®s
AL By
B - A,

(A.62)

Differentiating (A.62) with respect td,, andB3;, and setting the
derivatives to zeros, we obtain

. . A 0
My =[Ar — BiOs 1 BiCa i — Ax]Ds [—I} =0 (A.63)

and
My =By — 77 (Hy, 1 — BuHz ) HS ),

t

2

t
-5

— [Ai — BiCo,1 BrCoi — Ay,

(A.64)

Next, we want to compute optimaik from (A.63). To start
with, we verify that

0 )
L -1y [ I} S EGET..  (AG5)

and
0 1]%; m —IWSa s (A.66)

Ty =1+ Yo 1 ELViE. (A.67)

Substituting (4.34) and (A.65)—(A.66) into (A.63) yields

ALY 1 = (Ax — BiCo 1) S0 1 ELVAELY ), (A68)
or equivalently
Ay = (A — BiCy 1) hELVIELT. (A.69)

To show that (A.69) agrees with (4.35), we note that

EWWEL = Ex(Xe x + X0 1) EL. (A.70)

It follows that

Vi =Vt — EySo nEL) L
=Vi + ViEr(I — Sk EL VA Ey) 'S0 1 EL Ve (AT1)

with V;, given by (4.47). This implies

ELViEy,
= E\ViE(I + (I — Yok ELViEy) ™' Yo 1 ELViEy)

= EViEx(I — So kELViER) (A.72)

Subsequently

EViEy(I + Yo 1 ELVAEy) !
= EIViEx(I + S0 1 ELVAEL(I — So x ELVRE,) ™)t

= EViEx(I — X 1 EL VA Ey) = ELViEy. (A.73)

Hence, (A.69) is identical to (4.35).
Now we return to computing;, from (A.69). Using (A.63)
and (4.35), we rewrite (A.69) as

By — 7, Y(Hyp — BkH2k)H§k

R ot
—(Ap—ByCo 1[I —I—Em,kE,ivkEk]cpk[ 27’“} =0.
0
(A.74)

To simplify the above, we verify that

I .
I -] {0} =% b+ L0 kB Vi Er (S0, 1 + 22, 1)
(A.75)
and

I .
[0 1]k {0} =0 i + X2 k ELViER(Z0 1 + X2 1)

(A.76)
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From (A.73) and (A.75)—(A.76), we get

[ —1—%, 1ELViE]®s m = S

wheresS, is given in (4.38). Subsequently, (A.74) becomes

Bk —T;l(HL k _BkHQ, k)Hi kT (Ak —B%CZ k)SkC§7 k= 0
X (A.78)
which gives the optimal solution faB;, in (4.36). Substituting

the optimalA4,, and By, into (A.62), we get (4.40).
The property in (4.39) is shown as follows:

= 0
1 05| Y]
= Bkéi — Tgl(Hlyk — EkHQ,k)Hékai
4 B

+ [Ak — BrOy, 1 BrCy i — Ax|®y . oA
C; B — 4

= M AL + MyB} = 0.
Equation (4.41) is verified as follows:
Yo kt1(Th) + 22 pg1(Tw)

~ U OSka() | g

- I
= BB}, + 7, "Hy o Hi 4+ Al 0]9 [0} Al

= BiBj + 7, 'Hy o HY o+ Ak(S0% — e ELER) THA]

Finally, we focus on (4.44). Leéi < 7, < ||ELE wBr|| 7t
> 0. From Theorem 2.1, we have
2 Em,k

From (A.61), Vi

Yo rt1(7) > Xkt > 0. Hence X, n(7)

(A.77)

2111

where

Sk 0 Sk 0
e[ 0
0 71 0 7,71

(I + Co, 1 SkCh g, + 7 "Ho p HS 1)

0
Tk_l_[

_ [S,jl 0 } N Ch
0 7d Hi

The optimalr, is obtained by
min L(Cy 141X CY 41)

SLX > X, wt1(ma)
X =X'0<m<||ES e EL™

t
CQ,k
t
Hj

St
[Cox Ha il { Ok

—1
[Ca H2k]> .

Using the Schur complement, the constraiht> 3, 441 (%)
is equivalent to

X — BB [Ar Hi
S
Hi *

which is the same as the first constraint in (4.45). Thus, the

theorem has been proved.

APPENDIX C
PrROOF OFTHEOREM 4.3

The first part of the theorem [(4.47)] follows from Theorem
4.1. To prove the second part [(4.50)], we first claim that it suf-
fices to show

Yo n(m) = U, kH;}kUt

x, k>

ke VE=0,... . T:7e,
Y1 k(r) = Us bl UL 4,

(C.79)
Indeed, if (C.79) holds, it follows from the Schur complement

and X, x(r) > 0. To showX, x41(7%) > 0, we apply the that

Schur complement to (4.40), i.&¢ x4+1(7%) > 0 iff

{BkBZ—i-T,:lHl,ka’k—i-AkSkAz zZt -0

which can be rewritten as

AL L,
Hy . By -1 ¢ ¢
0 diag{Sy, 7, "L, I} | H{, Hj | >0

Py
B. 0

Co 1 Hop,

which is guaranteed due o, ; > 0 and (3.30).

APPENDIX B
PROOF OFTHEOREM 4.2

Rewriting (4.40), we have

t

Al
S k41(h) = BiBl + [Ax Hl,k]Yk[ » }
Hl,k

TEQ, <= 7>0, W, 1 >0, kE=0...,7. (C.80)
Subsequently, the optimal in (4.50) is achieved at
X = Upa 15 Upy

To show (C.79), we apply reduction. Obviously, (C.79) holds
for k£ = 0 by definition. Suppose it holds for somethen

-1 t
e, k+1H.7:, k41 Uac, k41

t “r—1 ;:,kAi
Lk

where

. Wor O Uz 1G5k

Hk:|: Ok - I} ’kf 2k [Co, Uzt Ho 1]

=k H 4
We have
1

. mek 0

* 0 a7\
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