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Abstract

Integral quadratic constraints (IQC) arise in many optimal and/or robust control problems. The IQC approach can be viewed as a
generalization of the classical multiplier approach in the absolute stability theory. In this paper, we study the relationship between the two
approaches for robust stability analysis. Using a slightly modified multiplier approach, we show that the existence of an IQC is equivalent
to the existence of a multiplier in most known cases. It is hoped that this result provides some new insight into both approaches and
makes them more useful in robust control applications.
� 2004 Elsevier Ltd. All rights reserved.

Keywords:Integral quadratic constrains; Multipliers; Robust stability; Nonlinear systems

1. Introduction

Integral quadratic constraints (IQCs) often arise in robust-
ness analysis of linear and nonlinear dynamical systems.
They are used as a convenient tool for describing parametric
uncertainties, time delays, unmodeled dynamics and nonlin-
earity of the system, as well as design objectives such as
LQG costs orH∞ performances.
The terminology of IQC was formally introduced by

Yakubovich (1967, 1971)for robust stability analysis of sys-
tems subject to complicated perturbations. The underlying
idea, however, had been around since the seminal work by
Popov (1962)on absolute stability. Popov’s idea of using
a quadratic constraint to “overbound” sectorial nonlinearity
led to a frequency domain condition for absolute stability
in terms of amultiplier function. The absolute stability
theory developed in the 1960–1970s offers a rich class of
multipliers for robustness analysis with various nonlinear
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functions. Strong connections between multipliers and the
network realization theory are well established. Further, a
Lyapunov function is associated with each multiplier. See,
e.g., Brockett and Willems (1965), Narendra and Taylor
(1973), Desoer and Vidyasagar (1975), Safonov (1980),
Willems (1971)andVidyasagar (1992)for details. Many of
the classical papers on absolute stability can be found in an
edited book byAggarwal and Vidyasagar (1977). The mul-
tiplier approach also finds useful applications in searching
for parameter-dependent Lyapunov functions for analysis
and synthesis of uncertain systems; see, e.g.,Dasgupta,
Chockalingam, Anderson, and Fu (1994).
Generalized from the multiplier approach, the IQC

approach is able to treat a larger class of uncertainty
and nonlinearity. Many IQCs are collected in a paper
by Megretski and Rantzer (1997). The examples where
IQCs apply include real and complex uncertainties, fast
and slow time-varying parameters, time delays, nonlin-
earity, H∞ optimization constraints, etc. The so-called
Kalman–Yakubovich–Popov (KYP) Lemma (see,Anderson,
1967; Willems, 1971) plays a vital role in the analysis of
IQCs. Recent development in the IQC approach incorpo-
rates the theory of linear matrix inequality (LMI) to derive
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more advanced robust stability and robust control re-
sults; see, e.g.,Boyd, El Ghaoui, Feron, and Balakrishnan
(1994), Feron, Apkarian, and Gahinet (1995), Haddad and
Bernstein (1991), How and Hall (1995), Fu, Barabanov, and
Li (1995)andFu and Barabanov (1997). The IQC approach
has also been used to study parameter-dependent Lyapunov
functions; seeGahinet, Apkarian, Chilali, and Feron (1995)
and Fu and Dasgupta (2000). The advantage of the LMI
approach is that much more complicated uncertainties can
be handled using convex optimization, and hence, it differs
sharply from the traditional absolute stability theory where
the main goal was to obtain simple graphical tests.
The purpose of this paper is to study the following con-

verse problem: To what extent does the IQC approach gen-
eralize the multiplier approach? In other words, we would
like to know under what conditions the existence of an IQC
implies the existence of a multiplier. This problem is moti-
vated by the fact that the multiplier approach is simpler and
more intuitive. So we want to know when we can apply the
simpler approach.
To this end, we modify the classical multiplier approach

slightly by allowing a somewhat more general class of mul-
tipliers. More specifically, the classical multiplier approach
uses multipliers of the following form:

M(s) = M∗
1(s)M2(s),

where bothM1(s) andM2(s) are stable square matrix func-
tions with stable inverses. Our modification simply allows
multipliers which have “tall”M1(s) andM2(s). Such a mod-
ification does not alter the validity of themultiplier approach.
With this modification of the multipliers, we prove a sur-

prising result: The existence of an IQC is equivalent to the
existence of a multiplier under a technical condition called
convexity condition. To explain this condition, we note that
an IQC describes the relationship between the inputz and
the outputw of an uncertainty block� as a quadratic func-
tional inequality:

�(z, w)�0.

The convexity condition requires the mapping of� to be
L2[0,∞) → L2[0,∞) and the functional to be convex in
w. The convexity condition is a natural description of most
uncertainties in applications. In words, the condition simply
means that a suitably transformed output of the uncertainty
block is bounded by a suitably transformed input in some
sense. A simple example of such an uncertainty block is a
passive nonlinearity which is described by∫ ∞

0
(w2(t) − z2(t))dt�0

which is obviously convex inw. If the convexity condition
is violated, then the output can be “large” in some sense for
a “small” input.
It is natural that the convexity condition is satisfied for

almost all known IQCs. We thus conclude that the IQC ap-
proach can be viewed as a reformulation of the multiplier

Fig. 1. Interconnected feedback system.

approach to a large extent. We hope that this new connection
between the IQC approach and the multiplier approach may
make both approaches more useful in many applications.
This paper is organized as follows: Section 2 introduces

the IQC approach. Section 3 reviews the classical multiplier
approach. Section 4 contains the main result of the paper.
Section 5 gives a discussion on the main result. Section 6
concludes the paper.

2. The IQC approach

Consider the interconnected system inFig. 1which is also
described by the following equations:

ẋ = Ax + Bu,

y = Cx + Du,

z = y + v,

u = r + w,

w = �(z), (1)

where�(·) ∈ �which is a set of linear or nonlinear dynamic
operators to be specified later. Denote

G(s) = C(sI − A)−1B + D (2)

and assumeA to be asymptotically stable in the sequel.
The feedback block�(·) is assumed to satisfy an IQC

which is constructed via afilter given by

Gf (s) = Cf (sI − Af )
−1Bf + Df , (3)

whereAf is asymptotically stable. It is also assumed that�
is a connected set containing the zero operator.
The IQC used in this paper is then described by the fol-

lowing inequality:∫ +∞

−∞
[z∗(j�) w∗(j�)]�(j�)

[
z(j�)

w(j�)

]
d��0,

∀� ∈ �, (4)
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where z(j�), w(j�) are Fourier transforms ofz(t), w(t),
respectively, and

�(s) = G∗
f (s)�̃Gf (s) (5)

with some constant symmetric matrix̃�.
We now introduce a notion of stability, absolute total sta-

bility, for robust stability analysis with IQC. This stability
notion is stronger than asymptotic stability andL2 BIBO
stability.

Definition 1. System (1) is calledtotally stable(or simply
called stable) if there exists some constant� such that for
all r, v ∈ L2[0,∞) and the initial statex(0), the response
signalsw(t) andx(t) (and hence all other signals) are well-
defined at allt�0, and the following holds:

∫ ∞

0
(x′(t)x(t) + w′(t)w(t))dt

��
(
x′(0)x(0) +

∫ ∞

0
(r ′(t)r(t) + v′(t)v(t))dt

)
. (6)

Further, a family of systems of the form (1) is calledab-
solutely totally stable(or simply called absolutely stable) if
there exists a common�>0 such that (6) holds for every
member system.

The following result serves the foundation of the IQC
approach (seeMegretski & Rantzer, 1997).

Theorem 1(The IQC Theorem). Given a set of operators�
for the feedback block of system(1), the system is absolutely
stable if there exists some�(s) of the form(5)and a constant
�>0 such that both(4) and the following condition are
satisfied:

[G∗(j�) I ]�(j�)

[
G(j�)

I

]
+ �I �0, ∀|�|<∞. (7)

3. The multiplier approach

Let us briefly review the classical multiplier approach
to absolute stability analysis. The following result can be
found inDesoer and Vidyasagar (1975), Vidyasagar (1992)
and Zames and Falb (1968). We useU to denote the set
of all asymptotically stable square transfer matrices with an
asymptotically stable inverse.

Lemma 1. Consider the system in Fig.1with� being a set
of L2[0,∞) → L2[0,∞) operators. Suppose there exist a
multiplierM(s) of the following form:

M(s) = M∗
1(s)M2(s),M1(s),M2(s) ∈ U (8)

Fig. 2. Transformed feedback system.

Fig. 3. Transformed feedback system.

and a constant�>0 such that the following two passivity
conditions are satisfied:∫ ∞

−∞
Re[z∗(j�)M(j�)w(j�)]d��0,

∀z ∈ L2[0,∞), � ∈ � (9)

M∗(j�)G(j�) + G∗(j�)M(j�)� − �I,
∀� ∈ (−∞,∞). (10)

Then, the system in Fig.1 is absolutely stable.

Remark 1. The physical interpretation of the lemma above
is clearly given inFig. 2. It is obvious to see thatFigs. 1and
2 are identical, provided that̂y = M1y, ẑ = M1z, v̂ = M1v,
r̂ =M2r, û=M2u andŵ =M2w are taken. The conditions
in (9) and (10) simply mean that the lower block ofFig. 2
is passive and the negated upper block is strictly passive.

Now let us consider a modified version of Lemma 1. This
modification is obtained by convertingFig. 1 into Fig. 3,
where� ∈ [0,1) is an arbitrary parameter. It can be easily
verified that the signals inFig. 3 are related by

(� ◦ G − �I )(ŷ + v̂) + r̂ = û = (1− �)ŷ.

Simplifying the above gives

(I − � ◦ G)(ŷ + v̂) = r̂ + (1− �)v̂. (11)

Operating the both sides byG gives

(I − G ◦ �)(G(ŷ) + G(v̂)) = G(r̂) + G((1− �)v̂). (12)
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In comparison, the signals inFig. 1 are related by

(I − � ◦ G)(u) = r + �(v), (13)

(I − G ◦ �)(y) = G(r) + G ◦ �(v). (14)

For anyr, v ∈ L2[0,∞), if we take

r̂ = r, v̂ = 1

1− �
�(v), (15)

then r̂ , v̂ ∈ L2[0,∞) and

u = ŷ + v̂, y = G(ŷ) + G(v̂). (16)

Hence, the absolute stability ofFig. 3 implies that ofFig. 1.
Applying Lemma 1 toFig. 3, we obtain the following

result.

Lemma 2. Consider the system in Fig.1with� being a set
of L2[0,∞) → L2[0,∞) operators. Suppose there exists a
multiplier M(s) of the form(8) and a constant�>0 such
that the following conditions are satisfied:

M(j�) + M∗(j�)� − �I, (17)∫ ∞

−∞
(Re[u∗(j�)M(j�)(w(j�) − u(j�))]

− �u∗(j�)u(j�))d��0,

∀u ∈ L2[0,∞), � ∈ �, w = � ◦ G(u). (18)

Then, the system in Fig.1 is absolutely stable.

Proof. Suppose (17) and (18) hold.Withu=ẑ and 0< �<1
and

ŵ = (� ◦ G − �I )(ẑ),

we can rewrite (18) as∫ ∞

−∞
Re[ẑ∗(j�)M(j�)ŵ(j�)]d��J

for all ẑ ∈ L2[0,∞), � ∈ �, where

J =
∫ ∞

−∞
Re[ẑ∗(j�)((1− �)M(j�) + �)ẑ(j�)]d�.

It is obvious thatJ �0 when� is sufficiently close to 1.
Also, (17) implies

M∗(j�)

(
1

1− �
I

)
+

(
1

1− �
I

)
M(j�)� − �

1− �
I.

Applying Lemma 1 to the system inFig. 3, we conclude that
this system is absolutely stable. Hence, so is the system in
Fig. 1. �

Remark 2. Note that (17) is implied by (18) because�
contains the zero operator. But we state it to make it explicit.

4. IQC vs. multiplier

Weare now ready to establish a relationship between IQCs
and multipliers. To this end, we consider a more general
class of multipliers than (8). More specifically, the class of
multipliers, we allow, has the following form:

M(s) = M∗
1(s)M2(s), (19)

whereM1(s) andM2(s) arer × m stable transfer matrices
with r�m. That is, we allowM1(s) andM2(s) to be “tall”
to take the advantage of larger dimensions. Note thatM(s)

is square.
Also, let us express

�(s) =
[
Q(s) F (s)

F ∗(s) R(s)

]
. (20)

The key technical condition we require is theconvexity
condition discussed in the Introduction. When the uncer-
tainty block is described by an IQC as expressed in (4), (5)
and (20), we claim that the convexity condition is the same
as requiringR(j�)�0 for all �. This is formalized below.

Lemma 3. An IQC in (4), (5) and (20) is convex in w if
R(j�)�0, ∀�.

Proof. Recall from (5),�(j�) is Hermitian. In particular,
R(j�) is Hermitian. Using (20),we can rewrite (4) as∫ ∞

−∞
{z∗(j�)Q(j�)z(j�) + Re[z∗(j�)F (j�)w(j�)]

+ w∗(j�)R(j�)w(j�)}d��0.

Note that the integrand is a quadratic function inw. It follows
that the inequality above is convex inw if R(j�)�0 for all
�. �

We emphasize that most IQCs experienced in applications
satisfy the convexity condition; see Section 5 for a discus-
sion.
The main result of this paper is given below.

Theorem 2. Consider the system in Fig.1with the assump-
tion that � is a set ofL2[0,∞) → L2[0,∞) operators.
Suppose there exist some multiplierM(s) of the form(19)
and some constant�>0 such that(9) and(10)are satisfied.
Then, (4) and (7) hold with the following�(s):

�(s) =
[ �
2||G||2∞ M(s)

M∗(s) 0

]
(21)

which can realized in the form of(5) with

Gf (s) =
[

I 0
M1(s) 0
0 M2(s)

]
,

�̃ =

 �

2||G||2∞ 0 0

0 0 I

0 I 0


 , (22)
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where||G||∞ is theH∞ norm ofG(s). Consequently, the
system in Fig.1 is absolutely stable.
Conversely, suppose(4) and (7) hold for some�>0 and

some�(s) of form(5)withR(j�)�0 for all � ∈ (−∞,∞).
Then, (17)and (18) hold for

M(s) = 2(G∗(s)F (s) + R(s)) (23)

which can be realized in the form of(19)with

M1(s) = 2Gf (s)

[
G(s)

I

]
, M2(s) = �̃Gf (s)

[
0
I

]
. (24)

Remark 3. The result above shows that the existence of an
IQC is equivalent to an multiplier if the IQC is restricted
to have negative semidefiniteR(j�). The advantage of the
multiplier is that it is much smaller in dimension and hence
in general easier to search for.

Proof of Theorem 2. Suppose there existM(s) of the form
(19) and some constant�>0 such that (9) and (10) are
satisfied. Using the�(s) in (21), it is trivially verified that
(4) and (7) correspond to (9) and (10), respectively. Also, it
is easy to check that this�(s)=G∗

f (s)�̃Gf (s) for the�̃ and
Gf (s) defined in (22). In particular,Gf (s) is asymptotically
stable because bothM1(s) andM2(s) are. The assertion
about absolute stability follows from the IQC Theorem.
Conversely, suppose (4) and (7) hold for some�(s) in the

form of (5) withR(j�)�0 for all�. Using (20), we rewrite
(4) and (7) as follows:∫ ∞

−∞
(z∗Qz + z∗Fw + w∗F ∗z + w∗Rw)d��0, (25)

G∗QG + G∗F + F ∗G + R� − �I. (26)

Take anyu ∈ L2[0,∞). It follows thatz=G(u) ∈ L2[0,∞)

andw=� ◦G(u) ∈ L2[0,∞). Then, (25) and (26) become∫ ∞

−∞
(u∗G∗QGu + u∗G∗Fw + w∗F ∗Gu

+ w∗Rw)d��0, (27)∫ ∞

−∞
u∗(G∗QG + G∗F + F ∗G + R + �I )ud��0. (28)

The difference between the two integrals above yields∫ ∞

−∞
(u∗G∗F(w − u) + (w − u)∗F ∗Gu

+ w∗Rw − u∗Ru − �u∗u)d�

=
∫ ∞

−∞
(u∗(G∗F + R)(w − u) + (w − u)∗R(w − u)

+ (w − u)∗(F ∗G + R)u − �u∗u)d�
�0.

SinceR�0, the above implies∫ ∞

−∞
(u∗(G∗F + R)(w − u) + (w − u)∗

× (F ∗G + R)u − �u∗u)d��0,

which is the same as (18) withM(s) given by (23). It is a
trivial matter to verify thatM(s) = M∗

1(s)M2(s) for Mi(s)

in (24). �

Remark 4. Observe that the first part of Theorem 2, which
generalizes Lemma 1 to allow a multiplierM(s) with “tall”
Mi(s), is trivially proved using the IQC Theorem, although
the use of such a multiplier seems to be difficult to justify
usingFig. 2 becauseMi(s) are not invertible.

Next, we introduce two corollaries. The first one gen-
eralizes Lemma 2 by allowing “tall” multipliers. This is
needed to ensure that the multiplier in (23) and (24) is ade-
quate for guaranteeing the absolute stability of the system in
Fig. 1. The second corollary specializes Theorem 2 to linear
� blocks.

Corollary 1. The result in Lemma2 holds even whenM1(s)

andM2(s) are “ tall,” i.e., they are in the form of(19).

Proof. Let M1(s) andM2(s) be in the form of (19) and
the conditions in (17) and (18) be satisfied. In view of our
earlier discussion about the relationship betweenFigs. 1and
3, it is sufficient to show that the related system inFig. 3 is
absolutely stable for some� ∈ (0,1). To this end, we denote

Ḡ = 1

1− �
I, �̄ = � ◦ G − �I,

which are the feedforward and feedback blocks inFig. 3.
We can derive the following from (17) and (18):

M∗(s)Ḡ(s) + Ḡ∗(s)M(s)� − �
1− �

I,

∫ ∞

−∞
(Re[u∗(j�)M(j�)w̄(j�)] − �(�))d��0

for all u ∈ L2[0,∞), w̄ = �̄(u) and� ∈ �, where

�(�) = Re[(1− �)u∗(j�)M(j�)u(j�)] + �u∗(j�)u(j�).

When� is sufficiently close to 1,�(�)�0 for all� and we
have∫ ∞

−∞
Re[u∗(j�)M(j�)w̄(j�)]d��0

for all u ∈ L2[0,∞), w̄ = �̄(u) and� ∈ �. Now applying
the first part of Theorem 2, we conclude that the system in
Fig. 3 is absolutely stable. �

Corollary 2 (Fu & Barabanov, 1997). Suppose� is a set of
causal and asymptotically stable LTI operators containing
the zero operator. Then, the following two conditions, both
guaranteeing the absolute stability of the system in Fig.1,
have the implication that(i) ⇒ (ii ).

(i) There exists�(s) of the form(5)and some�>0such that
(4)and(7)hold and thatR(j�)�0 for all � ∈ (−∞,∞);
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(ii) There exists a multiplierM(s) of the form(19)such that

M(j�)[I − �(j�)G(j�)][I − �(j�)G(j�)]∗
× M∗(j�) + �I �0. (29)

Remark 5. The problem studied in the corollary above is
commonly known as the structured singular value prob-
lem when� is specially structured. It is known (Fu &
Barabanov, 1997; Meinsma, Shrivastava, & Fu, 1996) that
the multiplier approach gives a less conservative test for ro-
bustness analysis than the so-calledD–G scaling method
given inFan, Tits, and Doyle (1991). In fact, theD–G scal-
ing method amounts to a special multiplier; see details in
Fu and Barabanov (1997)andMeinsma et al. (1996).

5. Discussion

As we see from Theorem 2, the technical condition for
the existence of a multiplier is thatR(j�)�0. Indeed, most
IQCs used in applications satisfy this condition. Examples
include norm bounded uncertainties and passive operators,
although many more can be found in the literature (see, e.g.,
Megretski & Rantzer, 1997). To demonstrate the convexity
condition, we consider the examples below.

Example 1 (Popov criterion). The well-known Popov cri-
terion (Popov, 1962) considers a single-input single-output
system as inFig. 1 with G(s) = C(sI − A)−1B (without
theD term) and� being a set of nonlinear functions satis-
fying 0�z(−�(z))�cz2 for some unknown constantc >0.
The Popov criterion asserts that such a system is absolutely
stable if(1+ ks)G(s) is SPR for some constantk�0. The
function (1+ ks) is called a multiplier.
The Popov criterion can be verified by modifyingG(s)

and� to

Ḡ(s) = G(s)(1+ s), �̄ = � ◦
(
1+ d

dt

)−1

.

For the modified system, the function�(s), renamed as
�̄(s), for the associated IQC is given by

�̄(s) =
[

0 −1+ks
1+s

∗

−1+ks
1+s

0

]
.

See details inMegretski and Rantzer (1997). Returning to
the original system, the corresponding�(s) is given by

�(s) =
[

0 −(1+ ks)∗
(1+ ks) 0

]
. (30)

Example 2(Limit cycles of a digital quantizer;Xie, Fu, and
Li, 1998). Consider a digital quantizer described by

w(n) = −sat(z(n)) =
{1, z(n)< − 1,

−z(n), |z(n)|�1,
−1, z(n)>1.

(31)

It follows thatz(n)w(n)�0 for all n. We may model this
as a simple passive device. However, this description is too

conservative in general. To overcome this difficulty, we let
H(z) be any stable function withL1 norm less than or equal
to 1, i.e.,

∞∑
0

|h(n)|�1, (32)

whereh(n) is the impulse response corresponding toH(z).
In addition, it is required that 1+ H(z) is invertible. Then,
the IQC is given by

�(z) =
[

0 −(1+ H)

−(1+ H ∗) −(2+ H + H ∗)

]
.

Example 3 (Constant uncertain parameters). Consider the
case

w = �z = block diag{q1Ik1, . . . , qpIkp }z,
qi ∈ [−1,1], i = 1, . . . , p, (33)

whereqi are all constant uncertain parameters. Let us take
any

D(s) = block diag{D1(s), . . . , Dp(s)},
V (s) = block diag{V1(s), . . . , Vp(s)}, (34)

whereDi(s) andVi(s) are square matrices of dimensionki ,
and

D(j�) = D∗(j�)>0, V (j�) = −V ∗(j�),

∀� ∈ (−∞,∞). (35)

We can build an IQC with the following�(s):

�(s) =
[
D(s) V (s)

V ∗(s) −D(s)

]
(36)

provided thatD(s) andV (s) are such that the�(s) above
can be expressed as in (5).

We see in all the examples above, the termR(j�) (or
R(ej�) in Example 2) is all non-positive.

6. Conclusions

In this paper, we have studied the relationship between the
IQC approach and the multiplier approach. The main result
is that these two approaches are equivalent under a fairly
mild convexity condition. It should be pointed out that the
purpose of this paper is not to undermine the significance
of the IQC approach. Rather, we hope that the work of this
paper provides some new insight into these two approaches
and can motivate more research in this area.
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