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Abstract

This paper considers the problem of robust stabilization for an uncertain nonlinear system which is a cascaded interconnection of two
subsystems. Both of the subsystems are allowed to be nonlinear, multi-variable, and containing uncertain parameters. We present a new approach
to designing stabilizing controllers which assure both robust global asymptotic stability and local quadratic stability. Compared with existing
results, the assumptions required for such robust stabilizing controllers to exist are significantly simplified.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we will consider the robust stabilization prob-
lem for the following cascaded system:

ẋ1 = A0,1(q)x1 + f12(x1, x2, q) + g1(x1, x2, u, q),

ẋ2 = f2(x2, q) + g2(x2, u, q), (1)

where x1 ∈ Rn1 and x2 ∈ Rn2 form the state of the system, u ∈
Rm is a control input, q is an uncertain parameter vector from a
compact set Q ⊂ Rl , A0,1(q) is a continuous matrix function of
q, the vector functions f12(·) and f2(·) are smooth in x1, x2 and
continuous in q with f12(x1, 0, q) ≡ 0 and f2(0, q) ≡ 0, the
vector functions g1(·) and g2(·) are smooth in x1, x2 and u, and
continuous in q with g1(x1, x2, 0, q) ≡ 0 and g2(x2, 0, q) ≡ 0.
We denote n = n1 + n2. Eq. (1) models a cascaded system in
which the cascading is realized by injecting the state x2 and
the input u of the x2-subsystem into the x1-subsystem.

The notion of input to state stability (ISS), initially pro-
posed by Sontag (1989), has been commonly used to study
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stabilization of nonlinear cascaded systems (e.g., see Arcak,
Angeli, & Sontag, 2002; Jiang, Teel, & Praly, 1994). Using Lya-
punov method, Jankovic, Sepulchre, and Kokotovic (1996) and
Mazenc and Praly (1996) relaxed the ISS condition for stabi-
lization of nonlinear cascaded systems. For nonlinear systems
cascaded by a chain of integrators, which is often called upper-
triangle form or feedforward system in the literature, a recur-
sive design method based on the use of saturation functions
was proposed by Teel (1992) for global asymptotic stabiliza-
tion. Many generalizations of this method can be found (e.g.,
see Arcak, Teel, & Kokotovic, 2001; Kaliora & Astolfi, 2001;
Marconi & Isidori, 2000). The use of saturation functions can
be viewed to generate a multi-step controller in the sense that
different controllers are applied depending on the state of the
system.

In all the references cited above, it is assumed that either the
cascaded nonlinear system (1) has no parametric uncertainties
or such uncertainties do not appear in the linear part of the sys-
tem. Note that this is a serious restriction because stabilizing
controllers designed based on such an assumption do not pos-
sess any robustness when the system model is slightly deviated
from the actual system. Unfortunately, the design techniques
in the aforementioned papers do not apply directly to systems
with parametric uncertainties in the linearized model (Marconi
& Isidori, 2000). Approaches which allow parametric uncer-
tainties in the linearized model include Su and Fu (1998, 1999),
and Marconi and Isidori (2000).
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In this paper, we consider a class of cascaded systems with
parametric uncertainties which are much more general than the
upper-triangular structure. We study the problem of designing a
robust stabilizing controller for such a system. More precisely,
we consider the cascaded nonlinear system (1) in which the
driven subsystem is a multi-variable system while the driving
subsystem is not assumed in the upper-triangular form. If the
system is void of parametric uncertainties or the uncertainties
are restricted by a very special structure, this system can usu-
ally be transformed into a feedforward system. However, we
do not impose such a restriction. Consequently, the recursive
design method based on saturation functions is not applicable
in this case. Due to this reason, we present a new, two-step
controller design method for the stabilization of the system.
In the first step, a global stabilizing controller of the driving
subsystem is used to steer the state x2 of the subsystem into a
small region around the origin while the state x1 of the driven
subsystem is bounded. In the second step, a non-quadratic Lya-
punov function is constructed and a nonlinear controller based
on this Lyapunov function keeps the state x2 in the small re-
gion and steers the state (x1, x2) to zero. Our approach differs
from other multi-step approaches such as in Teel (1992) and its
generalizations as mentioned earlier is that our approach does
not require a precise system model in the controller design.
This significantly improves the robustness of the resultant sys-
tem. In particular, for a feedforward system, our approach al-
lows any bounded uncertain parameters as long as the bounds
are known. Compared with the existing results, the admissible
uncertain parameter set is notably expanded. Furthermore, the
common assumption in the existing works that the order of x2
in the interconnection term f12(x1, x2, q) is greater than one
is removed. For a feedforward system, our approach not only
allows a linear term of the first element of x2 to enter this in-
terconnection term but also allows the system to be in a more
general upper-triangular structure.

The organization of this paper is as follows. In Section 2,
the formulation and assumptions about the robust stabilization
problem are discussed for the uncertain nonlinear cascaded sys-
tem (1). Then we will introduce a new design method for the
system (1) in Section 3. A design example and simulation re-
sults will be presented in Section 4. Finally, conclusions and
discussion will be given in Section 5. The work in this paper
is based on our previous work (Su & Fu, 1998, 1999) on the
upper-triangular structure.

2. Formulation and assumptions

In this section, the problem under consideration is formulated
and the assumptions are discussed.

Denote the locally linearized model of (1) at the origin in
Rn by

ẋ = A0(q)x + B0(q)u, x ∈ Rn, (2)

where x = [x′
1, x

′
2]′ and, for ∀q ∈ Q,

A0(q) =
[
A0,1(q) A0,12(q)

0 A0,2(q)

]
, B0(q) =

[
B0,1(q)

B0,2(q)

]
. (3)

For simplicity, we first consider the case where

g1(x1, x2, u, q) ≡ 0 and g2(x2, u, q) = B2(x2, q)u. (4)

The discussion will be extended to a general case in the next
section.

Under the structure (4), we have B0,1(q) = 0 and B0,2(q) =
B2(0, q). Due to the assumption in the last section that
f12(x1, x2, q) is smooth in x1, x2 and continuous in q and
f12(x1, 0, q) ≡ 0 for ∀x1 ∈ Rn1 and q ∈ Q, there exist matrix
functions F11(x1, x2, q) and F12(x2, q), smooth in (x1, x2)

and continuous in q, such that for all x1 ∈ Rn1 , x2 ∈ Rn2 and
q ∈ Q,

f12(x1, x2, q) = F11(x1, x2, q)x1

+ [A0,12(q) + F12(x2, q)]x2 (5)

and

F11(x1, 0, q) ≡ 0, F12(0, q) ≡ 0.

Suppose that system (1) also satisfies the following assump-
tions:

Assumption 1 (Critical stability of the driven subsys-
tem). There exist a small neighborhood � ⊂ Rn2 around the
origin in Rn2 and a positive definite matrix P1 ∈ Rn1×n1 such
that, for ∀x1 ∈ Rn1 , ∀x2 ∈ � and ∀q ∈ Q,

P1[A0,1(q) + F11(x, q)] + [A0,1(q) + F11(x, q)]′P1 �0. (6)

Assumption 2 (Global asymptotic stabilizability of the driving
system). There exists a smooth controller u0(x2) such that the
system

ẋ2 = f2(x2, q) + g2(x2, u0(x2), q) (7)

is globally asymptotically stable.

Assumption 3 (Growth constraint). There exist smooth and
positive definite functions �1(x2) and �2(x2) such that

‖F11(x1, x2, q)‖��1(x2), ‖F12(x2, q)‖��2(x2). (8)

Assumption 4 (Local quadratic stabilizability). There exist a
linear state feedback matrix K =[K1 K2] and a symmetric and
positive-definite matrix P0

P0 =
[

P1 −P1W

−W ′P1 P2 + W ′P1W

]
(9)

such that, for ∀q ∈ Q,

P0[A0(q) + B0(q)K] + [A0(q) + B0(q)K]′P0 < 0. (10)

That is, a locally quadratic Lyapunov function of the system is
given by

V0(x1, x2) = (x1 − Wx2)
′P1(x1 − Wx2) + x′

2P2x2.

In the rest of this section, we provide some justifications for
the assumptions above. We first note that critical stability of the
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driven system is commonly assumed in the work of cascaded
nonlinear systems or feedforward nonlinear systems (see, for
example, Jankovic et al., 1996; Marconi & Isidori, 2000; Teel,
1992). Assumption 1 is the robust version of this common as-
sumption. To justify this assumption, we note several points:

(1) When the state x1 is a scalar and F11(x1, x2, q) ≡ 0, this
condition merely requires A0,1(q) to be non-positive. In fact,
A0,1(q) ≡ 0 and F11(x1, x2, q) ≡ 0 are required in the most
of works for feedforward systems (see for example, Marconi
& Isidori, 2000; Teel, 1992).

(2) When x1 is not a scalar, a similar condition was discussed
by Jankovic et al. (1996). It is assumed in A2, Lemma 1 of the
above paper that the driven subsystem has the form

ẋ1 =
[

f̃11(x11)

F12x12 + f̃12(x11, x12)

]
, x1 =

[
x11
x12

]
, (11)

where ẋ11 = f̃11(x11) is globally asymptotically stable and (11)
is Lyapunov stable. In our case, we do not consider f̃11(x11).
It can be shown that requiring (11) to be Lyapunov stable is
similar to Assumption 1.

(3) To show that stabilizability may be impossible without
(6), we consider the following example:

ẋ1 = �x1 + 2x2 + x2
2 , � > 0,

ẋ2 = u.

It is easy to verify that its local linearized model is stabilizable.
However, 2x2 + x2

2 � − 1, implying that x1(t) will diverge if
x1(0) > 1/� regardless what control is used.

Assumption 3 implies that the interconnection term
f12(x1, x2, q) has a linear growth with respect to x1. This is
also a common assumption in stabilization of feedforward non-
linear systems; see, e.g., Jankovic et al. (1996), and Mazenc
and Praly (1996). An important property of this assumption is
given below:

Lemma 1. Suppose system (1) satisfies Assumptions 1–3. Then
x1 in system (1) is bounded within any finite time interval, i.e.,
given any x(0) and T > 0, there exists M(x(0), T ) such that
‖x1(t)‖�M(x(0), T ) for all 0� t �T .

Proof. See Jankovic et al. (1996). �

Assumption 4 is naturally required because we want the con-
trolled system to be locally quadratically stable. The problem of
designing local quadratic stabilizers and their associated Lya-
punov functions is not the focus of this paper. We only note
that many design approaches are available. For example, Wei
(1990) provides a systematic design method for quadratic sta-
bilization of uncertain feedforward linear systems.

3. Multi-step design for nonlinear cascaded systems

In this section, the design method of two-step controller
is presented for the case where g1(x1, x2, u, q) ≡ 0 and
g2(x2, u, q) = B2(x2, q)u in system (1). The result will be
extended to a general case later.

We first design a robust controller for system (1) when x2
is sufficiently small. This design is based on the use of a non-
quadratic Lyapunov function. Suppose system (1) satisfies As-
sumptions 1–4. Define

V2(x2) = x′
2P2x2, V −1

2 (�) := {x2|V2(x2) < �}, (12)

where � > 0 is to be specified. Then choose

V (x1, x2) = (x1 − Wx2)
′P1(x1 − Wx2) +

∫ V2(x2)

0
s(w) dw

(13)

as a non-quadratic Lyapunov function candidate for system (1)
in the region Rn1 × V −1

2 (�), where s(w) is a positive, smooth,
and monotonically non-decreasing function for w ∈ [0, �), with
s(0) = 1 and∫ V2

0
s(w) dw → ∞, as V2 → �. (14)

Remark 1. A particular choice of s(·) is given by

s(w) =
(

�

� − w

)k

, k�1.

For the case of k = 1, this corresponds to a Lyapunov function
used in Teel and Praly (1995). In general, the Lyapunov func-
tion (13) is non-quadratic. However it is a locally quadratic
Lyapunov function around the origin because s(·) is a smooth
function around the origin. We also note that the function∫ V2(x2)

0 s(w) dw resembles a “potential barrier” and the Lya-
punov function (13) is valid only for (x1, x2) ∈ Rn1 ×V −1

2 (�),
i.e.,

V (x1, x2) → ∞ as V2(x2) → �.

This implies that, for system (1), if x2(0) ∈ V −1
2 (�) then

x2(t) ∈ V −1
2 (�) for all t > 0 as long as that V̇ (x1, x2)�0. In

other words, the region V −1
2 (�) is forward invariant for the

driving subsystem if V̇ (x1, x2) < 0.

Because g2(x2, u, q) and f2(x2, q) are smooth in x2 and
continuous in q (hence so is B2(x2, q)), there exists F2(x2, q)

with F2(0, q) ≡ 0, ∀q ∈ Q such that

f2(x2, q) = A0,2(q)x2 + F2(x2, q)x2.

And there exist also positive definite functions �3(x2)

and �4(x2) such that ‖B2(x2, q) − B0,2(q)‖��3(x2) and
‖F2(x2, q)‖��4(x2). For ∀x ∈ Rn1 × �, q ∈ Q, denote

A(x, q) =
[
A0,1(q) + F11(x, q) A0,12(q) + F12(x2, q)

0 A0,2(q) + F2(x2, q)

]
.

Lemma 2. Suppose system (1) satisfies Assumptions 3 and 4.
Then there exist sufficiently small � > 0 and ε > 0 such that

V −1
2 (�) ⊂ �
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and it holds for ∀x ∈ Rn1 × V −1
2 (�) and ∀q ∈ Q:

P0[A(x, q) + B(x2, q)K] + [A(x, q) + B(x2, q)K]′P0

< − εI , (15)

where B(x2, q) = [0 B ′
2(x2, q)]′.

Proof. From the structure of the matrix A(x, q), we have

P0[A(x, q) + B(x2, q)K] + [A(x, q) + B(x2, q)K]′P0

= P0[A0(q)+B0(q)K]+[A0(q)+B0(q)K]′P0+�(x, q),

where

�(x, q)

= P0

[
F11(x, q) F12(x2, q)

0 F2(x2, q)

]
+

[
F11(x, q) F12(x2, q)

0 F2(x2, q)

]′
P 0

+ P0[B(x2, q) − B0(q)]K + K ′[B(x2, q) − B0(q)]′P0

and �(x1, 0, q) ≡ 0 for ∀x1 ∈ Rn1 and q ∈ Q.
Following Assumption 4, there exists an ε1 > 0 such that

P0[A(x, q) + B(x2, q)K] + [A(x, q) + B(x2, q)K]′P0

� − ε1I + �(x, q).

In addition, following Assumption 3 and the properties of
F2(x2, q) and B(x2, q) − B0(q), we have

�(x1, x2, q)��(x2)I (16)

for some smooth and positive definite �(x2). Hence,

P0[A(x, q) + B(x2, q)K] + [A(x, q) + B(x2, q)K]′P0

� − εI ∀ε ∈ (0, ε1),

when � is sufficiently small. �

The derivative of V (x1, x2) along the trajectory of system
(1) is given by

V̇ (x1, x2) = x′[PA(x, q) + A′(x, q)P ]x + 2x′PB(x2, q)u,

(17)

where

P =
[

P1 −P1W

−W ′P1 s(V2)P2 + W ′P1W

]

with its inverse given by

S =
[
P −1

1 + (s(V2))
−1WP −1

2 W ′ (s(V2))
−1WP −1

2
(s(V2))

−1P −1
2 W ′ (s(V2))

−1P −1
2

]
.

Consider the following state feedback controller for ∀x1 ∈ Rn1 ,
x2 ∈ V −1

2 (�):

ul(x1, x2) = (s(V2(x2)))
−1K1x1

+ [K2 + (1 − (s(V2(x2)))
−1)K1W ]x2

and denote that

V̄ −1
2 (��) := {x2|V2(x2)���}, (18)

where � ∈ (0, 1) is a given constant. We have the following
main result:

Theorem 1. Suppose that system (1) satisfies Assumptions 1–4.
Then the closed-loop system controlled by the following con-
troller

u =
{

u0(x2), 0� t < T ,

ul(x1, x2), T � t < ∞ (19)

is robustly globally asymptotically stable and locally quadrat-
ically stable where T = 0 if x2(0) ∈ V̄ −1

2 (��), otherwise, T is
the first moment when V2(x2) = ��.

Proof. First, we consider the case where x2(0) ∈ V̄ −1
2 (��) and

ul(x1, x2) is applied. It will be shown that the state x can be
steered by the controller ul(x1, x2) to zero while the state x2
is kept within V −1

2 (�). Denoting z = [z′
1 z′

2]′ = Px, Eq. (17) is
written as

V̇ (x1, x2) = z′[A(x, q)S + SA′(x, q)]z + 2z′B(x2, q)u.

Denote (s(V2(x2)))
−1 by s−1 and let

u = K1x1 + K2x2 + v.

Then,

V̇ (x1, x2) = z′{[A(x, q) + B(x2, q)K]S
+ S[A(x, q) + B(x2, q)K]′}z
+ 2z′B(x2, q)v. (20)

It follows from Lemma 2 that the matrices A(x, q) and B(x2, q)

satisfy inequality (15). Moreover, rewrite (15) and S as

[A(x, q) + B(x2, q)K]S0 + S0[A(x, q) + B(x2, q)K]′
< − εS2

0 ∀x ∈ Rn1 × V −1
2 (�) ∀q ∈ Q (21)

and

S = s−1S0 + (1 − s−1)

[
P −1

1 0
0 0

]
, (22)

respectively, where S0=P −1
0 . Note the fact that B1(x1, x2, q) ≡

0 in the case under consideration. Substituting (21) and (22)
into (20) leads to

V̇ (x1, x2)

= 2s−1z′(A(x, q) + B(x2, q)K)S0z + 2z′B(x2, q)v

+ 2(1 − s−1)z′
{
A(x, q) +

[
0

B2(x2, q)

]
K

}

×
[
P −1

1 0
0 0

]
z.

Considering the structure of the matrix A(x, q), this equality
is rewritten

V̇ (x1, x2) = 2s−1z′(A(x, q) + B(x2, q)K)S0z

+ 2(1 − s−1)z′
2B2(x2, q)(K1x1 − K1Wx2)

+ 2(1 − s−1)z′
1[A1(x, q)P −1

1 ]z1

+ 2z′
2B2(x2, q)v.

Let v = −(1 − s−1)(K1x1 − K1Wx2). We have

V̇ (x1, x2) = 2s−1z′(A(x, q) + B(x2, q)K)S0z

+ 2(1 − s−1)z′
1[A1(x, q)P −1

1 ]z1. (23)
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Applying (21) and Assumption 1 into (23), we get,

V̇ (x1, x2)� − ε(s(V2))
−1�min(PS2

0P)x′x. (24)

In particular, we have

V̇ (x1, x2) < 0 ∀x ∈ Rn1 × V −1
2 (�) − {0, 0}.

Hence, it holds

V (x1(t), x2(t))�V (x1(0), x2(0)) ∀t �0.

Using (13), the above inequality gives∫ V2(x2(t))

0
s(w) dw�V (x1(0), x2(0)) ∀t �0.

From property (14) of the function s(·), the above inequality
implies x2(t) ∈ V −1

2 (�), ∀t > 0, i.e., V −1
2 (�) is forward in-

variant for the driving subsystem with the controller ul(x1, x2).
Therefore, (24) further implies that the state x is asymptotically
steered to zero by the controller ul while the state x2 remains
in V −1

2 (�). From (24), we have

V̇ (x1, x2)� − ε̄x′x ∀x ∈ Rn1 × V̄ −1
2 (��), (25)

where

ε̄ = min
x2∈V̄ −1

2 (��)

ε(s(V2))
−1�min(PS2

0P).

The robust local quadratic stability follows from (25) and the
fact that V (x1, x2) is locally quadratic.

Next, the case where x2(0) /∈ V̄ −1
2 (��) is considered. It fol-

lows from Assumption 2 and Lemma 1 that x2 is steered to the
origin by u0(x2) asymptotically while x1 is bounded, thus there
exists a finite time T such that V2(x2(T )) = ��. At T, the con-
troller is switched to ul(x1, x2). It is shown in the first part of
the proof that the state x is then steered to zero asymptotically
by the controller. Therefore, this theorem is proven. �

Remark 2. The controller (19) has the following special prop-
erty: u(t) is a function of the state x(t) and initial state x2(0).
This is because the switching time T depends on x2(0). How-
ever, u is time-invariant in the sense that the function does not
change when the initial time is shifted. This is because sys-
tem (1) and the two controllers u0(x2) and ul(x1, x2) are all
time-invariant, which imply that the switching time T is also
time-invariant. Since controller (19) is time-invariant, the sta-
bility result in Theorem 1 is also uniform with respect to the
initial time (see notions of uniform stability in Khalil, 1996,
pp. 134–135).

Remark 3. Although the switching decision in (19) is time
based, this controller is not open loop because the switching
time is a function of the state x2. This point is important be-
cause the feedback nature of the controller gives some inherent
robustness against possible small feedback noises. More pre-
cisely, the role of the parameter � is tolerate “small” feedback
noises. The smaller the value of �, the larger the error margin
is for the switching time T.

Remark 4. We comment that system (1) is assumed to have
no additive input disturbances. If such a disturbance exists, the
controller in Theorem 1 may experience a potential problem
that state x2 of the driving subsystem may leave V −1

2 (�). One
simple remedy is to reset the controller back to u0(x2) whenever
x2 leaves V −1

2 (�). If the disturbance has a finite L2 norm, it
can be argued that the result in Theorem 1 will still be valid.

Now, we extend the result in Theorem 1 to the case where
g1(x1, x2, u, q) 
= 0 and g2(x2, u, q) is not linear in u.

To deal with this case, we introduce a new state vector x3 =
u ∈ Rm and a new control input v = ẋ3. Then system (1) can
be rewritten as

ẋ1 = f1(x1, q) + f12(x1, x2, q) + g1(x1, x2, x3, q),

ẋ2 = f2(x2, q) + g2(x2, x3, q),

ẋ3 = v. (26)

Effectively, this allows the dynamics of x2 and x3 to form a
new driving subsystem, and the new control input v does not
appear the driven subsystem. Notice the fact that the function
g1(x1, x2, x3, q) is smooth in x1, x2, x3 and continuous in q
while g1(x1, x2, 0, q) ≡ 0 for ∀x1 ∈ Rn1 , ∀x2 ∈ Rn2 and ∀q ∈
Q. We have

g1(x1, x2, x3, q) = [B0,1(q) + F13(x1, x2, x3, q)]x3,

where F13(x1, x2, x3, q) is smooth in x1, x2, x3 and continuous
in q, B0,1(q) is continuous in q. Moreover, there exists a smooth
and positive definite function �5(x1, x2, x3) such that

‖F13(x1, x2, x3, q)‖��5(x1, x2, x3).

To solve the robust stabilization problem for system (1), a linear
growth of F13(x1, x2, x3, q) on x1 is only required for the matrix
function. But, for the sake of simplicity, we assume that:

Assumption 5 (Extension growth constraint). The function
�5(x1, x2, x3) is independent from x1, hence will be denoted
by �5(x2, x3).

The local linearized model of the system is given by[
ẋ1
ẋ2
ẋ3

]
=

[
A0,1(q) A0,12(q) B0,1(q)

0 A0,2(q) B0,2(q)

0 0 0

] [
x1
x2
x3

]
+

[0
0
I

]
v,

(27)

in the region Rn1 ×V −1
2 (�)×[−�, �]m where [−�, �]m ⊂ Rm,

every element of a vector from [−�, �]m belongs to [−�, �] and
� is a sufficiently small positive constant.

Lemma 3. Suppose that Assumption 4 holds. Then, the local
linearized model (27) is quadratically stabilizable by

v = −�(x3 − Kx)

for a sufficiently large � > 0. Furthermore, P1, the (1, 1)-block
of the Lyapunov matrix (9), can still be the (1, 1)-block of the
Lyapunov matrix for (27).
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Proof. From Assumption 4, we know that

[A0(q) + B0(q)K]′(P0 + 	P0)

+ (P0 + 	P0)[A0(q) + B0(q)K] < 0

for all q ∈ Q, provided that 	P0 is sufficiently small. Choose
a Lyapunov function for (27) as follows:

V0(x1, x2, x3) = x′(P0 + 	P0)x + �(x3 − Kx)′(x3 − Kx)

for some � > 0. Its derivative along the trajectory of (27) is
given by

V̇0 = 2x′(P0 + 	P0)(A0(q)x + B0(q)x3)

+ 2�(x3 − Kx)′(v − K(A0(q)x + B0(q)x3)).

Letting x̄3 = x3 − Kx, we have

V̇0 = 2x′(P0 + 	P0)(A0(q) + B0(q)K)x

+ 2x′(P0 + 	P0)B0(q)x̄3 − 2�x̄′
3K(A0(q) + B0(q)K)x

+ 2�x̄′
3(v − KB0(q)x̄3).

Take v = −�x̄3 = −�(x3 − Kx). It is easy to verify that V̇0 < 0,
∀q ∈ Q when � > 0 is sufficiently large. Hence, system (27)
is quadratically stabilizable. To verify that P1 can still be the
(1, 1)-block of the Lyapunov matrix for (27), we simply take
	P0=−�K ′K and � sufficiently small. This gives V0(x1, 0, 0)=
x′

1P1x1. �

The stabilizing controller for (1) again consists of two parts:
first, the global controller u0(x2) is applied to (1) until x2 is
sufficiently small in some finite time T. Due to Assumption
2 that u0(x2) is a smooth function, u0(x2(T )) = x3(T ) also
belongs to a sufficiently small neighborhood at the origin in
Rm. Then treat the subsystem associated with x2 and x3 as a
new driving system. Now apply Theorem 1 to come up with a
controller vl(x1, x2, x3) for v(t). The resulting controller

u(t) = x3(t) =
∫ t

0
vl(x1, x2, x3) dt

will robustly stabilize system (1). This is summarized below:

Theorem 2. Suppose that system (1) satisfies Assumptions 1–4
and 5. Then the system is robustly globally asymptotically sta-
bilizable and locally quadratically stabilizable.

Proof. The proof simply follows from Theorem 1 and Lemma 3.
�

4. Simulation

We now illustrate the design procedure in Section 3 by the
following example:⎡
⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎦ =

⎡
⎢⎣

−x1 + x2 + q13x3 + 0.5x1x
2
4 + q14x4

x3 − q24(x4 − x2
4 )

x4
−2x3 − 2x4 + u

⎤
⎥⎦ , (28)

where q =[q13, q14, q24] ∈ [−0.1, 0.1]3. System (28) is the
cascade interconnection of two subsystems[

ẋ1
ẋ2

]
=

[−1 1
0 0

] [
x1
x2

]
+

[
q13x3 + 0.5x1x

2
4 + q14x4

x3 − q24(x4 − x2
4 )

]
(29)

and[
ẋ3
ẋ4

]
=

[
0 1

−2 −2

] [
x3
x4

]
+

[
0
u

]
. (30)

Select

V1(x1, x2) = [x1 x2]P1

[
x1
x2

]
, P1 =

[
5 −5

−5 7

]
,

V2(x3, x4) = [x3 x4]P2

[
x3
x4

]
, P2 =

[
6 3
3 3

]

as Lyapunov functions of subsystems (29) and (30), respec-
tively. Select � = 0.3 to give

V −1
2 (0.3) = {(x3, x4)

′|V2(x3, x4) < 0.3}.
The matrices A(x, q) and B(x, q) are given by

A(x, q) =
⎡
⎢⎣

−1 + 0.5x2
4 1 q13 q14

0 0 1 −q24(1 − x4)

0 0 0 1
0 0 −2 −2

⎤
⎥⎦ ,

B(x, q) = [0 0 0 1]′.
Choose

P0 =
⎡
⎢⎣

5 −5 −3 −1
−5 7 5 2
−3 5 12 3
−1 2 3 3

⎤
⎥⎦ , K = [2 − 4 − 6 − 6].

It is easily verified that (15) holds. Following Theorem 1, we
obtain the robust controller as follows:

u =

⎧⎪⎨
⎪⎩

0, 0� t �T ,

(1 − 0.3333V2)(2x1 − 4x2)

+(10.6667V2 − 6)x3 t > T ,

+(4.6667V2 − 6)x4,

(31)

where T is the first time when the state (x3, x4)
′ of sub-

system (30) enters the region V̄ −1
2 (��) and � = 0.8. It is

verified that this controller is robustly globally asymptot-
ically stabilizing. Fig. 1 shows the time response of the
state (x1, x2, x3, x4) and the control input u of system (28)
with initial state (x1(0), x2(0), x3(0), x4(0)) = (1, 1, 1, 1) and
q13 = q14 = q24 = −0.1. We can see from Fig. 1 that the
controller switches at about t = 2.2 s.

5. Conclusion

In this paper, we have studied the robust stabilization prob-
lem for a class of uncertain cascaded nonlinear systems. A
two-step control design method is developed for the uncer-
tain nonlinear systems. Although this method is conceptually
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Fig. 1. State and control trajectories.

simple, the key technical difficulty is how to ‘fuse’ two con-
trollers together, where each controller works for a given state
region. It is generally inappropriate to simply switch from one
controller to another when the state crosses from one region
to another, even when the two regions overlap. Appropriate
modifications are usually necessary for the controllers and
the associated Lyapunov functions. We stress that the exist-
ing techniques for combining a global controller with a local
controller, as in Teel and Kapoor (1997), and Prieur and Praly
(1999), do not apply in our case because our second controller
is not a local controller, i.e., it does not operate only in a neigh-
borhood around the origin. In our case, a given local controller
and its associated quadratic Lyapunov function are modified as
in (19) and (13) to ensure the required stabilization properties,
which turns out to be a major technical task.
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