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Abstract— This paper is motivated by a real estimation prob-
lem arising in transient electromagnetic mineral exploration. A
specific sub-problem of interest in this area is that of finding
the transfer function linking two antennae without utilisi ng
the primary excitation. Natural excitation is provided by near-
field and far-field lightning strikes (‘sferics’). This estimation
problem is surprisingly difficult due to its intrinsic error s-in-
variables nature. This paper proposes a combined time- and
frequency-domain method to address the difficulty and obtain
model estimates that are shown to be of practical use for sferics
noise cancellation.

I. I NTRODUCTION

Mining companies throughout the world expend signif-
icant effort searching for new ore bodies. A variety of
technologies are utilised including geological surveys, dia-
mond drilling, and airborne mineral exploration. Our interest
here is with ground-based transient electromagnetic (TEM)
surveying using an Australian-developed technology known
as GeoferretTM [1]. This system operates in a similar way to
metal detectors used for finding lost jewellery on the beach,
namely a pulse of current is used to induce a current in the
hidden metal. The transient decay of the induced current is
detected by measurement coils in the instrument. The system
used for mineral exploration is very large with a transmitter
loop of the order of a square kilometre and measurement
coils of the order of a metre in diameter.

The detection of decaying currents induced in deep (up to
500 m) mineral deposits is a problem with very low signal-
to-noise ratios. Hence, substantial effort is directed at noise
reduction techniques. The sources of noise are many and
varied and include instrument noise, harmonic disturbances
(including 50 Hz power line interference) and ‘sferics’ (short
for ‘atmospherics’)— environmental electromagnetic radia-
tion generated by lightning.

Multiple antennae are typically deployed for detection in
systems such as GeoferretTM, which raises the possibility of
using the sferics seen at one receiving antenna to cancel the
sferic component seen at another. In order to do this, it is
first necessary to find the inter-antenna transfer function.This
leads to an experiment in which one measures the signal at
two antennae (with the primary excitation turned off) and
then estimates the model between them. We note that in this
context, the input to the model is the sferic component of
the signal at the reference antenna. The rest of this signal is
considered to be ‘measurement noise’.
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In carrying out the above program of work, a major
problem was observed, namely that the ‘input’ signal was
measured in a very noisy environment. This is a classical
errors-in-variables (EIV) problem [2]. The emphasis of the
current paper is on the presentation of this EIV estimation
problem and its solution.

In Section II we provide background information on TEM
surveying and sferics. Then in Section III, we describe the
EIV difficulties associated with sferics noise cancellation in
TEM surveying with systems such as GeoferretTM. A brief
review of EIV is given in Section IV.

In Section V, two approaches are proposed to address
the EIV problem. The first (natural) approach is to use
filtering to separate the signal from the noise. However, the
resultant model is unsatisfactory for noise cancellation.We
then use time-domain selection of favourable parts of the
input record. This exploits the fact that sferics are highly
non-stationary and appear as isolated pulses that stand out
from the background noise. As we show in Section V-B the
combination of time and frequency selectivity does lead to a
model that can be successfully applied to noise cancellation.

II. BACKGROUND TO TEM SURVEYING AND SFERICS

A. TEM surveying

Transient electromagnetic surveying (also known as time-
domain electromagnetic surveying) is a technique used in
mineral exploration to detect underground conductive ore
bodies by induction and detection of electromagnetic (EM)
fields. Fig. 1 shows a typical system configuration for TEM
surveying with a system such as GeoferretTM.

The typical operation of a TEM surveying system consists
of two phases: firstly, the transmission of aprimary field,
during which no measurements are made, and secondly, after
the transmitter is switched off, the detection of thesecondary
field response (i.e., the transient response) of the earth. To
generate the primary field, a pulsed current waveform is
passed through a loop or coil of wire (the transmitter), which
is laid on the surface of the area to be surveyed. The primary
field induces superficial underground eddy currents, which in
turn induce eddy currents at greater depths in any conductive
ore bodies. These underground decaying currents produce
the secondary field, which can be measured by the array
of receiving antennae on the earth’s surface. The magnitude
and rate of decay of the secondary field depends on the
electrical conductivity of the ground, and, through posterior
signal processing, allows the identification and location of
target ore bodies at depths of up to 500 m.
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Fig. 1. Typical ground-based TEM surveying system configuration.

We consider a system in which a periodic current wave-
form consisting of a series of square pulses of alternating
sign is used. The secondary field at different locations is
measured using a number of receiver coils. The measured
data is interpreted to obtain a geological model which is
consistent with the data.

A more detailed description of TEM surveying can be
found in [3], [4] and [5].

B. Sferics

A major contributor to noise in the detection of deep
underground ore bodies is sferics: environmental EM ra-
diation that dominates receiver instrument noise in some
environments (such as close to the equator). Sferics (shortfor
‘atmospherics’) originate from the EM radiation produced by

lightning strikes that travel thousands of kilometres through
the space between the earth and the ionosphere, which acts
as a waveguide. Hence, local and distant lightning storms
contribute to the sferics noise measured at any single point.

Sferics noise can be divided into two groups, local and
distant. Local sferics noise consists of large, infrequent,
bursts of short pulses (i.e., it is impulsive), and is non-
stationary in nature. Fig. 2 shows a measured large sferic
occurring at approximately 0.002 s.

0 0.005 0.01 0.015 0.02
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

A
m

pl
itu

de
 (

V
)

t (s)

Fig. 2. A measured sferic (output antenna).

Distant sferics noise may be characterised as essentially
coloured noise. It has been estimated that there are approx-
imately 100 lightning strikes per second worldwide. Thus,
distant sferics noise consists of many small pulses and can
be considered to be quasi-stationary. The spectrum of distant
sferics noise is concentrated in the 1–500 Hz and 2.5–10
kHz frequency bands. The dip in the spectrum between 500
Hz and 2.5 kHz is due to the attenuation of the earth-
ionosphere waveguide at these frequencies. Fig. 3, which
is reproduced from [6], shows a typical, moderately distant
sferics pulse and diagram of the different components of the
electromagnetic spectrum. The two sferics frequency bands
are clearly labelled.

III. D IFFICULTIES IN SFERICS NOISE CANCELLATION

Our primary interest in the current paper is in sferics. The
goal is to use sferics detected at a reference antenna to carry
out sferics noise cancellation at a different, output antenna.
We note that related noise cancellation ideas have been used
previously in other types of TEM surveying systems, e.g.,
[7], [8] and [9]. However, these ignore the effects of errors-
in-variables.

A preliminary experiment aimed at verifying the veracity
of the above idea was performed. A simple model consisting
of a gain plus a time shift was fitted to the data (we will
later show that this model is a good approximation at low
frequencies). However, when the model was utilised for



Fig. 3. Components of the electromagnetic spectrum and a moderately
distant sferics pulse (reproduced from [6]).

noise cancellation there was no reduction in the noise at
the secondary antenna. Fig. 4 illustrates the results. The
spectra for the noise at the output antenna before and
after performing noise cancellation are shown. The figure
also shows the spectrum of the cancellation signal, i.e., the
estimate of the sferics noise obtained by using the fitted
model and the measurement at the reference antenna. It can
be seen that the cancellation signal is significantly smaller
than the actual noise and, hence, the spectrum of the residual
is almost identical to the measured noise.

Careful examination of the problem reveals that the
measured signal at the reference antenna is corrupted by
significant ‘measurement noise’. (Of course one does not
‘know’ the incoming sferics; one can only infer it from
measurements). This suggests that there is an errors-in-
variables problem. We shall see in Section V that this is
indeed the case and that both time- and frequency-domain
‘selectivity’ are necessary to mitigate the difficulty.

IV. BACKGROUND TO ERRORS-IN-VARIABLES

The presence of measurement noise on the input has
implications for system identification. In particular, thenoise
on the input results in biased estimates of the model. Indeed,
if the measurement noise on the input is large at some
frequency, then the gain of the system will appear to be
small at that frequency. Hence, the identification algorithm

10
0

10
1

10
2

10
3

10
4

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

f (Hz)

P
S

D
 (

V
2 /H

z)

measured
residual
estimated

Fig. 4. Spectra of the measured noise, residual noise after performing noise
cancellation, and the cancellation signal (estimated sferics noise). Model
fitted to raw input-output data. Note that the spectra for themeasured and
residual noise are almost identical.

will tend to under-estimate the gain at that frequency, as is
illustrated by the following simple example.

Example 1:Suppose the inputu0(k) and outputy0(k) of
a scalar system are related as follows:

y0(k) = g0u0(k)

i.e., y0(k) is simply a scaled version ofu0(k). We assume
thatu0(k) is a random signal with zero mean and a variance
of Var{u0}.

We wish to obtain an estimatêg of g0 from N noisy
measurements ofu0(k) and y0(k). Let the kth pair of
measurements be denoted byu(k) andy(k). We have

u(k) = u0(k) + ηu(k), (1)

y(k) = y0(k) + ηy(k), (2)

whereηu andηy are assumed to be zero-mean, uncorrelated,
white noise sequences with variancesVar{ηu} andVar{ηy},
respectively. It is also assumed thatηu andηy are uncorre-
lated withu0.

If we ignore the noise onu(k), we can use a least squares
estimator to find̂g. The least squares fit forg0 is given by

ĝ =

∑N

k=1
y(k)u(k)

∑N

k=1
u2(k)

.

It can be seen that as the number of measurementsN → ∞,

ĝ →
1/N

∑N

k=1
(g0u0(k) + ηy(k))(u0(k) + ηu(k))

1/N
∑N

k=1
(u0(k) + ηu(k))2

and hence, sinceu0, ηy andηu are independent, that

ĝ → λg0, whereλ =
Var{u0}

Var{u0} + Var{ηu}
.



We observe the following:
• If ηu(k) is zero (no measurement noise on the input),

then ĝ → g0 asN → ∞, i.e., it is consistent.
• If there is measurement noise on the input (Var{u} 6=

0), then ĝ → λg0, where0 < λ < 1. Hence, the least
squares estimate is asymptotically biased. As might be
expected, the bias is less significant when the SNR of
u is large (Var{ηu}/Var{u0} small). We also observe
that the least squares estimator under-estimates the gain.

• If Var{ηu}/Var{u0} is known, thenλ is known and
hence, in theory, we can correct the bias (by dividing
by λ). However, this approach can lead to large errors
in the estimate, particularly whenλ is small. We note
that this occurs when the SNR ofu is small.

The preceding simple example demonstrates the impor-
tance of taking into account EIV when performing system
identification.

The study of EIV is a well established research area.
Recent surveys are given in [2] and [10]. Early work on
the topic includes [11] and [12]. More recent work includes
[13]–[17].

One of the recurring themes in the EIV literature is that,
one can obtain a unique estimate provided that additional
prior information is available. Examples are specific rela-
tionships between polynomial orders and coprimeness of
polynomials (e.g., [13], [15]).

However, these methods tend to be intrinsically sensitive
to the assumptions since one has to effectively ‘lift’ the
true input out of the measured noisy input. Indeed, if the
measurement noise is (relatively) large, then one is trying
to extract a small signal from a large noise background by
utilising subtle differences in signal properties. It follows that
if one has a poor signal to noise ratio, then this is unlikely
to be a robust procedure.

Returning to the sferics noise cancellation problem of
Section III, it was found that the signal to noise ratio is
very poor. Consequently, great care is needed to be able to
successfully carry out identification.

V. OVERCOMING ERRORS-IN-VARIABLES PROBLEMS IN

SFERICS NOISE CANCELLATION

We now show that despite the low signal to noise ratio
(SNR) of the measured reference signal, we are able to fit
a useful model to the data by utilising ‘time and frequency
selectivity’ to improve the SNR.

Fig. 4 in Section III shows the measured power spectral
density (PSD) for the output antenna. We observe that there
is a large noise mound between approximately 20 and 400
Hz. In this section, we focus on reducing this mound for the
following reasons:

• It is known from the literature (see Section II-B) that
sferics have significant power in this frequency band.

• We are particularly interested in the cancellation of
noise at low frequencies.

We concentrate on the reduction of the ‘baseline’ noise spec-
trum. We are not concerned with the harmonic components
as these latter components can be removed separately.

For our purpose, the rest of spectrum, i.e., the harmonic
disturbances and the parts of the spectrum above approxi-
mately 400 Hz and below approximately 20 Hz are treated
as measurement noise. These components are largely due
to instrument noise and harmonic disturbances (including
50 Hz power line interference). Other notable features of
the spectrum include the peak at 8 kHz, which is due to
the resonance of the antenna coil, and the low frequency
component (< 10 Hz), which is in part due to small
movements of the antenna relative to the (static) magnetic
field of the earth.

We can verify that medium- to near-field sferics make a
significant contribution to the noise between 20 and 400
Hz by viewing a filtered version of the signal. Fig. 5
shows a filtered version of the sferic shown in Fig. 2. The
corresponding filtered signal from the reference antenna is
also shown. We note that these signals were produced by
using a non-causal filter to remove the components below 20
Hz and above 400 Hz as well as the harmonic components.

From Fig. 5 it is clear that, in the 20 to 400 Hz frequency
band, the sferics pulse is large relative to the measurement
noise. It can also be seen that there is a high degree
of correlation between the output and reference antennae.
Furthermore, a gain plus a time shift can be used to model
the relationship between these signals. It should be noted
that the output can be delayed relative to the reference, or
vice versa. In the following sections, we fit models of this
form (gain plus a time shift) to the data.

A. Frequency-domain selectivity (filtering)

As discussed above, Fig. 5 suggests the use of a gain plus
a time shift to model the correlation between the reference
and output nodes. A natural first approach is to use least
squares to fit a model to the filtered signals. We note that
this approach uses frequency-domain selectivity (filtering) to
improve the SNR of the input.

Figs. 6 and 7 illustrate the results when this approach is
taken. In this case, 5 s of filtered data were used to fit the
model, and a separate set of data was used to validate the
model. The filtered output signalzf and the estimate of this
signal ẑf (obtained by applying the model to the filtered
reference signal) are shown in Fig. 6. The residualzf − ẑf is
also shown. It can be seen that the gain is under-estimated.
As discussed in Section IV this is expected when there is
noise on the input measurement.

Fig. 7 shows the residual spectrum when the estimateẑf

is used for noise cancellation. The measured spectrum is
also shown. Recall that the aim is to reduce the baseline
noise between 20 and 400 Hz. However, it can be seen that
there is little or no reduction in the total amount of noise.
Whilst there is a slight reduction in the noise at the centre
of the mound, this is counteracted by an increase at other
frequencies. The increase in the noise at some frequencies
is due to the presence of the input noise in the cancellation
signal.

We conclude that in this case, the noise on the input
is detrimental for two reasons. Firstly, because it results



in under-estimation of the gain, and secondly, because the
cancellation signal contains an extra component due to the
input noise. This extra component increases the noise at the
output when the noise cancellation is performed.

B. Combined frequency- and time-domain selectivity

The filtered sferics noise has a non-stationary character-
istic as it consists of large pulses separated by sections of
coloured ‘measurement noise’. This suggests that we can
obtain an input with a higher SNR by selecting only the
large pulses for model fitting and noise cancellation. We do
this by setting the parts of the signal between the pulses
to zero (i.e., by windowing sections of the data). We refer
to this process as ‘marking’ the input. For an example of a
marked signal see the estimated signal in Fig. 9.

Fig. 8 shows the spectrum of the reference signal and the
spectrum of the filtered and marked version of the signal. It
can be seen that the marking process appears to separate the
sferics noise mound from the other noise sources. We note
that the estimated SNR of the unmarked signal is between
0.3 and 1, depending on where the line is drawn between
near- and far-field sferics. The SNR of the marked part of
the signal is between approximately 60 and 100.

Figs. 9 and 10 illustrate the results when the test in
Section V-A is repeated using the marked version of the
(same) data to fit the model and generate the cancellation
signal. The filtered outputzf , estimated output̂zf and
residual errorzf − ẑf are shown in Fig. 9. It can be seen
that the fit for the large sferics pulses is very good.

Fig. 10 shows the measured and residual spectra when the
estimateẑf is used for noise cancellation. The sferics noise
mound is now significantly reduced.
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Fig. 5. Filtered sferic pulse at the output and reference antennae.
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Fig. 6. Filtered outputzf , estimated output̂zf and residual errorzf − ẑf .
Model fitted using the entire filtered input and output.
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Fig. 7. Spectra before and after noise cancellation. Model fitted using the
entire filtered input and output.

VI. CONCLUSIONS

This paper has described an errors-in-variables problem
encountered in a mineral exploration application. This appli-
cation is characterised by a very poor signal to noise ratio
on the input rendering the usual methods for obtaining a
model inappropriate. By exploiting both time and frequency
selectivity, it has been shown that a suitable model can be
obtained. The veracity of this estimated model has been
tested by using it for noise cancellation on an independent
(validation) data set. This was shown to produce a significant
reduction in the noise.
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Fig. 8. Spectra of the measured and marked signals for the reference
antenna.
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Fig. 9. Filtered outputzf , estimated output̂zf and residual errorzf − ẑf .
Model fitted using only selected intervals of the filtered input and output.
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Fig. 10. Spectra before and after noise cancellation. Modelfitted using
only selected intervals of the filtered input and output.


