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Abstract

There has recently been significant interest in feedback stabilization problems with communi-
cation constraints including constraints on the available data rate. Signal to noise ratio con-
straints are one way in which data-rate limits arise, and are the focus of this paper. In both
continuous and discrete-time settings, we show that there are limitations on the ability to stabi-
lize an unstable plant over a signal-to-noise ratio constrained channel using finite dimensional
linear time invariant (LTI) feedback. In the case of state feedback, or output feedback with a
delay-free, minimum phase plant, these limitations in fact match precisely those that might
have been inferred by considering the associated ideal Shannon capacity data rate over the
same channel. In the case of LTI output feedback, additional limitations are shown to apply if
the plant is nonminimum phase. In this case, we show that for a continuous-time nonminimum
phase plant, a periodic linear time varying feedback scheme with fast sampling may be used to
recover the original signal-to-noise ratio requirement at the cost of robustness properties. The
proposed framework inherently captures channel noise effects in a simple formulation suited
to conventional LTI control performance and robustness analysis, and has potential to handle
time delays and bandwidth constraints in a variety of control over communication problems.

1 Introduction

The rapid increase in communication and networking technology has prompted many re-
searchers to study limitations imposed upon a feedback control system by the presence
of a communication channel in the feedback loop (cf. the papers in [1], [2–6], and refer-
ences therein). There are many types of limitation that such a channel may impose, includ-
ing quantization, delay, noise, data loss, and bandwidth constraints. A unified treatment of
these issues is yet unavailable, and researchers thus focus on simplified channel models
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that highlight certain aspects of the overall problem. Several papers have considered an
error free digital channel that imposes a limit on the rate at which quantized data can be
transmitted. Using such a channel model, Nair and Evans [3, 7] have derived a tight lower
bound on the data rate required to stabilize an unstable discrete-time plant. Similar results
have been obtained in [4] and [2]. These results have also been extended to channels which
admit a small, but non-zero, transmission error rate [5].

Figure 1 represents a feedback control system over a communication link. The block Ks

encapsulates processes such as encoding, sensor filtering, and control computations to
generate the signal us sent to the communication channel. The block Kr encapsulates pro-
cesses such as decoding and actuator signal processing based on the received signal ur .
The plant is assumed to be a finite dimensional (FD) linear time invariant (LTI) system.
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Figure 1: Feedback control over a communication link.

The aforementioned results for data-rate limited channels typically include two components:
necessary conditions for stabilization based on information theoretic arguments, and com-
plex, nonlinear, time varying, encoding and decoding algorithms that show sufficiency of
the data-rate for stabilization. The sufficiency component of these results is not claimed to
possess any particular robustness properties (e.g., is “not intended . . . to be a practical so-
lution” [3, p. 431]), and is quite disparate from modern control performance and robustness
analysis techniques.

To resolve this disparity, in the present paper we frame our approach to feedback under
communication constraints with the following two core postulates:

1. We adopt a signal-to-noise (SNR) constraint model of communication capacity limits.
2. We restrict our attention to finite dimensional, linear feedback. Namely, the blocks Ks

and Kr in Figure 1 consist at most of linear filtering and sample and hold operations.

The proposed SNR constraint model of communication capacity limits is motivated by the
observation that properties of an additive white Gaussian noise (AWGN) channel with an
input power constraint may be used to derive a limit on the channel data rate consistent with
reliable communication. Indeed, following [8–11], denote the available transmission power
by P watts, the noise power by N watts, and the channel bandwidth by W Hz. Then the
channel capacity is given by the famous formula C = W log2(1 + P/N ) bits/second. The
data rate limit is thus determined by the channel bandwidth W and signal-to-noise ratio
P/N . Suppose further that the noise has spectral density N0/2 watts/Hz. Then the noise
power is given by N = N0W watts, and taking the limit as W → ∞ yields C = (log2 e)P/N0

bits/second [10, 11]. Hence, with infinite bandwidth, the channel capacity is determined by
the ratio of transmission power to noise spectral density, P/(N0/2) Hz. By a mild abuse of
terminology, we shall also refer to this quantity as the SNR.
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There are several reasons behind the postulate of linearity in our approach. On the one
hand, by restricting our attention to linear elements, we develop a framework for the analysis
of feedback under communication constraints that naturally incorporates a plethora of well
established performance and robustness tools. On the other hand, there are reasons of
specific significance to feedback stabilization under data-rate constraints:

• First, for LTI or periodically linear time varying (LTV) elements Ks and Kr , the resulting
stability of the loop in Figure 1 is exponential, which, as is well-known, guarantees a
non-vanishing robustness margin. As a consequence, our bounds on required SNR
for stability inherently account for a degree of robustness.

• Second, for minimum phase, delay-free plants, we show that the consideration of a
more general class of causal nonlinear time-varying elements, as in [3–5,7], yields the
same requirement on channel capacity obtained by considering LTI elements only.

• Finally, for plants with non-minimum phase zeros, or time delays, we show that LTI
solutions will necessarily demand additional communication capacity, as would be ex-
pected in practice due to robustness and other considerations [12–15], [2, Remark 1].

Our results, and the body of the paper, are outlined as follows. We first consider the prob-
lem of stabilizing a continuous-time unstable plant with an analog communication channel
in the feedback loop. In Section 2.1 we assume that the states of the plant are available for
feedback, and derive the minimal SNR compatible with stabilization using linear state feed-
back. To compare our result with that of Nair and Evans, we compute the channel capacity
corresponding to this SNR using the formula for an infinite bandwidth AWGN channel. The
resulting capacity is equal, in units of bits/second, to the minimal data rate derived by Nair
and Evans [3, 7]. In Section 2.2 we assume that only the plant output is available for feed-
back, and show that if the plant is both unstable and nonminimum phase, then the minimal
SNR required for stabilization by an LTI controller is strictly greater than that in the state
feedback case. As a consequence, the capacity associated with the minimal SNR is greater
than the Nair and Evans data rate. Since our results assume a linear time-invariant control
law, it is natural to ask whether time-varying control can achieve stabilization with a lower
SNR. To pursue this question, we first discretize the plant and channel using appropriately
chosen sample and hold functions, and then design a discrete-time controller using the re-
sults of Section 3. In this section we compute the minimal SNR compatible with stabilizing a
discrete-time plant over a discrete-time noisy channel, and show that the resulting discrete
channel capacity is consistent with Nair and Evans data rate only if the plant is minimum
phase and has relative degree one. Since relative degree in discrete-time implies delay in
the system response, our discrete-time results show that stabilization with delay will neces-
sarily require a larger SNR.1 In Section 4 we apply the results of Section 3 to obtain a linear,
periodically time varying control law that stabilizes a nonminimum phase analog plant with a
SNR arbitrarily close to that achievable with state feedback. However, such LTV control law
can achieve significant reduction in SNR only at the expense of poor stability robustness. In
a similar vein, we show that as in the data-rate stabilization case [5,17], asymptotic stability
can be achieved using an LTV compensator, however, a consequence of this approach is
extreme sensitivity to unmodelled noise and disturbances. The paper is summarized and
future research directions are described in Section 5.

Preliminary versions of the results in the present paper have been communicated in [18,19].

1. Computing the minimal SNR in continuous-time is technically more difficult, and is addressed in [16].
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Terminology Denote by C−, C̄−,C+ and C̄+ respectively the open-left, closed-left, open-
right and closed-right halves of the complex plane C. The open unit disk is denoted D, the
closed unit disk D̄, and their complements by D{ and D̄{, respectively. A continuous-time
signal is denoted by x(t), t ∈ R, and its Laplace transform by X (s), s ∈ C. A discrete-
time signal is denoted by xk , k ∈ Z, and correspondingly its Z transform by X (z), z ∈ C.
Whenever the arguments of X (s) or X (z) are omitted, the meaning will be clear from the
context. A square matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues are in C−; it is
called Schur if all its eigenvalues are in D. The expectation operator is denoted by E. A
rational transfer function of a continuous-time system is termed minimum phase if all its
zeros lie in C̄−, and is nonminimum phase if it has zeros in C+. Similarly, a discrete-time
transfer function is minimum phase if all its zeros lie in D̄ and NMP otherwise. Given G(s), the
transfer function of a continuous-time system, we say that G(s) ∈ H2 if G(s) is strictly proper
and stable; i.e., all its poles lie in C−. The H2 norm of G(s), denoted by ‖G‖H2 , satisfies
‖G‖2

H2
= (1/2π)

∫ ∞

−∞
|G(jω)|2dω. Similarly, given G(z), the transfer function of a discrete-time

system, we say that G(z) ∈ H2(D) if G(z) is strictly proper and stable; i.e., all its poles lie inD.
The H2(D) norm of G(z), denoted by ‖G‖H2(D), satisfies ‖G‖2

H2(D) = (1/2π)
∫ π

−π
|G(e jθ)|2dθ.

In the sequel we shall use the notation ‖G‖H2 to denote both norms, as the meaning will be
clear from the context.

2 Continuous-Time Feedback Channels

We now consider the problem of stabilizing an unstable continuous-time plant by using feed-
back over a noisy continuous-time communication channel. Let the plant have transfer func-
tion G(s) and state equations2

ẋ(t) = Ax(t) + Bur (t), y(t) = Cx(t), (1)

where x ∈ Rn, ur ∈ R, y ∈ R, and the triple (A , B, C) is assumed minimal. We assume an
infinite bandwidth AWGN channel with input output relation

ur (t) = us(t) + n(t), t ≥ 0, t ∈ R, (2)

where us(t) is the channel input, or “sent” signal, ur (t) is the channel output, or “received”
signal, and n(t) is zero-mean white Gaussian noise with power spectral density3 Φ . We
restrict attention to the case where the overall feedback system is stabilized, such that for
any distribution of initial conditions, the distribution of all signals converges exponentially
rapidly to a stationary distribution. Without loss of generality, we therefore consider directly
the properties of the stationary distribution of the relevant signals. Denote the power spectral
density of us(t) by Sus (ω). The power in the channel input, defined by ‖us‖Pow , E{u2

s (t)},
is related to its spectral density by

‖us‖Pow =
1

2π

∫ ∞

−∞

Sus (ω) dω. (3)

2. A mathematically precise treatment of continuous-time stochastic systems requires the theory of stochastic
differential equations. However, under reasonable assumptions, that formulation reduces to the one presented
here [20, §4.4].
3. In contrast with standard notation [8–11], we denote the noise density by Φ watts/(radians/second) instead
of N0/2 watts/Hz.
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The channel input is required to satisfy the power constraint

‖us‖Pow < P , (4)

for some predetermined input power level P > 0. A power constraint such as (4) may arise
either from electronic hardware limitations or regulatory constraints introduced to minimize
interference to other communication system users. The infinite bandwidth AWGN channel
is thus characterized by two parameters: the admissible input power level P , and the noise
spectral density Φ . As we have noted in Section 1, channel capacity depends solely upon
the signal-to-noise ratio P/Φ radians/second.

2.1 Continuous-Time State Feedback Stabilization

In this section we consider the feedback system of Figure 2 in which the channel input is
static state feedback us(t) = −Kx(t). This is a special case of Figure 1 with Kr = 1 and
Ks = −K . It will be clear from the development that there is no loss of generality in using
only compensation at the channel input, and in assuming a static feedback law. The closed
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Figure 2: State feedback stabilization of an analog system over an AWGN channel.

loop transfer function from channel noise n(t) to channel input us(t) is equal to −Tsf (s),
where

Tsf (s) =
K (sI − A )−1B

1 + K (sI − A )−1B
(5)

is the complementary sensitivity function of the state feedback system. If the closed loop
system is stable, then us(t) is a stationary Gaussian stochastic process with power spectral
density

Sus (ω) =
∣

∣

∣Tsf (jω)
∣

∣

∣

2
Φ ,

and thus the power of the channel input signal is related to the H2 norm of Tsf :

‖us‖Pow = ‖Tsf‖2
H2
Φ .

It follows that the input power constraint (4) is equivalent to a bound imposed on the com-
plementary sensitivity function by the admissible channel SNR:

‖Tsf‖2
H2

<
P
Φ

. (6)

Denote the class of all stabilizing state feedback gains by Ksf = {K : A − BK is Hurwitz}.



Feedback Stabilization over SNR Constrained Channels EE05003 - page 6 of 26

Problem 1 (SNR Constrained State Feedback Stabilization). Find a static state feedback
gain K ∈ Ksf such that the complementary sensitivity function (5) satisfies the constraint (6)
imposed by the admissible channel SNR. ¤

Theorem 2.1. Consider the feedback system of Figure 2, suppose that A has C+ eigenval-
ues {pi ; i = 1, 2, . . . , m} and define Tsf (s) as in (5). Then

inf
K∈Ksf

‖Tsf‖2
H2

= 2
m
∑

i=1

Re {pi} , (7)

and Problem 1 is solvable if and only if the admissible SNR satisfies

P
Φ

> 2
m
∑

i=1

Re {pi} radians/second. (8)

Proof. See Appendix .1, which also contains a procedure for finding the desired gain. ¤

It follows from (8) that stabilization requires an AWGN channel whose capacity satisfies the
lower bound

C = (log2 e)P/2Φ > log2 e
m
∑

i=1

Re {pi} bits/second. (9)

Let us now compare our results to those of Nair and Evans [7], who consider the problem of
using output feedback to stabilize the discrete-time system

xk+1 = Adxk + Bduk , yk = Cdxk , (10)

where ∀ k = 0, 1, 2, . . . , Ad has D̄{ eigenvalues {φi ; i = 1, . . . , m}, and the initial state is a
random variable. Nair and Evans show that exponential stabilization over an error free digital
channel is possible if and only if the data rate R satisfies

R >
m
∑

i=1

log2 |φi| bits/transmission. (11)

Using the concept of topological feedback entropy, the authors of [21] show that the right
hand side of (11) is a measure of the rate at which the open loop plant generates information
about its initial state.

To compare with our results, suppose that the discrete-time system (10) is obtained by
sampling the continuous-time system (1) at a constant rate 1/T Hz. Then the D̄{ eigenvalues
of Ad must satisfy φi = epiT , where {pi} are the C+ eigenvalues of A , and (11) reduces to

R/T > (log2 e)
m
∑

i=1

Re {pi} bits/second. (12)

By comparing (9) and (12) we see that the capacity associated with the SNR required for
stabilization over an AWGN channel with state feedback is equal, in units of bits/second, to
the data rate required for stabilization over an error-free digital channel with output feedback.
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The necessary and sufficient conditions for stabilizability derived by Nair and Evans [3,7] are
obtained using a very general class of feedback control laws assumed only to be causal. To
demonstrate sufficiency they construct a complex coding and decoding feedback mecha-
nism [3, 7] (cf. [5]). It is thus of interest to the present results to demonstrate sufficiency
using a linear time invariant control law.

2.2 Continuous-Time Output Feedback Stabilization

We now turn to the feedback system of Figure 3, in which the channel input is dynamic output

−K (s)

G(s)

n

d

-

6

?

¾

n(t)

+

+

us(t)

ur (t) y(t)

Figure 3: Stabilization of an analog system via output feedback over an AWGN channel.

feedback: Us(s) = −K (s)Y (s). The closed loop transfer function from channel noise n(t) to
channel input us(t) is equal to −T (s), where T is the complementary sensitivity function of
the output feedback loop:

T (s) =
G(s)K (s)

1 + G(s)K (s)
. (13)

If the feedback system is stable, then the power of the channel input signal is given by

‖us‖Pow = ‖T‖2
H2
Φ .

As in the preceding section, we see that the input power constraint (4) may be restated as a
constraint imposed on the complementary sensitivity function (13) by the admissible channel
SNR, specifically

‖T‖2
H2

<
P
Φ

. (14)

Let K denote the class of all proper controllers K (s) that internally stabilize the feedback
system of Figure 3.

Problem 2 (SNR Constrained Output Feedback Stabilization). Find a proper rational
function K (s) ∈ K such that the complementary sensitivity function (13) satisfies the con-
straint (14) imposed by the admissible channel SNR. ¤

Denote the Blaschke product containing the C+ poles of G(s) by

Bp(s) =
m
∏

i=1

s − pi

s + p i
. (15)
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Theorem 2.2. Consider the feedback system of Figure 3, assume that A has C+ eigenvalues
{pi ; i = 1, 2, . . . , m}, and define T as in (13). Denote the nonminimum phase zeros of G(s)
by {zi ; i = 1, . . . , q}, and assume that these zeros are distinct.4 Then

inf
K (s)∈K

‖T‖2
H2

= 2
m
∑

i=1

Re {pi} + η, (16)

where

η ,

q
∑

`=1

q
∑

i=1

(

γ`γ̄i

(z` + z̄i)

)

, (17)

γ` , 2 Re {z`}
(

1 − B−1
p (z`)

)

q
∏

i=1
i,`

(z` + z̄i)
(z` − zi)

, (18)

and η > 0 whenever G(s) is both unstable and non-minimum phase. It follows that Problem 2
is solvable if and only if the admissible SNR satisfies

P
Φ

> 2
m
∑

i=1

Re {pi} + η radians/second. (19)

Proof. See Appendix .2, which also includes a derivation of the desired compensator. ¤

If the plant is minimum phase, then (19) implies that the SNR required for stabilization with
output feedback is identical to that with state feedback. If the plant is nonminimum phase,
then the SNR required for LTI output feedback stabilization is strictly greater than if state
feedback is used, and will be particularly large if G(s) has a NMP zero in close proximity
to a C+ pole. Indeed, in the case of a single (real) NMP zero, the expression (17) for the

additional cost due to this zero simplifies to η = 2z
(

1 − B−1
p (z)

)2
. If G(s) has but a single

real C+ pole p and a single real NMP zero z, then (19) implies that the required SNR must
satisfy the bound

P
Φ

> 2p

(

z + p
z − p

)2

.

The difficulties imposed upon feedback design by the presence of NMP zeros near to C+

poles are well known. Denote the Blaschke product of NMP zeros of G(s) by

Bz(s) ,
q
∏

i=1

s − zi

s + z̄i
. (20)

Then, at each C+ pole p of G(s), the complementary sensitivity function must satisfy the
bound [15, p. 70]

sup
ω

|T (jω)| ≥ |B−1
z (p)|, (21)

4. This assumption is made for simplicity and may be relaxed, as discussed in the proof.
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and will thus exhibit a large peak if there is a NMP zero close to p. Such a peak implies
that the feedback system will possess a small stability margin and exhibit large response to
measurement noise [15], and thus a larger SNR will be required for LTI output feedback sta-
bilization. We shall return to the stability robustness problems associated with approximate
unstable pole/zero cancellations at the close of Section 4.

We have seen that the presence of NMP plant zeros implies that the SNR required to stabi-
lize an unstable plant by LTI feedback is strictly greater than if such zeros were not present.
By the argument at the close of Section 2.1, it follows that the capacity of the associated
AWGN channel is also greater than that for a minimum phase plant with the same unsta-
ble poles. As a result, using LTI control to stabilize an unstable and nonminimum phase
plant over an AWGN channel requires that the channel capacity be strictly greater than the
minimal data rate derived by Nair and Evans, which depends only on the unstable poles.

There is no apparent reason why the channel capacity required for output feedback stabi-
lization should be equal to the data rate derived in [3, 7]. First, the problem statements are
different: stabilization over a noise free date rate limited channel vs. stabilization over an
SNR constrained AWGN channel. Second, the classes of control algorithms are different: in
the present paper we have assumed a linear time invariant controller, whereas the authors of
[3,7] use control laws that are time varying and, because of the quantizer, inherently nonlin-
ear. In fact, we shall show in Section 4 that the use of a linear time varying controller allows
our results to be reconciled with those of Nair and Evans, at the cost of potential robustness
difficulties. To do so requires the use of sampled-data control and thus, in Section 3, we
must first derive discrete-time counterparts to Theorems 2.1 and 2.2.

3 Discrete-Time Feedback Channels

We now turn to the problem of using state or output feedback to stabilize an unstable
discrete-time plant over a noisy discrete-time channel, and develop results parallel to those
in Section 2. Let the plant have transfer function Gd(z) and state variable description (10),
and assume that (Ad , Bd , Cd) is minimal. We assume a discrete-time Gaussian channel with
input output relation

wk = vk + nk , k = 0, 1, 2, . . . ,

where nk is zero mean Gaussian white noise with variance σ2. The channel input vk is
assumed to be a discrete-time stationary stochastic process with power spectral density
Sv (ω). The power in the channel input, defined by ‖v‖Pow , E{v2

k } may be computed from
its spectral density by

‖v‖Pow =
1

2π

∫ π

−π
Sv (ω) dω. (22)

Note that the power in a discrete-time white noise signal is equal to its variance. The discrete
channel input is required to satisfy the power constraint

‖v‖Pow < Pd , (23)

for some predetermined input power level Pd . The capacity of the discrete Gaussian channel
is given by C = (1/2) log2(1 + Pd/σ2) bits/transmission [10, 11], and thus we see that the
channel capacity depends only on the SNR Pd/σ2.
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3.1 Discrete-Time State Feedback Stabilization

Consider the discrete-time state feedback system of Figure 4, in which the channel input is

m
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¾

6

+

+

+

+

wk xk

nk

vk

−Kd
Ad

Bd z−1

Figure 4: Stabilization of a discrete-time system via state feedback over a discrete Gaussian
channel.

static state feedback: vk = −Kdxk . The closed loop transfer function from channel noise nk

to channel input vk is given by −Tsf
d , where

Tsf
d (z) =

Kd(zI − Ad)−1Bd

1 + Kd(zI − Ad)−1Bd
(24)

is the complementary sensitivity function of the discrete state feedback loop. If the feedback
system is stable, then the channel input is stationary and Gaussian with power spectral
density

Sv (ω) = |Tsf
d (e jω)|2σ2.

The power in the channel input is thus given by

‖v‖Pow = ‖Tsf
d ‖2

H2
σ2,

and the input power constraint (23) is equivalent to the constraint

‖Tsf
d ‖2

H2
<

Pd

σ2
(25)

imposed on Tsf
d by the admissible channel SNR. Denote the class of all stabilizing state

feedback gains by Ksf
d = {Kd : (Ad − BdKd) is Schur}.

Problem 3 (Discrete-Time SNR Constrained State Feedback Stabilization). Find a static
state feedback gain Kd ∈ Ksf

d such that Tsf
d satisfies the SNR constraint (25). ¤

Theorem 3.1. Consider the feedback system in Figure 4, assume that Ad has D̄{ eigenval-
ues {φi ; i = 1, 2, . . . , m}, and define Tsf

d (z) as in (24). Then

inf
K∈Ksf

d

‖Tsf
d ‖2

H2
=















m
∏

i=1

|φi|2














− 1, (26)

and Problem 3 is solvable if and only if the admissible SNR satisfies

Pd

σ2
>















m
∏

i=1

|φi|2














− 1. (27)
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Proof. See Appendix .3, which also contains a procedure for finding the desired gain. ¤

It follows from (27) that stabilization via state feedback requires a discrete Gaussian channel
whose capacity satisfies

C =
1
2

log2

(

1 +
Pd

σ2

)

>
m
∑

i=1

log2 |φi| bits/transmission,

and is thus consistent with the data rate (11) derived by Nair and Evans [7]. As discussed
in [22], Shannon capacity is a “tight” channel figure of merit to characterize the equivalence
between feedback stability and reliable communication in the case of AWGN channels.

3.2 Discrete-Time Output Feedback Stabilization

Consider the discrete-time feedback system of Figure 5, where the channel input is dynamic

Gd(z)

n

d

-

6

?

¾+

+

−Kd(z)
vk

nk

ykwk

Figure 5: Stabilization of a discrete-time system via output feedback over a discrete Gaus-
sian channel.

output feedback, V(z) = −Kd(z)Y (z). If the feedback system is stable, then

‖v‖Pow = ‖Td‖2
H2

σ2, (28)

where

Td(z) =
Kd(z)Gd(z)

1 + Kd(z)Gd(z)
(29)

is the complementary sensitivity function of the discrete output feedback loop. The input
power constraint (23) imposed by the admissible SNR is thus equivalent to requiring that Td

satisfy the bound

‖Td‖2
H2

<
Pd

σ2
. (30)

Denote the class of all stabilizing output feedback controllers by Kd .

Problem 4 (Discrete-Time SNR Constrained Output Feedback Stabilization). Find a
proper rational function Kd(z) ∈ Kd such that the complementary sensitivity function (29)
satisfies the constraint (30) imposed by the admissible channel SNR. ¤

Denote the Blaschke product containing the D̄{ poles of Gd(z) by

Bφ(z) =
m
∏

i=1

z − φi

1 − zφ̄i
, (31)
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and define

βk ,
1
k !

dk

dzk
Bφ(z)

∣

∣

∣

∣

∣

∣

z=0

. (32)

Theorem 3.2. Consider the feedback system of Figure 5, assume that Ad has D̄{ eigenval-
ues {φi ; i = 1, 2, . . . , m}, and define Td(z) as in (29). Let Gd(z) have relative degree r ≥ 1,
denote the nonminimum phase zeros of Gd(z) by {ζi ; i = 1, . . . , q}, and assume that these
zeros are distinct.5 Then

inf
Kd (z)∈Kd

‖Td‖2
H2

=
( m
∏

i=1

|φi|2
)

− 1 + η + δ, (33)

where

η =
q
∑

`=1

q
∑

i=1

γ`γ̄i

(ζ`ζ̄i − 1)
, δ =



























0, if r = 1
r−1
∑

k=1

|βk |2, if r > 1
(34)

γ` , (1 − |ζ`|2)
(

B−1
φ

(ζ`) −
r−1
∑

k=0

βkζ−k
`

)
q
∏

k=1
k,`

1 − ζ`ζ̄k

ζ` − ζk
,

and η > 0 unless Gd(z) is minimum phase. It follows that Problem 4 is solvable if and only if
the admissible SNR satisfies

Pd

σ2
>
( m
∏

i=1

|φi|2
)

− 1 + η + δ.

Proof. See Appendix .4, which also includes a derivation of the desired compensator. ¤

As in the continuous-time case, the SNR required for stabilization of a NMP plant via out-
put feedback is strictly greater than that required for state feedback. The required SNR also
depends on the relative degree of the plant, as is reasonable because a discrete-time sys-
tem with relative degree r possesses an r-step delay in its response, and delay is known
to aggravate the problem of robust stabilization (cf. the discussion of the discrete Poisson
complementary sensitivity integral on pp. 77–78 of [15]). A discrete-time system obtained
by discretizing a finite dimensional continuous-time system will generally have relative de-
gree one; however, a continuous-time system with a pure time delay will yield a discretized
system with higher relative degree [23,24].

Remark 3.1. Suppose that the discrete-time plant has relative degree r = 2. Then the
additional SNR due to the relative degree is δ = |β1|2, and it is straightforward to show that

β1 =















m
∏

k=1

−φk















m
∑

i=1

(

|φi|2 − 1
)

φi
. (35)

5. This assumption may be relaxed, see the proof for details.
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Suppose that Gd(z) is obtained by discretizing a continuous-time plant G(s) with a single
real C+ pole p and a sampling period T seconds. Then Gd(z) has an unstable pole φ =
epT , and δ = 4e2pT sinh2(pT ). If G(s) had a complex pair of C+ poles, x ± jy, then δ =
16e2xT sinh2(xT ) cos2(yT ). ¤

Remark 3.2. A recent paper by Elia gives a procedure for minimizing ‖KSd‖H2 , where
Sd(z) = (1 − z−1F(z)K (z))−1, F(z) is the transfer function of a stable but possibly NMP
communication channel, and K (z) is a controller required to be open loop unstable [25,
pp. 1481–1483]. In the special case F(z) = 1, the procedure in [25] for minimizing this
transfer function provides an alternate approach to our Theorem 3.2. Although stability ro-
bustness is not considered in [25], it is of interest to note that if the channel F(z) has a NMP
zero ζ and the controller K (z) has a D̄{ pole φ, then it follows from [15, Theorem 3.4.2] that
the complementary sensitivity function of the resulting feedback system, Td(z) = 1 − Sd(z),
must satisfy

sup
θ

|Td(e jθ)| ≥ |φ|
∣

∣

∣

∣

∣

1 − ζφ

φ − ζ

∣

∣

∣

∣

∣

. (36)

As in the continuous-time case, a large peak in |Td(e jθ)| will imply poor robustness and noise
response (cf. the discussion of (21)). The factor of |φ| on the right hand side of (36) is due
to the single step time delay in the system, and will be large if the compensator pole lies well
outside the unit circle. The second factor is due to the NMP zero, and will be large if the zero
is close to the pole. In the context of [25], an unstable pole is used in K to obtain a large
data rate. However, (36) shows that a large unstable pole will cause robustness difficulties
that will be worsened if any of the unstable poles also happens to lie near a NMP channel
zero. ¤

4 Linear Time-Varying Feedback Stabilization

We saw in Section 2 that the presence of nonminimum phase zeros implies that the SNR
required for stabilization with LTI output feedback is greater than that required for state feed-
back. In this section, we show that by using periodic linear time varying output feedback it is
possible to stabilize an unstable NMP plant using a SNR arbitrarily close to that achievable
with state feedback. In addition, we also show how (non-uniform in time) asymptotic stability,
in the sense that limk→∞ E{y2

k } → 0, can be achieved. These results demonstrate that, for
a finite dimensional LTI plant, linear feedback suffices to achieve closed-loop stability with
a SNR arbitrarily close to that consistent with the lowest data-rate required for stabilization
[3, 7]. The price to be paid, as we shall discuss, is loss of stability robustness and higher
sensitivity to disturbances.

4.1 Stabilization using Periodic LTV Feedback

We shall use the sampled-data control scheme depicted in Figure 6 (cf. Figure 1), and whose
components are defined as follows. Let the analog plant G(s) have the minimal state variable
realization (1) and C+ poles {pi ; i = 1, . . . , m}. The plant is discretized using a sampler with
period T and a generalized sampled data hold function (GSHF) [26] chosen so that Gd(z),
the transfer function of the discretized plant, has relative degree one and (n − 1) zeros lying
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Figure 6: Stabilization of an analog system via sampled-data output feedback over an analog
AWGN channel.

in D. The discrete control law is dynamic output feedback applied to samples of the plant
output: V(z) = −Kd(z)Y (z).

The analog AWGN communication channel is given by (2), where n(t) is zero mean Gaus-
sian white noise with power spectral density Φ . The input to this channel is equal to the
output sequence of the discrete controller passed through a zero order hold (ZOH),

us(t) = vk−1, t ∈ [(k − 1)T , kT ). (37)

The power in the channel input is thus equal to that in the controller output: ‖us‖Pow =
E{u2

s (t)} = E{v2
k } = ‖v‖Pow . The output of the channel is passed through an averaging filter

with transfer function Fa(s) = (1 − e−sT )/sT and time response

urf (t) ,
1
T

∫ t

t−T
ur (τ )dτ , (38)

and then sampled to obtain a discrete sequence wk = urf (kT ). The AWGN channel in Fig-
ure 6 may thus be reduced to a discrete channel with properties described as follows.

Lemma 4.1 (Discretized AWGN Channel). The discrete sequences wk and vk in Figure 6
are related by the difference equation

wk = vk−1 + nk−1, (39)

where nk is a zero mean Gaussian white noise process with variance σ2 = Φ/T.

Proof. It follows from (2) and (38) that

wk =
1
T

∫ kT

(k−1)T
us(t)dt +

1
T

∫ kT

(k−1)T
n(t)dt . (40)

Hence (39) follows from (37) by defining the sequence nk−1 from the second term on the
right hand side of (40). The statistical properties of the discrete noise sequence may be
obtained by modifying the arguments of [24, §10.6] or [27, §9.4.4]. ¤

The mapping from vk to wk in Figure 6 is thus that of the discrete-time Gaussian channel in
Figure 7 with noise input nk and a one sample delay.
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Figure 7: Feedback System with Discretized Plant and Channel.

The transfer function between the noise nk and the channel input vk in Figure 7 is equal to
−Td(z), defined by

Td(z) =
z−1Gd(z)Kd(z)

1 + z−1Gd(z)Kd(z)
, (41)

and the power of the discrete channel input is equal to

‖v‖Pow = ‖Td‖2
H2
Φ/T .

Theorem 3.2 may now be applied to minimize the power of the discretized channel input in
Figure 7 subject to the constraint of closed loop stability. As we have noted, the power of
the discrete channel input is equal to that of the input to the AWGN channel in Figure 6,
and hence this procedure may be used to minimize the power of the analog AWGN channel
input.

Theorem 4.2. Consider the sampled-data feedback system depicted in Figures 7, denote
the D̄{ poles of Gd(z) by {φi = epiT ; i = 1, . . . , m}, and define Td(z) by (41). Then

inf
Kd (z)∈Kd

‖Td‖2
H2

=















m
∏

i=1

|φi|2














− 1 + δ, (42)

where

δ =
m
∏

i=1

|φi|2
∣

∣

∣

∣

∣

∣

∣

m
∑

i=1

|φi|2 − 1

φi

∣

∣

∣

∣

∣

∣

∣

2

. (43)

It follows that the feedback system can be stabilized, and the power constraint ‖us‖Pow < P
satisfied, if and only if the SNR of the analog channel satisfies the lower bound

P
Φ

>

(

∏m
i=1 |φi|2

)

− 1 + δ

T
. (44)

Proof. By construction, the plant Gd(z) is minimum phase and has relative degree one.
Applying Theorem 3.2 to stabilize the series connection of Gd(z) and the additional delay
due to the discretized channel thus shows that the minimal value of ‖Td‖2

H2
is given by (33)

with δ = |β1|2 and β1 given by (35). The SNR bound (44) follows by substituting (42) and
using the fact that ‖v‖Pow = ‖us‖Pow . ¤
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Since Gd(z) has relative degree one and no NMP zeros, the term δ in (44) represents the
additional SNR required due to the one step delay in the discretized channel. Since a one
step delay in the discrete domain corresponds to a T -second time delay in the continuous
domain, it is plausible that this additional SNR should decrease with fast sampling.

Corollary 4.3. Assume that the SNR of the analog channel in Figure 6 satisfies the bound

P
Φ

>
m
∑

i=1

2 Re {pi} . (45)

Then there exists a sufficiently small T and a stabilizing controller Kd(z) such that input to
the analog channel in Figure 6 satisfies the power constraint ‖us‖Pow < P .

Proof. The fact that φi = epiT implies that6 φi = 1 + piT + O(T2) for small values of T . It is
thus straightforward to show that

lim
T→0

(

∏m
i=1 |φi|2

)

− 1

T
= 2

m
∑

i=1

Re {pi} , and

lim
T→0

δ

T
= lim

T→0

m
∏

i=1

|φi|2
∣

∣

∣

∣

∣

∣

∣

m
∑

i=1

|φi|2 − 1

φi
√

T

∣

∣

∣

∣

∣

∣

∣

2

= 0.

¤

Corollary 4.3 shows that the LTV feedback scheme in Figure 6 allows the stabilization of
an unstable NMP plant with an SNR arbitrarily close to that achievable with state feedback,
which is consistent with the lowest data rate required under the only constraint of causality
[7].

Let us suppose again that G(s) has a single real C+ pole p and a single real NMP zero z.
By appropriate choice of GSHF [26], it is possible to obtain a discretized plant with no NMP
zeros, an unstable pole at φ = eT , and relative degree r = 1. The lower bound on admissible
SNR (44) thus becomes

P
Φ

>
e2pT − 1 + 4e2pT sinh2(pT )

T
. (46)

For small values of T , sinh(pT ) = pT +O(T3), and thus the limit as T → 0 of the RHS of (46)
is equal to 2p, which is consistent with (45). For comparison, this limit should be compared
with the SNR bound (21), which shows the potentially significant effects of the NMP zero.

4.2 Robustness of the Proposed LTV Feedback Scheme

We now use the framework developed in [29, 30] to study robustness of the time-varying
feedback system in Figure 6 to uncertainty in the continuous-time plant. To do so, we use
the fundamental complementary sensitivity function Tfun(s) introduced in [29], and modified
to the setting of Figure 6. Denote the response function [31] of the GSHF by H(s), note that

6. We use Landau’s “big O” notation for infinitesimal asymptotics as described in [28, p. 373].
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the transfer function of the discretized channel in Figure 7 is equal to z−1, and define the
discrete sensitivity function by Sd(z) = (1 + z−1Gd(z)Kd(z))−1. Then

Tfun(s) ,
1
T

G(s)H(s)Sd(esT )Kd(esT )e−sT .

As discussed in [29, 30], a large peak in |Tfun(jω)| implies that stability robustness is poor.
Theorem 4 of [29] implies that

sup
ω

|Tfun(jω)| ≥ exT |B−1
z (p)|, (47)

where Bz(s) is defined by (20). The first term on the right hand side of (47) is due to the
one step delay in the discretized channel, and will converge to unity with fast sampling. The
second term depends only on the relative location of p to the NMP zeros of the plant, and
will be very large if there exists an approximate pole/zero cancellation. Comparing (47) to
(21), we see that the limitations imposed on the continuous-time response by the NMP zeros
are the same with sampled-data control as they are with LTI control.

To summarize, with sampled-data control an unstable system can be stabilized with the
same SNR as that available with state feedback, and thus the minimal channel capacity
required for stabilization with time-varying control is identical, in units of bits/second, to the
data rate derived by Nair and Evans [7]. However, in those cases for which time-varying con-
trol offers a significant reduction in SNR with respect to that for LTI control (i.e., those cases
for which there exists a NMP zero close to an unstable pole), the robustness of the resulting
design in the proposed LTV scheme will be poor by an amount that is also quantified by the
proximity of the NMP zero to the unstable pole.

4.3 Asymptotic Stabilization using LTV Feedback

In the data rate limited setting, it has also been noted (see for example [5,17]) that asymptotic
stability can be attained, that is, E{y2

k } → 0. The basic mechanism by which this is attained
is the use of successively finer resolution in the encoding of the feedback information (with
a consequent reduction in dynamic range). Here we show that this same mechanism can
be used in our SNR constrained framework. For brevity, we state the results only in the
continuous-time case, with discrete-time results following similarly.

Reconsider the general scheme depicted in Figure 1, and let the plant G(s) be stabilizable
with output feedback within the SNR constraint (19). In view of (19) and Theorem 2.2, take
any controller K1(s) such that the corresponding complementary sensitivity function T1(s) =
G(s)K1(s)/

(

1 + G(s)K1(s)
)

satisfies the SNR constraint (14). Then for any α > 0 sufficiently
small, we take a LTV control structure as follows:

us(t) = eαt y(t),

u(t) = −K1(s) ∗
(

e−αt ur (t)
)

= −K1(s) ∗
(

y(t) + e−αtn(t)
)

.

(48)

With regards to Figure 1, this LTV control structure is given by Ks as the LTV gain Ks = eαt ,
and Kr as the transfer function −K1(s) preceded by the LTV gain e−αt .
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If we let hT1(t) be the impulse response of the transfer function T1(s) then we can evaluate
sample paths of the output as

y(t) = −
∫ t

0
hT1(t − τ )n(τ )e−ατ dτ , (49)

and then, using standard properties of stochastic integrals (e.g., [20, §5]), we can show that
E{y2(t)} = Φ

∫ t

0
h2

T1
(t − τ )e−2ατ dτ . Thus, from (48), we have that

E{u2
s (t)} = Φ

∫ t

0
h2

T1
(t − τ )e2α(t−τ )dτ (50)

and therefore limt→∞ E{u2
s (t)} = Φ‖T1(s − α)‖2

H2
. Now, provided that α is smaller than the

absolute stability margin of T1, that is, that T1(s − α) is analytic in C̄+, the expression (50)
is well defined, and also, as we take α → 0+ we have that ‖T1(s − α)‖2

H2
→ ‖T1(s)‖2

H2
.

It therefore follows that for sufficiently small α we satisfy the SNR constraint (14), and in
addition,

E{y2(t)} → e−2αtΦ‖T1(s − α)‖2
H2

→ 0. (51)

Note however, that this strategy is infinitely sensitive to additive noise. For example, suppose
we add an arbitrarily small amount of input (or process) noise nu to the input of the plant:
y(t) = P(s) ∗ (u(t) + nu(t)) . In this case, (49) becomes y(t) = −

∫ t

0
hT1(t − τ )n(τ )e−ατ dτ +

∫ t

0
hPS1(t − τ )nu(τ ) dτ , where hPS1 denotes the impulse response of the closed loop transfer

function P(s)S1(s) relating the input noise to the plant output. Then assuming nu is white with
power spectral density Φnu , and is uncorrelated with the channel noise, n(t), (51) becomes

E{y2(t)} → e−2αtΦ‖T1(s − α)‖2
H2

+Φnu‖P(s)S1(s)‖2
H2

. (52)

From (52) and (48), for any Φnu > 0, no matter how small, the transmitted power in this case
diverges: E{u2

s (t)} → e2αt
E{y2(t)} → +∞.

5 Conclusions

In this paper, we have considered a framework for discussing control over a communication
channel based on SNR constraints. We have focused particularly on the feedback stabiliza-
tion of an open loop unstable plant via a channel with a signal to noise ratio constraint. By
examining the simple case of a linear time invariant plant and an AWGN channel, we have
derived necessary and sufficient conditions on the SNR for feedback stabilization with an LTI
controller. These conditions have been expounded in continuous and discrete-time, for both
state feedback and output feedback cases. Interestingly, for both the minimum phase and
the state feedback cases, our SNR results, together with the associated Shannon capacity
formula, parallel directly previous results on data rate limited stabilization.

Beyond previous results on data rate limits, we have shown that stabilization of an unstable
nonminimum phase LTI plant via an LTI controller does result in additional SNR demands, as
compared to the minimum phase case. This additional demand on SNR for LTI stabilization
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may be made vanishingly small by the use of fast sampling and LTV control schemes such
as those based on GSHFs. However, in such cases, the use of LTV control to reduce the
required SNR will necessarily result in poor robustness and sensitivity properties.

As compared to other approaches, simplicity is arguably a highlight of the proposed SNR
constraint framework, which inherently captures channel noise effects, while dispensing with
the use of quantizers and time-varying coding/decoding schemes. Notwithstanding this sim-
plicity, we believe this framework offers considerable scope for a variety of control over com-
munications problems. Future extensions to this work include more general plants, such
as continuous-time plants with time delays (see [16] for preliminary work in this direction)
and multivariable systems, channel models with bandwidth limitations, and control problems
beyond that of stabilization.

.1 Proof of Theorem 2.1

We translate the problem of minimizing (7) into a minimum energy stabilization problem: find
a state feedback u = −Kx to minimize the cost function J(x(0)) =

∫ ∞

0
u2(t)dt subject to the

constraints that the system ẋ = Ax + Bu be asymptotically stable and that x(0) = B. The
control signal for this initial condition is given by u(t) = −Ke(A−BK )tB, and thus Parseval’s
theorem implies that J(B) = 1

2π

∫ ∞

−∞
|K (jω − A + BK )−1B|2dω. It is easy to show that Tsf

defined by (5) satisfies the identity Tsf (s) = K (sI − A + BK )−1B, and thus J(B) = ‖Tsf‖2
H2

.

Assume temporarily that A has no eigenvalues on the jω axis. Then the system may be
assumed to have the modal form ẋ =

[

As 0
0 Au

]

x +
[

Bs
Bu

]

u, where As and −Au are both Hurwitz.
The assumption that (A , B, C) is minimal implies that (Au, Bu) is controllable and thus the
minimum energy stabilization problem has the well-defined solution K = B ′P, where P is
the unique positive semi-definite solution to the algebraic Riccati equation 0 = A ′P + PA −
PBB ′P. It follows from [32, Lemma 2] that P has the form P = diag{0, Pu}, where Pu is the
unique positive definite solution to the reduced Riccati equation

0 = A ′
uPu + PuAu − PuBuB ′

uPu. (53)

The optimal cost for x(0) = B is thus

J∗(B) = B ′PB = B ′
uPuBu = trace P1/2

u BuB ′
uP1/2

u

= trace(P−1/2
u A ′

uP1/2
u + P1/2

u AuP−1/2
u )

= 2 trace Au = 2
m
∑

i=1

Re {pi} ,

which, since J(B) = ‖Tsf‖2
H2

, proves (7). It follows from (53) that −P−1
u A ′

uPu = Au −BuB ′
uPu,

and thus that the closed loop eigenvalues are the union of the eigenvalues of As and −Au.

If A has jω-axis eigenvalues, let A (ε) = A +εI with ε > 0 such that A (ε) has the same number
of C− eigenvalues as A , but no eigenvalues on the jω-axis. Applying the above procedure
and letting ε → 0 shows that jω-axis eigenvalues do not contribute to the optimal cost.

Although jω axis eigenvalues do not contribute to the optimal cost, they do imply that a
stabilizing state feedback achieving the infimum (7) does not exist. Such a feedback may
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be approximated arbitrarily closely by finding Kα to minimize Jα =
∫ ∞

0

(

α2x ′x + u2
)

dt for α
sufficiently small. As is well known (cf. [33]), in the limit as α → 0, the eigenvalues of A−BKα

approach the arithmetic inverses of the C+ eigenvalues of A , and the C̄− eigenvalues of A .
If A has no eigenvalues on the jω axis, then this result agrees with that above. If A does
have such eigenvalues, then those eigenvalues of A − BKα that converge to the jω axis are
guaranteed to be stable, thus yielding a stabilizing control law uα(t) whose cost

∫ ∞

0
u2(t)dt

approximates that of a control law that moves only the C+ eigenvalues of A and leaves the
rest fixed. ¤

.2 Proof of Theorem 2.2

We apply a technique used in [34]. Define the spaces L2, H2, H⊥
2 , and H∞ as in [35]. Con-

sider a coprime factorization G = N/M, where N, M ∈ H∞. The Youla parametrization of
all controllers that stabilize G is given by K = (X + MQ)/(Y − NQ), where Q , X , Y ∈ H∞

and X and Y satisfy the Bezout identity NX + MY = 1 [35]. Substituting these factorizations
for G and K into (13) and applying the Bezout identity shows that T = 1 − M(Y − NQ).
Hence the problem of finding K to minimize (16) reduces to that of finding Q to minimize
‖1 − MY + MNQ‖2

H2
. Further factorize M = BpM0, where the Blaschke product Bp is given

by (15), and satisfies |Bp(jω)| = 1, ∀ω and B−1
p ∈ H⊥

2 . Hence

inf
Q∈H∞

‖1 − MY + MNQ‖2
H2

= inf
Q∈H∞

‖(B−1
p − 1) + (1 − M0Y + M0NQ)‖2

L2

= ‖B−1
p − 1‖2

L2
+ inf

Q∈H∞

‖1 − M0Y + M0NQ‖2
H2

(54)

The first term on the RHS of (54) may be evaluated using the residue theory [15, 28, 36].
Let CR denote a contour consisting of the imaginary axis {s = jω, −R ≤ ω ≤ R} together
with a large semicircle in C+ {s = Re jθ,−π/2 ≤ θ ≤ π/2}, and traversed in the clockwise
direction. Then

‖B−1
p − 1‖2

L2
=

1
2π

∫ ∞

−∞

(B−1
p (jω) − 1)(B−1

p (−jω) − 1)dω

= lim
R→∞

1
2πj

∮

CR

(B−1
p (s) − 1)(B−1

p (−s) − 1)ds, (55)

because the integrand has two more poles than zeros, and thus the limiting value of the
integral over the semicircle will equal zero [15, Example A.4.1]. Let R be sufficiently large
so that CR encloses all the C+ poles of the integrand of (55). By (15), this integrand reduces
to f (s) , 2 − Bp(s) − B−1

p (s), and we see that the only C+ poles of f (s) are those of B−1
p ,

which are located at {pi ; i = 1, . . . , m}. Hence the contour integral of the term 2 − Bp(s)
is equal to zero, and we need only evaluate the residues of B−1

p , which we shall denote by

Res
{

B−1
p , pi

}

. The residue theorem [15, Theorem A.9.1] applied to the contour CR yields
from (55)

‖B−1
p − 1‖2

L2
= −

m
∑

i=1

Res
{

B−1
p , pi

}

.

An identity from [36, p. 122] shows that ‖B−1
p − 1‖2

L2
= Res

{

B−1
p ,∞

}

, where Res
{

B−1
p ,∞

}

is equal to the coefficient of ζ in the power series expansion of B−1
p (1/ζ) about ζ = 0 [28,
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p. 233]. Setting s = 1/ζ in (15) and expanding each term in the product in powers of ζ yields
B−1

p (1/ζ) =
∏m

i=1(1 + 2 Re {pi} ζ + ζ2|pi|2 + O(ζ3)), and thus ‖B−1
p − 1‖2

L2
= 2
∑m

i=1 Re {pi}.

It remains to evaluate the second term on the RHS of (54). Factor N(s) = Bz(s)Nm(s), where
Bz(s) is the Blaschke product (20) and Nm is the minimum phase factor of N. Decompose
B−1

z (1 − M0Y ) = Γ + Γ⊥, where Γ ∈ H2 and Γ⊥ ∈ H⊥
2 . Because Blaschke products are

all-pass,

inf
Q∈H∞

‖1 − M0Y + M0NQ‖2
H2

= inf
Q∈H∞

‖B−1
z (1 − M0Y ) + M0NmQ)‖2

L2

= ‖Γ⊥‖2
H⊥

2
+ inf

Q∈H∞

‖Γ + M0NmQ‖2
H2

. (56)

By construction, M0 and Nm are minimum phase. Hence the second term on the RHS of (56)
can be set to zero using Q = −Γ/M0Nm, where Q has no C+ poles but may be improper
and will have poles on the jω axis if G has either poles or zeros there. In that case, a
construction from [37, Lemma 10, p. 171] may be used to find an approximation Qε ∈ H∞

such that ‖Γ + M0NmQε‖2
H2

< ε for an arbitrary ε > 0.

The final step in the proof is to compute ‖Γ⊥‖2
H⊥

2

in (56). To do so, note that the C+ poles

of Γ⊥ are precisely the NMP zeros of G. Since these are assumed distinct, we consider the
partial fraction expansion7 Γ⊥(s) =

∑q
`=1

γ`

(s−z`) , where γ` , Res
{

B−1
z , z`

}

(1 − M0(z`)Y (z`)).

It is straightforward to show that Res
{

B−1
z , z`

}

= 2 Re {z`}
∏q

k=1
k,`

z`+z̄k
z`−zk

, and it follows from

the Bezout identity that M0(z`)Y (z`) = B−1
p (z`). Hence γ` satisfies (18). The residue theorem

applied to a clockwise contour implies that

‖Γ⊥‖2
H⊥

2
= −

q
∑

`=1

Res
{

Γ⊥(s)Γ̄⊥(−s), z`

}

, (57)

where Res
{

Γ⊥(s)Γ̄⊥(−s), z`

}

= γ`
∑q

k=1
−γ̄k

z`+z̄k
. Summing the last expression over ` and sub-

stituting into (57) shows that ‖Γ⊥‖2
H⊥

2

= η, defined in (17). ¤

.3 Proof of Theorem 3.1

Following the idea of the proof in Appendix .1, we translate (26) into the problem: find a state
feedback vk = −Kdxk to minimize the cost J(x0) =

∑∞
k=0 u2

k and such that the system xk+1 =
Adxk + Bdvk be asymptotically stable, with x0 = Bd . The corresponding control signal is uk =
−Kd(Ad−BdKd)k Bd , which by Parseval yields J(Bd) = 1

2π

∫ π

−π
|Kd(e jθI−Ad +BdKd)−1Bd |2 dθ.

Then, from (24), Tsf
d (z) = Kd(zI − Ad + BdKd)−1Bd , and thus J(Bd) = ‖Tsf

d ‖2
H2

.

Assuming temporarily that Ad has no eigenvalues on the unit circle, let Ad and Bd be given in
the modal form Ad =

[

As 0
0 Au

]

, B =
[

Bs
Bu

]

, where As and A−1
u are Schur. Because (Ad , Bd , Cd)

is minimal, the pair (Au, Bu) is controllable and the minimum energy stabilization problem
has a well defined solution K = (1 + B ′SB)−1 where S is the unique symmetric and positive
semi-definite solution of the discrete algebraic Riccati equation 0 = A ′

dSAd −S −A ′
dSBd(1 +

7. This is the only place where the assumption of distinct zeros is used. If it does not apply, then the partial
fraction expansion may be modified accordingly.
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B ′
dSBd)−1B ′

dSAd . It can be shown that S has the form S = diag{0, Su}, where Su is the
unique symmetric and positive definite solution of the reduced order discrete algebraic Ric-
cati equation

A ′
uSuAu − Su − A ′

uSuBu(1 + B ′
uSuBu)−1B ′

uSuAu. (58)

Then the minimum energy state feedback gain is given as Kd = [ 0 (1+B′
uSuBu)−1B′

uSuAu ] and
yields the closed loop spectrum

σ {Ad − BdKd}

= σ
{

[

As 0
0 Au

]

−
[

0 Bs (1+B′
uSuBu)−1B′

uSuAu

0 Bu(1+B′
uSuBu)−1B′

uSuAu

]}

= σ {As} ∪ σ
{

Au − Bu(1 + B ′
uSuBu)−1B ′

uSuAu

}

= σ {As} ∪ σ
{

S−1
u A ′

u
−1Su

}

= σ {As} ∪ σ
{

A−1
u

}

, (59)

which follows from (58).

On the other hand, by the Matrix Inversion Lemma we have that Ad − BdKd = Ad − Bd(1 +
B ′

dSBd)−1B ′
dSAd = (I+BdB ′

dS)−1Ad , which together with (59) implies that det{As} det
{

A−1
u

}

=

det
{

(I + BdB ′
dS)−1Ad

}

= (1 + B ′
dSBd)−1 det{As} det{Au}. Hence (1 + B ′

dSBd) = det{Au}2 ⇔
J(Bd) = B ′

dSBd =
(

∏m
i=1 |φi|2

)

− 1, completing the proof.

If Ad has eigenvalues on the unit circle, it can be argued (as in Appendix .1) that although
the minimum energy solution does not stabilize the eigenvalues on the unit circle, they do
not contribute to the cost and can be stabilized by an approximate solution that incurs a cost
arbitrarily close to that of the minimum energy solution. ¤

.4 Proof of Theorem 3.2

We proceed as in the proof of the continuous-time result in Appendix .2, and consider the
function spaces L2(D), H2(D), H⊥

2 (D), and H∞(D), whose stability region is the open unit
disk. Introduce a coprime factorization Gd = N/M, and the parametrization of all stabilizing
controllers Kd = (X + MQ)/(Y − NQ), where X and Y satisfy the Bezout identity, NX +
MY = 1. It follows that Td = 1 − M(Y − NQ). Further factorize M = BφM0, where Bφ is
the Blaschke product (31). It follows from the Bezout identity that B−1

φ
and M0Y have power

series expansions at infinity of the form

B−1
φ

(z) =
∞
∑

k=0

βk z−k ,

M0(z)Y (z) =
r−1
∑

k=0

βk z−k +
∞
∑

k=r

αk z−k ,

(60)
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where βk is defined by (32). Since Bφ is all-pass of unit magnitude, B−1
φ

∈ H⊥
2 , N has relative

degree r , and the set {z−k ; k = 0, . . . ,∞} forms an orthonormal basis for H2, it follows that

‖Td‖2
H2

=
∥

∥

∥

∥

B−1
φ

− M0Y + M0NQ
∥

∥

∥

∥

2

L2
=
∥

∥

∥

∥

∥

B−1
φ

(z) −
r−1
∑

k=0

βk z−k
∥

∥

∥

∥

∥

L2

+
∥

∥

∥

∥

∥

−
∞
∑

k=r

αk z−k + M0(z)N(z)Q(z)
∥

∥

∥

∥

∥

2

H2

. (61)

The first term on the RHS of (61) may be further decomposed as

∥

∥

∥

∥

∥

B−1
φ

(z) −
r−1
∑

k=0

βk z−k
∥

∥

∥

∥

∥

L2

=
∥

∥

∥

∥

B−1
φ

(z) − β0

∥

∥

∥

∥

2

L2
+
∥

∥

∥

∥

∥

r−1
∑

k=1

βk z−k
∥

∥

∥

∥

∥

2

L2

. (62)

Orthonormality of the functions {z−k} implies that the second term on the RHS of (62) is
equal to

∑r−1
k=1 |βk |2. The first term on the RHS of (62) may be evaluated by using the residue

theorem applied to a contour, C, consisting of the unit circle traversed counterclockwise (cf.
similar manipulations in Appendix .2):

‖B−1
φ

(z) − β0‖2
L2

=
1

2π

∫ π

−π

(

B−1
φ

(e jθ) − β0
)(

B−1
φ

(e−jθ) − β0
)

dθ

=
1

2πj

∮

C

(

B−1
φ

(z) − β0
)(

B−1
φ

(z−1) − β0
)

z−1 dz

=
1

2πj

∮

C

(

β2
0 − β0Bφ(z)

)

z−1 dz

= β0 Res
{

(

β0 − Bφ(z)
)

z−1,∞
}

It is straightforward to verify that β0 = (−1)m∏m
i=1 φi . The coefficient of ζ in the expansion of

ζBφ(ζ−1) near ζ = 0 is equal to 1/β0, and thus, since complex poles appear in conjugate
pairs, ‖B−1

φ
(z) − β0‖2

L2
=
∏m

i=1 |φi|2 − 1. This proves that ‖Td‖H2 is equal to the sum of two

terms that do not depend on the controller,
∑r−1

k=1 |βk |2 +
∏m

i=1 |φi|2 − 1, plus the second term
on the RHS of (61), which may be minimized by choice of Q .

Denote the Blaschke product of nonminimum phase plant zeros by Bζ (z) =
∏q

k=1(z−ζk )/(1−
zζ̄k ), factorize N(z) = Nm(z)Bζ (z), and define

B−1
ζ

(z)
∞
∑

k=r

αk z−k = Γ (z) + Γ⊥(z), (63)

where Γ (z) ∈ H2(D) and Γ⊥(z) ∈ H⊥
2 (D). The second term on the RHS of (61) reduces to

∥

∥

∥

∥

∞
∑

k=r

αk z−k + M0(z)N(z)Q(z)
∥

∥

∥

∥

2

L2
=
∥

∥

∥

∥

B−1
ζ

(z)
∞
∑

k=r

αk z−k + M0(z)Nm(z)Q(z)
∥

∥

∥

∥

2

L2

= ‖Γ⊥‖2
H⊥

2
+ ‖Γ + M0NmQ‖2

H2
. (64)
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Since Nm has relative degree r and M0 has relative degree zero, it follows that if Gd has no
poles or zeros on the jω axis, then the second term on the RHS of (64) may be set equal to
zero by defining Q = −Γ/M0Nm ∈ H∞(D). If such zeros are present, then the technique of
[37] used in Appendix .2 may be modified to construct an approximation to Q .

The final step in the proof is to compute ‖Γ⊥‖2
H2

in (64). The D̄{ poles of Γ⊥ are precisely the

NMP zeros of Gd . Since these are assumed distinct, introduce the partial fraction expansion8

Γ⊥(z) =
∑q

`=1
γ`

z−ζ`
, where γ` is the residue of Γ⊥ at z`. It follows from (60), (63), and the

Bezout identity that

γ` = Res
{

B−1
ζ

, ζ`

}

















B−1
φ

(ζ`) −
r−1
∑

k=0

βkζ−k
`

















. (65)

It is easy to show that Res (B−1
ζ

ζ`) = (1− |ζ`|2)
∏q

k=1
k,`

1−ζ`ζ̄k
ζ`−ζk

. The residue theorem applied to

the unit circle traversed clockwise implies that

‖Γ⊥‖2
H⊥

2
= −

q
∑

`=1

Res
{

z−1Γ⊥(z)Γ̄⊥(z−1), ζ`

}

, (66)

where Res
{

z−1Γ⊥(z)Γ̄⊥(z−1), ζ`

}

=
∑q

i=1
γ`γ̄i

1−ζ`ζ̄i
. The last expression together with (65) and

(66) imply that η in (34) has the stated form. ¤
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