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ARC Centre for Complex Dynamic Systems and Control, The University of Newcastle, Callaghan, NSW, 2308, AUSTRALIA.

Abstract

In this paper, a non-stationary errors-in-variables (EIV) model estimation method is proposed and applied to the problem
of model estimation for noise-cancellation in transient electromagnetic mineral exploration. Alternative methods for noise
cancellation in these systems rely on specific signal characteristics, and are thus less readily transferable to other applications.
The proposed method produces a model that agrees well with those obtained by alternative methods and has similar noise
cancellation performance. This is shown by performance comparisons on experimental data.
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1 Introduction

This paper is concerned with identifiability and model
estimation for a class of non-stationary errors-in-
variables systems. An estimation method for this class
of systems is proposed and applied to a problem arising
in mineral exploration.

An errors-in-variables (EIV) system is one in which both
the input and output are subject to measurement noise.
A typical EIV system is shown in Fig. 1. From the figure,
we have

u(k) = u0(k) + n1(k), (1)

y(k) = y0(k) + n2(k), (2)

where u(k) and y(k) are the measured input and out-
put, u0(k) and y0(k) are the true input and output, and
n1(k) and n2(k) are the measurement noise sequences.
The transfer function from u0(k) to y0(k) is denoted by
Go(z).

We introduce the following notation. Let x and z be two
signals. Then Φxx(ω) denotes the (auto) power spectral

Email addresses: K.Lau@newcastle.edu.au (K. Lau),
Julio.Braslavsky@newcastle.edu.au (J. H. Braslavsky),
Juan.Aguero@newcastle.edu.au (J. C. Agüero),
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Fig. 1. An errors-in-variables system.

density (PSD) of x and Φxz(ω) denotes the cross power
spectral density (CPSD) x and z. We refer to PSDs and
CPSDs, collectively, as spectra. A ‘hat’ ˆ is use to denote
an estimated quantity (e.g., Ĝ(ejω), Φ̂uy(ω)).

The presence of errors-in-variables has implications for
model estimation. For example, it is known that ignoring
the noise on the input may lead to biased estimates of the
model. It is also known that EIV systems are in general
not uniquely identifiable from second order properties.
These two topics are discussed in more detail below.

We first discuss estimation bias. Consider the estimate
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of the frequency response given by

Ĝnaive(e
jω) =

Φ̂yu(ω)

Φ̂uu(ω)
. (3)

We assume that Φ̂yu(ω) and Φ̂uu(ω) are consistent esti-
mates of Φyu(ω) and Φuu(ω). The estimate given by (3)
is known as the unrealisable Wiener filter (Söderström,
2002). Here, we refer to this method of estimating the
frequency response as the ‘naive method’ (as it implic-
itly ignores the noise on the input). We observe that

Φyu(ω)

Φuu(ω)
=

Go(e
jω)Φu0u0

(ω)

Φu0u0
(ω) + Φn1n1

(ω)
. (4)

Equation (4) (together with the assumption of consistent

spectral estimates) implies that the estimate Ĝnaive(e
jω)

is asymptotically unbiased if and only if Φn1n1
(ω) = 0

i.e., there is no measurement noise on the input. When
this is not the case, the method yields a biased estimate.
Furthermore, since Φu0u0

(ω) > 0 and Φn1n1
(ω) > 0,

then we see from the above equation that the naive
method under-estimates the gain.

We now discuss the problem of identifiability. It is well
known that EIV models are not generally identifiable
from second order properties (Agüero and Goodwin,
2008b) when the noise parameters are unknown. By this
we mean that EIV systems cannot be uniquely deter-
mined using only knowledge of the input and output
spectra. The identifiability problem can be resolved by
imposing additional assumptions (e.g., knowledge of the
ratio of the noise variances). A recent review of EIV
identification techniques, and the assumptions required
in each case is given in Söderström (2007).

The analysis of identifiability is closely related to model
estimation because identifiability is often established by
constructing an algorithm for inferring the model from
the (true) input and output spectra. An estimation
method (algorithm) can then be obtained by substitut-
ing estimates of the spectra for the true spectra.

The identifiability of stationary EIV dynamic systems
has been studied in Anderson and Deistler (1984); An-
derson (1985); Deistler (1986) under very general condi-
tions. Related results are also given in Agüero and Good-
win (2008b). The use of non-stationary data to resolve
identifiability has a long history for the static case (Wald,
1940). More recently, Markovsky et al. (2006) have ex-
tended the idea to special cases of the dynamic problem.
These results are also discussed in Söderström (2007).

In this paper, we consider a class of (non-stationary)
errors-in-variables system in which the spectra of the
input and output changes with time. We first establish
conditions for identifiability and then propose a model
estimation method.

The motivation for the work presented here is a problem
encountered in transient electromagnetic (TEM) min-
eral exploration. The problem is to estimate a model
for use in noise cancellation. In this application, errors-
in-variables arise because the input is measured in the
presence of noise. The current authors in a recent paper
(Lau et al., 2007) proposed a method for mitigating the
effect of EIV by utilising specific knowledge of the input
signal characteristics. However, these characteristics are
problem specific and thus the associated approach is not
readily transferable to other applications.

In this paper, we apply the proposed method to the prob-
lem of estimating a model for the application described
above. The results are validated against models found
using two independent methods (including the one pro-
posed in Lau et al. (2007)). It is shown that the estimated
response found by the method proposed here agrees well
with those found using the alternative methods. In ad-
dition, the fitted model performs equally well when used
for noise cancellation. This indicates that the method
can be successfully applied in this case, and suggests that
the approach could be useful in other EIV applications.

The layout of the remainder of the paper is as follows: In
Sect. 2, we provide background information on TEM sur-
veying and sferics noise. Then, in Sects. 3 and 4, we in-
troduce the EIV problem and present the non-stationary
EIV method that we will subsequently deploy. We also
provide the identifiability result on which the proposed
method is based. We apply the EIV method and vali-
date the estimated models in Sect. 5. Conclusions are
drawn in Sect. 6. A preliminary version of these results
was presented in Lau et al. (2008).

2 Background to TEM Surveying and Sferics

2.1 TEM surveying

Transient electromagnetic surveying (also known as
time-domain electromagnetic surveying) is a technique
used in mineral exploration to detect underground
conductive ore bodies by the induction and detection
of electromagnetic (EM) fields (Kearney et al., 2002).
Here, we will be concerned with ground-based tran-
sient electromagnetic (TEM) surveying using a system
known as GeoferretTM(Carter, 2005). Fig. 2 shows a
typical system configuration for TEM surveying using
this system.

The typical operation of a TEM surveying system con-
sists of two phases: firstly, the transmission of a primary
field, during which no measurements are made, and sec-
ondly, after the transmitter is switched off, the detec-
tion of the secondary field response (i.e., the transient
response) of the earth. To generate the primary field, a
pulsed current waveform is passed through a loop or coil
of wire (the transmitter), which is laid on the surface of
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the area to be surveyed. The time-varying primary field
induces (eddy) currents in the ground beneath the trans-
mitter, which in turn induce currents at greater depths in
conductive ore bodies, if present. The induced currents
produce a secondary magnetic field which decays when
the transmitter is switched off (in between the current
pulses). The vertical component of the decaying field is
measured by an array of receiving antennae (sensors) on
the surface of the earth. The magnitude and rate of de-
cay of the field depends on the electrical conductivity of
the ground, and, through posterior signal processing, al-
lows the identification and location of target ore bodies
at depths of up to 500 m.

Induced eddy currents

Conductive ore body

Transmitter loop

Primary field

Receivers

Secondary field

Transmitter loop

Receivers

Conductive ore body

Fig. 2. Typical ground-based TEM surveying system config-
uration. (Top) A primary field is first generated by passing
a pulsed current waveform through a loop of wire. (Bottom)
The primary field induces currents in the earth which, in
turn, produce a secondary magnetic field. An array of sensors
is used to measure the transient response of the (decaying)
secondary field in between the current pulses.

We consider a system in which the transmitter loop is
of the order of 1 km2 in area, and the receiving anten-
nae have a diameter of approximately 1 m. The anten-

nae spacing is typically 50–100 m. The periodic current
waveform which is injected into the transmitter consists
of a series of square pulses of alternating sign. The am-
plitude of the current pulses is approximately 20 A, and
the magnitude of the primary field at the centre of the
transmitter loop is approximately 7 nT. The secondary
field at different locations is measured using a number
of receiving antennae. The measured data is then inter-
preted to obtain a geological model which is consistent
with the data.

A more detailed description of TEM surveying can be
found in Nabighian and Macnae (1991) and Geophysical
Exploration for Engineers (U.S. Army (1998)).

2.2 Sources of noise

In TEM surveying, the useable detection depth and the
types of minerals which can be detected are dependent
on the signal-to-noise ratio. Hence, it is of interest to
reduce the amount of noise. Sources of noise include in-
strument noise, environmental noise and harmonic dis-
turbances (including 50 Hz power line interference). An-
other source of noise is ‘wind noise’, i.e., low frequency
(< 10 Hz) noise due to small movements of the antenna
relative to the (static) magnetic field of the earth. In the
next section, we describe an important source of envi-
ronmental noise referred to as ‘sferics’.

2.3 Sferics noise

One of the major sources of noise in the detection of deep
underground ore bodies is sferics: environmental EM ra-
diation that dominates receiver instrument noise in some
environments (such as close to the equator, where thun-
derstorms frequently occur). Sferics (short for ‘atmo-
spherics’) originate from the EM radiation produced by
lightning strikes. These EM signals can travel thousands
of kilometres through the space between the earth and
the ionosphere, which acts as a waveguide. Hence, lo-
cal and distant lightning storms contribute to the sferics
noise measured at any single point.

Sferics noise can be divided into two groups; local (near-
field) and distant (far-field). Local sferics noise consists
of large, infrequent, bursts of short pulses. (It is impul-
sive and is non-stationary in nature.) Fig. 3 shows a large
measured sferic occurring at approximately 0.002 s. Dis-
tant sferics noise may be characterised as coloured noise.
It has been estimated that there are approximately 44±5
lightning strikes per second worldwide (Christian et al.,
2003). Thus, distant sferics noise consists of many small
pulses and can be considered to be quasi-stationary. The
spectrum of sferics noise is concentrated in the 1–500 Hz
and 2.5–10 kHz frequency bands. The dip in the spec-
trum between 500 Hz and 2.5 kHz is due to the attenua-
tion of the earth-ionosphere waveguide at these frequen-
cies.
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Fig. 3. A measured large sferic.

3 Sferics Noise Cancellation and EIV

One way of reducing the effect of sferics is to perform
noise cancellation from one receiving antenna to another.
We refer to these antennae, respectively, as the reference
antenna and the output antenna. The reference antenna
is placed at a remote location, so that the effect of the
transmitted signal is negligible. The technique utilises
the fact that the sferics measured at different locations
are affected by local geological conditions but are corre-
lated.

In order to perform noise cancellation one needs to find
a model relating the sferics measured at the reference
and output antennae. We do this by estimating a model
from ‘noise-only’ measurements taken at the two anten-
nae with the transmitter turned off. In this context, the
components of the measurements due to sferics noise are
considered to be the true signals, and the rest of the com-
ponents are considered to be measurement noise. The
system can be formulated as an EIV system of the form
shown in Fig. 1 with the following signal definitions:

u measured signal at the reference antenna

u0 the sferics component of u

n1 the non-sferics components of u

y measured signal at the output antenna

y0 the sferics component of y

n2 the non-sferics components of y

Fig. 5 in Sect. 5 shows some typical power spectral den-
sities (PSDs) for noise-only measurements collected us-
ing the Geoferret system. We observe that there is a
large noise mound between approximately 10 and 600
Hz. This part of the spectrum can be attributed to sfer-

ics noise. The size of the mound varies with time due to
the non-stationarity of local sferics.

Here, we focus on reducing the noise spectrum between
10 and 600 Hz for the following reasons:

• It is known from the literature (see Sect. 2.3) that
sferics have significant power in this frequency band.

• We are particularly interested in the cancellation of
noise at low frequencies, which are the most relevant
to the detection of the response from target ore bodies.

We concentrate on the reduction of the ‘baseline’ noise
spectrum, not the harmonic components. The latter
components can be removed separately.

We can verify that medium- to near-field sferics make
a significant contribution to the baseline noise between
10 and 600 Hz by filtering the signal to remove the har-
monic disturbances (Sect. 2.3) and the components out-
side this frequency range. The resultant signal corre-
sponds to the baseline component of the noise in the 10
to 600 Hz frequency band. Fig. 4 shows the filtered ver-
sion of the sferic from Fig. 3. It can be seen that, in the
above frequency band, the sferics pulse is large relative
to the measurement noise.
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Fig. 4. Filtered version of the sferic in Fig. 3.

4 The Non-Stationary EIV Method

In this section, we consider a class of EIV systems in
which the data exhibit two different behaviors on two
non-overlapping time intervals. The EIV system associ-
ated with the sferics noise cancellation problem belongs
to this class of systems because the sferics signal is non-
stationary. We first analyze identifiability and then pro-
pose an estimate obtained from this analysis. A prelim-
inary version of these results was presented in the con-
ference paper Agüero and Goodwin (2008a).
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In the discussion that follows, we refer to the two be-
haviors (time intervals) as scenario A and scenario B.
We also use the subscripts ‘A’ and ‘B’ to denote signals
corresponding to scenarios A and B, respectively.

We assume that each scenario can be modelled as follows:

yi(t) = Goiuoi(t) + n2i(t)

ui(t) = uoi(t) + n1i(t) (5)

where the index i ∈ {A, B} represents the corresponding
scenario.

We also assume the following:

Assumption 1 The input-output spectra for both sce-
narios, A and B, are available.

We now present a theorem which analyzes the identifi-
ability of an EIV system, of the type given in (5), from
data obtained from two scenarios. The theorem uses sub-
sets of the following additional assumptions:

Assumption 2 The process is the same for both scenar-
ios: Go A = Go B = Go.

Assumption 3 The input noise spectrum is the same
for both scenarios: Φn1An1A

(ω) = Φn1Bn1B
(ω) = Φ1.

Assumption 4 The output noise spectrum is the same
for both scenarios: Φn2An2A

(ω) = Φn2Bn2B
(ω) = Φ2.

Assumption 5 The input uo has the same second
order properties for every experiment: Φu0Au0A

(ω) =
Φu0Bu0B

(ω) = Φ0.

Theorem 6 The EIV system given in (5) is identifiable
from data coming from two different scenarios, A, and
B, if any of the following conditions hold:

(i) Assumptions 1, 2 and 3 hold, and Φu0Au0A
(ω) 6=

Φu0Bu0B
(ω) (a.e.),

(ii) Assumptions 1, 2 and 4 hold, and Φu0Au0A
(ω) 6=

Φu0Bu0B
(ω) (a.e.),

(iii) Assumptions 1, 4 and 5 hold, and Go A 6= Go B

(a.e.),

(iv) Assumptions 1, 3, 4 hold, and Φ̃uΦ̃y < 0, ∀ω,

where Φ̃u = ΦuAuA
(ω) − ΦuBuB

(ω)

and Φ̃y = ΦyAyA
(ω) − ΦyByB

(ω),

where a.e. stands for almost everywhere.

PROOF. Our strategy will be to retrieve Go i from the
input and output PSDs and CPSD from both scenar-
ios A and B. Once Go i has been obtained Φu0 iu0 i

(ω),

Φn1 in1 i
(ω), Φn2 in2 i

(ω), i = A, B can be retrieved as fol-
lows:

Φ̂u0 iu0 i
(ω) =

Φyiui
(ω)

Go i

(6)

Φ̂n1 in1 i
(ω) = Φuiui

(ω) − Φ̂u0 iu0 i
(ω) (7)

Φ̂n2 in2 i
(ω) = Φyiyi

(ω) − |Ĝo i|
2Φ̂u0 iu0 i

(ω) (8)

(i) In this case we have that Go and Φn1n1
(ω) are the

same for both scenarios. Then, the input-output and in-
put spectrum for the two scenarios are given by:

Φyiui
(ω) = GoΦu0 iu0 i

(ω), Φuiui
(ω) = Φu0 iu0 i

(ω) + Φ1

Thus, we have that Go can be retrieved as follows

Go =
ΦyAuA

(ω) − ΦyBuB
(ω)

ΦuAuA
(ω) − ΦuBuB

(ω)
(9)

Notice that we need ΦuAuA
(ω) 6= ΦuBuB

(ω) (or equiv-
alently Φu0Au0A

(ω) 6= Φu0Bu0B
(ω)) almost everywhere

(a.e.). The proofs of (ii), (iii) and (iv) are given in Agüero
and Goodwin (2008a). 2

In the case of the sferics model estimation problem, the
sferics signal (u0) is non-stationary, but the process and
the noise spectra do not change with time. Thus from
condition (i) of the above Theorem, the system is iden-
tifiable provided that Φu0Au0A

(ω) 6= Φu0Bu0B
(ω) (a.e.).

It then follows from Equation (9) that an estimate of Go

is given by

ĜEIV(ejω) =
Φ̂yAuA

(ω) − Φ̂yBuB
(ω)

Φ̂uAuA
(ω) − Φ̂uBuB

(ω)
. (10)

In the following sections, we explore the use of estimate
(10) as a model for sferics noise cancellation.

5 Application of the Non-stationary EIV
Method to Model Estimation for Sferics Noise
Cancellation

In this section, we use the non-stationary EIV method
described above to estimate the model from a reference
antenna to an output antenna.

The method is tested using two 60 s intervals of (experi-
mental) data that have noticeable differences in spectra.
For this experiment, the distance between the reference
and output antennae was approximately 4 km. The data
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was sampled at a rate of 25 kHz. We let uA and yA cor-
respond to the first interval of the data and let uB and
yB correspond to the second interval.

Fig. 5 shows the PSDs of uA, uB, yA and yB. It can be
seen that there is a difference in the PSDs for sections
A and B of the data in the region of interest (i.e., the
mound between 10 and 600 Hz). As mentioned in Sect. 3,
this is due to the non-stationary nature of local sferics.

Fig. 6 shows the magnitude of the estimated frequency
response when the non-stationary EIV method (Equa-
tion (10)) is used to calculate the response. The response
is shown between 10 and 600 Hz. The figure also shows
the biased estimate Ĝnaive(e

jω) obtained by ignoring the
measurement noise on the input and using (3) to esti-
mate the response. From the figure, it can be seen that
the EIV and naive methods yield very different frequency
responses. In particular, the magnitude of the naive es-
timate is less than the magnitude of the EIV estimate
(at most frequencies). This is consistent with the obser-
vation, made in the introduction, that the naive method
under-estimates the gain. In the sections that follow, we
confirm that the EIV method results in a better model
of the system.

We notice that, in Fig. 6, the estimate using the non-
stationary EIV method has a much larger variance than
the biased (naive) estimate. This is due to the ratio cal-
culated in (10) and due to harmonic components. The
EIV method assumes that the CPSDs and PSDs of the
harmonic components in sections A and B of the data
cancel exactly. If the harmonics are large, then small er-
rors in the cancellation can result in large errors in the
estimated gain. Since the harmonic disturbances appear
as outliers in the (C)PSDs, we remove them by apply-
ing a median filter (a form of outlier rejection) to the
(C)PSDs. We then fit a first order biproper model (rel-
ative degree 0) to the resulting frequency response.

5.1 Comparison to a model found using time and fre-
quency selectivity

Fig. 7 shows the estimated frequency responses (with the
outliers removed) for the EIV and naive methods. The
responses of the fitted first order models are also plot-
ted. We validate these responses against a model found
using the approach described in Lau et al. (2007) and
summarised below. It is clear that the non-stationary
EIV method provides a model which is closer to the val-
idation model than the model obtained using the naive
method.

The validation model is found by exploiting time and
frequency selectivity to isolate a part of the input with
a high signal to noise ratio. The procedure can be sum-
marised as follows: A filter with a passband between 10
and 600 Hz and notches at the harmonic frequencies is
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Fig. 5. PSDs of the signals used to estimate the frequency
response using the non-stationary EIV method. (Top) PSDs
of uA and uB . (Bottom) PSDs of yA and yB .
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Fig. 6. Estimated frequency responses (magnitude only) us-
ing the non-stationary EIV and naive methods.

applied to the input and output data. In the filtered
signals, the sferics appear as large pulses which stand
out from the filtered noise. We fit a model to a ‘marked
sferic’, a short section of the filtered data containing a
large sferic (and hence, a high signal to noise ratio). An
example of a marked sferic is given in Fig. 4. We refer
to this method of finding a model as the ‘marked data’
method. More details can be found in Lau et al. (2007).
As noted in the Introduction, this validation method
uses specific knowledge regarding this particular appli-
cation.
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Fig. 7. Comparison of the frequency responses (magnitude
and phase) found using the non-stationary EIV and naive
methods to the model found using marked data. The es-
timated responses with outlier rejection and the responses
of the fitted models for the non-stationary EIV and naive
methods are shown.

5.2 Comparison to a model found using an independent
output measurement

For a second validation test we utilise measurements
from an independent output antenna. Let v(k) be the
measured output, v0(k) be the true output, n3(k) be the
measurement noise, and Gv(z) be the transfer function
from u0(k) to v0(k). We have

v(k) = v0(k) + n3(k).

It can be easily shown that, if Φ̂yv(ω) and Φ̂uv(ω) are
consistent estimates of the corresponding CPSDs, then
an unbiased estimate of Go(e

jω) is given by

Ĝindep(e
jω) =

Φ̂yv(ω)

Φ̂uv(ω)
. (11)

We refer to this method as the independent output
method.

The frequency responses obtained using the non-
stationary EIV method and independent output method

are compared in Fig. 8. We again see that responses
found using the EIV method agree well with the valida-
tion method.

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

f (Hz)

M
a

g
n

it
u

d
e

 

 

non−stat EIV

non−stat EIV fit

indep output

indep output fit

10
0

10
1

10
2

10
3

10
4

90

120

150

180

210

240

270

f (Hz)

P
h

a
s
e

 (
d

e
g

)

Fig. 8. Comparison of the frequency responses (magnitude
and phase) found using the non-stationary EIV method and
the independent output method. The estimated frequency
responses with outlier rejection and the responses of the
fitted models for the two methods are shown.

5.3 Comparison of noise cancellation performance

For a final validation test, we compare the noise cancel-
lation performance of the models found using all four
methods described above (non-stationary EIV, naive,
marked data and independent output). The test is per-
formed on a collection of marked sferics taken from a
different set of data to that used for fitting the models.
The procedure used to obtain each of the marked sfer-
ics is the same as that outlined in Sect. 5.1. The sfer-
ics are selected using a simple thresholding method (fil-
tered sferics with a peak amplitude greater than a cho-
sen threshold are selected).

Noise cancellation is performed by feeding marked sferics
obtained at the reference antenna through the models to
generate estimates of the marked sferics at the output
antenna. The results are illustrated in Figs. 9 to 11. Fig. 9
shows the measured and estimated filtered outputs, and
the residual errors for a single marked sferic. Fig. 10
shows the measured filtered output and residual errors
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for the collection of marked sferics. The residual errors
are offset from zero to separate the plots. The figures
show that the residual errors for the non-stationary EIV,
marked and independent output methods are similar in
size, and are noticeably smaller than the residual error
for the naive method. Fig. 11 shows the PSDs of the
signals shown in Fig. 10, and confirms that the model
found using the EIV method performs in a comparable
fashion to the two validation models. All three of these
models provide a significant reduction in the sferics noise
mound.
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Fig. 9. Measured output, estimates of the output (top) and
residual errors (bottom) for a single marked sferic.
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residual errors when the fitted models are used for noise
cancellation. The residuals are offset from zero to separate
the plots.
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6 Conclusion

This paper has presented and applied a non-stationary
errors-in-variables (EIV) model estimation method.
The method has been validated by comparing its per-
formance with two other methods (marked data, and
independent output) which exploit specific features of
the transient electromagnetic problem and are thus
difficult to translate to other problems.

All three methods (i.e., non-stationary EIV, marked
data and independent output) have been compared
with a naive method which ignores the EIV issue and
have been shown to yield superior performance for the
intended noise cancellation problem.
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