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Abstract: In heap bioleaching, metal is dissolved from ore by a percolating solution,
catalysed by naturally occurring bacteria. Increased interest in the technology motivated
the development of accurate models of such process in recent years. In contrast, the
utilisation of such models for control has received limited attention, given their high
mathematical complexity. This paper presents a low complexity model aimed as the
basis for control design. The model parameters are estimated using least squares on data
generated by a high complexity, experimentally validated model provided by BHP Billiton
Innovation. Simulation results indicate significant potential of the approach.
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1. INTRODUCTION

Mineral leaching is a mining technology based on
the dissolution of minerals by a percolating liquid.
Although the leaching technology has been known for
centuries, it has received greater attention in recent
years as a potential lower-cost, more environmentally
acceptable alternative to competing technologies such
as pyrometallurgy (Barret et al., 1993). In mineral
leaching of copper ores, naturally occurring bacteria
often act as a catalytic agent in the process, signifi-
cantly enhancing the conversion of metal compounds
into their water soluble forms. In such cases, we refer
to the process as mineral bioleaching.

Despite the successful operation of stand-alone heap
bioleaching facilities around the world, the technology
has been characterised by lower than expected pro-
duction rates and longer than expected start up times
(Lizama, 2004). Thus, the interest of mining compa-
nies in developing control and optimisation strategies
to improve the technology has increased, leading to
greater research efforts to understand the mechanisms
that make the process work.

In the last decade, many studies have appeared dis-
cussing mathematical modelling aspects of the pro-
cess such as oxidation, bacterial growth, tempera-

ture, and chemical reaction dynamics (e.g., G.Pantelis
and A.I.M.Ritchie, 1992; Dixon, 2000; Peterson and
Dixon, 2003). However, although these studies can
explain the sub-processes involved in bioleaching with
great accuracy, the available models are characterised
by a high mathematical complexity, which hinders the
task of designing control strategies for the process.

This paper deals with the derivation of low complexity
models for control and optimisation of copper heap
bioleaching processes. A key motivation of our ap-
proach is a fact well known in the area of model
identification for control: very often a relatively sim-
ple model suffices as the basis for successful control
design for complex processes, as long as essential
dynamic aspects of the process are captured by the
model (Gevers, 1993).

This paper reports preliminary results towards the
derivation of such a model. The model, partially de-
rived on first principles, has a nonlinear structure,
but is linear in its parameters, which are estimated
using standard and recursive least squares using data
generated by a high complexity model of a copper
bioleaching process, provided by BHP Billiton Inno-
vation. This high complexity model, which we refer
to as BHPM, has in turn been validated against exper-
imental data. The main components of the proposed



low complexity model (LCM) are the dynamics of
concentrations, arising from the main chemical reac-
tions, dynamics of temperature, and bacteria activity.
Bacteria activity plays an important role in the dy-
namics of the process. We follow ideas suggested in
the paper Dochain and Bastin (1984) for a simplified
parametrisation of bacteria dynamics.

For the estimation of the model parameters, we first
discretise the model using the Euler approximation.
Parameter estimation is then run on this discretised
version. We use a combination of standard least
squares (LS) and recursive least squares (RLS) al-
gorithms, and implement the latter in the form of a
Kalman filter, to tackle the time-varying nature of part
of the structure of the discretised model. Comparative
simulation runs, using data generated by the BHPM,
show a close matching of the LCM predictions, which
indicates potential of the proposed model as a basis for
the design of a control strategy for these processes.

2. THE PROCESS

In copper heap leaching, large heaps of up to several
square kilometres by 6 to 20 metres height of crushed
copper mine tailings are formed. A sulphuric acid
solution, called raffinate, is sprinkled by means of an
arrangement of drip lines at the top of the heap. As the
solution percolates down through the heap, it becomes
enriched by the copper dissolved from the heaped
ore, forming the pregnant leach solution (PLS). The
PLS is then collected at the base of the heap by an
impervious liner and pumped to an electro-winning
extraction plant, which produces cathodic copper. The
residual solution is then recycled as raffinate to the top
of the heap. The process is illustrated in Figure 1.
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Fig. 1. Simplified copper heap leaching process

To tackle the complexity of this process, we start
by considering a single geometric dimension of the
process, namely, the vertical direction, assuming pro-
cess homogeneity in every direction on the horizon-
tal plane. Next, we identify three fundamental sub-
process which are intercoupled. These sub-processes
are: chemical reactions, temperature, and bacterial ac-
tivity. We explain each of these sub-process separately,
obtaining basic dynamic equations for each one.

2.1 Chemical Reactions

One of the typical chemical reactions that take place in
copper bioleaching processes is the conversion of iron
sulphate compounds from ferrous (FeSO4) to ferric
(Fe2(SO4)3) (Barret et al., 1993)

4FeSO4+O2+2H2SO4 → 2Fe2(SO4)3+2H2O . (1)

The reaction (1) is exothermic, and is typically
catalised by the bacteria Thiobacillus ferrooxidans,
which uses the heat generated together with atmo-
spheric oxygen and CO2 for growth. The oxygen and
CO2 are supplied by blowing air through pipes at the
bottom of the heap.

The Fe2(SO4)3 is then available to oxidise Cu2S to
create a CuSO4 solution, via two stages

Cu2S + Fe2(SO4)3 → CuSO4 + 2FeSO4 + CuS
CuS + Fe2(SO4)3 → CuSO4 + 2FeSO4 + S

Then, another bacteria, Thiobacillus thiooxidans, re-
oxides sulphur as follows:

S + 1.5O2 + H2O → H2SO4. (2)

We are interested in modelling concentrations of each
component involved in this sequence of chemical re-
actions. To this end, we formulate mass balance equa-
tions (Luyben, 1990) and for simplicity, we initially
discard water and oxygen concentrations.

The following state vector x and input vector u are
defined as

x =
[

x1 x2 · · · x11

]T
, u =

[

u1 u2 · · · u5

]T

where x1 = V denotes volume [lts]; x2 = CFe S O4 ,
where CFe S O4 denotes concentration in [mol/lts] of
FeSO4; correspondingly, x3 = CH2S O4 , x4 = CFe2(S O4)3 ,
x5 = CCu2S , x6 = CCu S O4 , x7 = CCu S , x8 = CS ,
x9 = T , average temperature in Kelvin degrees; and
x10 = Xth. f and x11 = Xth.t are the bacteria popu-
lations [cells/lts] for Thiobacillus ferrooxidans and
Thiobacillus thiooxidans respectively. In addition, the
input vector u is composed of u1 = Fi the raffi-
nate influx in [lts/h]; u2 = CFe S O4i

, u3 = CH2S O4i
,

u4 = CFe2(S O4)3i
, denotes the input concentration of

each compound; and u5 = Ti is the input average
temperature in Kelvin degrees.

The mass balance gives us the following equations
ẋ1 = u1 − Fo, (3)

ẋ2 =
u1

x1
(u2 − x2) − 4k′1 x2 x3 + 2k2 x4 x5 + 2k3 x4 x7, (4)

ẋ3 =
u1

x1
(u3 − x3) − 2k′1 x2 x3 + k′4 x8, (5)

ẋ4 =
u1

x1
(u4 − x4) + 2k′1 x2 x3 − k2 x4 x5 − k3 x4 x7, (6)

ẋ5 = −
u1

x1
x5 − k2 x4 x5, (7)

ẋ6 = −
u1

x1
x6 + k2 x4 x5 + k3 x4 x7, (8)

ẋ7 = −
u1

x1
x7 + k2 x4 x5 − k3 x4 x7 (9)

ẋ8 = −
u1

x1
x8 + k3 x4 x7 − k′4 x8. (10)



where Fo is the PLS out-flux in [lts/h]. As we have
initially neglected water and oxygen concentrations in
(1) and (2), the kinetics associated to each reaction
must be changed. For example, for the first reaction
given by (1), the reaction kinetic is denoted by k1.
However, as the oxygen has been discarded, then
the concentration of this element is included in a
new kinetic denoted k′1. The same is then done for
the other kinetics (k2, k3, k4) when oxygen or water
concentrations were missing.

Although the kinetics of the chemical reactions in the
same set of equations (4) to (10) theoretically should
be the same, previous estimation tests have shown
that the structure found is insufficient to describe the
process. Thus, we consider these reactions to be de-
coupled, with their own dynamics.

Note that the modified parameters now might not have
physical meaning, and even be negative. However,
since our ultimate objective is to obtain a model for
eventual control purposes, we sacrifice some of the
physical meaning of these parameters in order to keep
the model complexity as low as possible. Then, we
include artificial terms in the equations to compensate
for the missing dynamics. These terms are determined
by iterative simulation runs until the predictions ob-
tained are sufficiently close to the BHPM data. In
summary, from the structure given by equations (3) to
(10), we arrive at the following (modified) LCM

ẋ1 = u1 − Fo, (11)

ẋ2 =
u1

x1
(u2 − x2) − 4k′11x2x3 + 2k31x4x7, (12)

ẋ3 =
u1

x1
(u3 − x3) − 2k′12x2x3 + k′41x8, (13)

ẋ4 =
u1

x1
(u4 − x4) + 2k′13x2x3 − k21x4x5, (14)

ẋ5 = −
u1

x1
x5 − k23x4x5 + k51x5x6 + k61x6, (15)

ẋ6 = −
u1

x1
x6 + k22x4x5 + k62x6 + k71x7, (16)

ẋ7 = −
u1

x1
x7 + k23x4x5 − k32x4x7 + k61x6 (17)

ẋ8 = −
u1

x1
x8 + k72x7. (18)

2.2 Temperature

Effects of temperature in this process has been exten-
sively studied in Peterson and Dixon (2003) and Dixon
(2000). Though these studies can accurately describe
temperature aspects, the mathematics involved is still
very complex. Our approach uses very simple natural
rules from heat generation to obtain a parametrised
model with parameters that can be estimated by a LS
algorithm. Due to the approximations introduced, note
that these parameters, again, might not have a direct
physical meaning, and they might even turn out to be
negative, for the model to fit properly.

Because this process is exothermic, temperature gen-
erated is strongly influenced by the chemical re-

actions. The basic temperature generation for an
exothermic process (Luyben, 1990) is given by

dT
dt
=

Fiρi

Vρ
(Ti − T ) +

QCR

ρVC̄p
, (19)

where ρi is the input density; ρ is the density; and C̄p

is the heat capacity of the heap. Since we suppose that
density is time-invariant, then ρi = ρ.

The term QCR depends on the chemical reactions.
Although there are more than one expression which
explains its dependency on the nature of the chemical
reaction (Perry and Green, 1997), we consider them as
parameters to be estimated.

The last term in (19), QCR/ρVC̄p needs more explana-
tion. The C̄p term is the heat capacity of the section
of the heap considered and ρV is the total mass. Since
C̄p is unknown, we approximate it by an average heat
capacity considering for that the individual heat ca-
pacities of the elements in the heap. That means

ρVC̄p ≈
∑

k

mkC̄pk =

∑

k

C̄pk (WkVCk) = V
∑

k

C̄pk CkWk,

where mk, C̄pk , Ck and Wk are the mass, heat capacity,
concentration and molecular weight of compound k,
respectively.

Since we have four chemical reactions, the heat gen-
erated by all of them is included in QCR as

QCR =
∑

j

QCR j , j = 1, . . . , 4 ,

where the term QCR j is as follows

QCR1 = λ1Vk′1(T )CFe S O4CH2S O4 = γ1 x1 x2 x3

QCR2 = λ2Vk2(T )CCu2S CFe2(S O4)3 = γ2 x1 x4 x5

QCR3 = λ3Vk3(T )CCu S CFe2(S O4)3 = γ3 x1 x4 x7

QCR4 = λ4Vk′4(T )CS = γ4 x1 x8.

The term λi, (i = 1, ., 4) is a constant related to the
nature of the reaction and ki is the modified reaction
rate coefficient for the reaction i. For simplicity, we
group these parameters in γi = λiki.

2.3 Bacteria

The last fundamental element under consideration is
the bacteria activity. A number of papers explain how
to model bacteria activity in biological systems and
why bacteria are an important factor in bioleaching
(Hutchins et al., 1986; Crundwell, 2001). However,
there exist no unique expression because of the multi-
ple factors which influence their growth and death. For
example, in Haddadin et al. (1995) many models are
mentioned to describe temporal evolution of the bac-
terial growth taking physical, chemical and electro-
mechanical factors into account. In addition, the in-
teractions between these factors must be considered in
order to obtain a close prediction of bacteria activity.

A common structure to describe bacterial growth used
in the literature is

Ẋ(t) =
{

µ(t) −
Fi

V

}

X(t), (20)



where the parameter µmay be given by different struc-
tures, depending on the modelling approach. Since the
parameters involved can usually be estimated on-line,
an exact expression for the factor µ is not essential.

We use the model given by (20) as the model proposed
for the bacterial sub-process in bioleaching, including
the two kinds of bacteria which are involved in the
process. The final equations for bacteria are as follows

ẋ10(t) =
{

µ1(t) − Fi
V

}

x10(t), ẋ11(t) =
{

µ2(t) − Fi
V

}

x11(t).

2.3.1. Catalytic Effect of Bacteria An important is-
sue related with bacteria is how they affect the chem-
ical reactions taking place in the process. Since it is
known that bacteria catalyse the chemical reactions
(Crundwell, 2001), we need to account for their effect
in the equations (12) to (18). To this end, we add a new
term directly related to the amount of bacteria to the
out-coming mass balance for each compound involved
in each chemical reaction. For example, take the first
reaction given by (12). We propose a new term of the
form

−4µ̄1(t)Xth. f ,

where Xth. f is the biomass of bacteria Thiobacillus fer-
rooxidans; V is the Volume; and µ̄1(t) is a factor to be
estimated. The factor 4 is related to the stoichiometric
equation for FeSO4 in the first reaction given by (1).
If more bacteria are present, the effect of adding this
new term will be to speed up the reaction. The final
balance equation for FeSO4 would be

ẋ2 =
u1

x1
(u2 − x2) − 4k′11x2x3

+ 2k31x4x7 − 4µ̄11x10. (21)

By the same reasoning, we obtain the following equa-
tions for the remaining reactions catalysed by bacteria

ẋ3 =
u1

x1
(u3 − x3) − 2k′12x2x3 + k′41x8 (22)

− 2µ̄12x10 + µ̄21x11,

ẋ4 =
u1

x1
(u4 − x4) + 2k′13x2x3 − k21x4x5 + 2µ̄13x10,

(23)

ẋ8 = −
u1

x1
x8 + k72x7 − µ̄22x11. (24)

3. PARAMETER ESTIMATION

In the real-world process we do not have access to the
variables x5, x7, x8 (solids in the heap). However, we
need these variables in order to use (21), (22), (23)
and (16) to estimate the parameters {k′1i}

3
i=1, {k2i}

2
i=1,

k31, k′41, {µ̄1i}
3
i=1, µ̄21, k62 and k71. Nevertheless, if we

know k23, k51, k61, k32, k72 and µ̄22 we can compute
x5, x7 and x8 on-line by solving (15), (17) and (24).
Then suitable on-line algorithm can be used to track
the remaining parameters (which are generally time-
varying in nature) using the measurements obtained
from the process. When we work with BHPM data,

we adopt the same strategy to verify whether the
proposed algorithm would be suitable for a real-world
implementation. The BHPM data set provides us with
the simulated value of x5, x7 and x8, which we use to
estimate k23, k51, k61, k32, k72 and µ̄22. These estimates
are used in subsequent calculations. Therefore, our
estimation procedure consists of three steps.

(1) Estimate k23, k51, k61, k32, k72 and µ̄22 using
the simulated values of x5, x7 and x8 in the
BHPM data set. This is done by applying the
multivariable LS algorithm to (15), (17) and (24).

(2) Obtain estimates of x5, x7 and x8 by solving (15),
(17) and (24), where the estimates of k23, k51, k61,
k32, k72 and µ̄22 obtained in the previous step are
used. We stress that this step will be necessary
with real-world data.

(3) Use a Kalman filter to estimate the time-varying
parameters {k′1i}

3
i=1, {k2i}

2
i=1, k31, k′41, {µ̄1i}

3
i=1, µ̄21,

k62 and k71 using (21), (22), (23) and (16).

3.1 Step 1: Least Squares Estimation

We estimate parameters using the data collected from
the BHPM. Note that the BHPM gives access to vari-
ables which can not be measured in a real process due
to technical or economical reasons. We apply multi-
variable LS to the set of equations given by (15), (17)
and (24), as well as to the temperature equation (19)
to estimate {γi}

4
i=1.

To illustrate the procedure consider the discretised
version of (15), (17) and (24). Let us define

z j =







































x5 j+1 − x5 j +
u1

x1
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u1

x1
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φ j =





















−x4 j x5 j x5 j x6 j x6 j 0 0 0
x4 j x5 j 0 x6 j −x4 j x7 j 0 0

0 0 0 0 x7 j −x11 j





















,

Z =
[

z1 · · · zn

]T
; Φ =

[

φT
1 · · · φ

T
n

]T
,

where n is the number of samples (n = 4000). Then
we get

Z = Φθ,
and the least-squares estimate of θ is given by θ̂ =

[ΦT
Φ]−1
Φ

T Z. Direct implementation of this expres-
sion may lead to numerical problems due to a badly
scaledΦ. Hence it is recommended to compute θ̂ using
a numerically robust procedure (Ljung, 1999, pp.383).

A comparison between CuS (BHPM) and predicted
(LCM) CuS is shown in Figure 2 (top). Similarly,
a comparison between temperature (BHPM) and pre-
dicted temperature (LCM) is shown in Figure 2 (bot-
tom).

We can observe in both plots that close behaviours can
be predicted reasonably. As our model was developed
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Fig. 2. Estimation of Temperature and % CuS extrac-
tion using multivariable LS.

for control purposes, then we might deal with non-
exact models as in this case.

3.2 Step 3: Recursive Algorithms

In this section we present a brief description of the
step-3 in our algorithm.

We assume that the following concentrations can be
measured in the PLS, which is a reasonable assump-
tion in a first approach,

(i) FeSO4 concentration in [mols/lts]
(ii) H2SO4 concentration in [mols/lts]

(iii) Fe2(SO4)3 concentration in [mols/lts]
(iv) CuSO4 concentration in [mols/lts]
(v) Xth. f and Xth.t concentration in [cells/lts].

Parameters {k′1i}
3
i=1, {k2i}

2
i=1, k31, k′41, {µ̄1i}

3
i=1, µ̄21, k62

and k71 using (21), (22), (23) and (16) are considered
time-varying. We update the estimates thereof in order
to use a Kalman filter. This enables us to improve the
process-model significantly because the recent state
and updated process parameters are used to adjust the
model.

A popular approach to describe a process with slow
time-varying parameter β is the random-walk model
(Ljung, 1999, pp.367)

βk+1 = βk + wk, yk = ψkβk + vk, (25)

where wk and vk are zero-mean white noise sequences
defined by

E{w2
k} = R1, E{v2

k} = R2, E{vkwk} = 0.

It is assumed the value of the parameter at sampling
instant k is βk. The variables yk and ψk are assumed to
be known. By using Kalman filter we can obtain the
estimate β̂k and the associated covariance matrix Pk

recursively as Ljung (1999, pp.369)

β̂k+1 = β̂k + Pkψ
T
k [ψkPkψ

T
k + R2]−1(yk − ψkβ̂k),

Pk+1 = Pk − Pkψ
T
k [ψkPkψ

T
k + R2]−1ψkPk + R1.
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diction using Kalman filtering for FeSO4 and
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The algorithm needs to be initialised with some initial
guess β̂0 and the covariance of the guess P0. If the
initial guess is accurate enough, P0 should be small.
In the above R1 and R2 are generally unknown, and
must be chosen by the user. Depending on the values
of R1 and R2 we get several special cases. For example
if R1 = 0 and R2 = I we get the recursive least-
squares (RLS) algorithm (note that we use I to denote
an identity matrix). This is used when time-invariant
parameters are estimated. If R1 = 0 and R2 < I then
we get RLS with a forgetting factor. In this way, old
observations are less weighted than the new ones.

3.2.1. Application of the algorithm The algorithm
described in the previous section is applied to the
discretised version of the set of equations given by
(21), (22), (23) and (16). This discretised version is
obtained using the Euler approximation with ∆ =
4 [hrs] (= 1/6 [days]). For example, for the equation
(21) we have

x2k+1 = x2k + ∆
u1k

x1k

(u2k − x2k ) − 4∆k′11x2k x3k

+ 2∆k31x4k x7k − 4∆µ̄11x10k . (26)

In this case we construct β and ψk as

β =
[

k′11 k31 µ̄11

]T
,

ψk = ∆
[

−4x2k x3k 2x4k x7k −4x10k

]

,

yk = x2k+1 − x2k − ∆
u1k

x1
(u2k − x2k ).

We choose an initial value P0 = I3×3 and set R2 = 102,
and R1 = 10−2. Similar procedures are carried out for
the parameter estimation in equations (22), (23) and
(16) and for bacteria equations.

We show in Figure 3 the tracking of FeSO4 and
H2SO4 concentrations in the PLS. For the first one,
the tracking has some difficulties even adjusting the
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Kalman filtering for Bacteria.

matrices R1 and R2 to different values. We attribute
these difficulties to a lack of sufficient model structure.
Thus, some modifications in the LCM may be required
in the future. However, for H2SO4 concentration, we
can observe in Figure 3 (bottom) almost perfect track-
ing, which means that in this case the LCM structure
has captured the main dynamic features for this vari-
able.

Regarding bacteria activity, we can observe from Fig-
ure 4 that they can be followed without difficulties,
then the model structure for bacteria in the bioleaching
process seems to have been captured adequately. No-
tice, however, that these predictions are obtained as-
suming daily access to bacteria measurements, which
in a real-world application may be difficult to imple-
ment.

4. CONCLUSIONS AND FUTURE RESEARCH

A way to estimate parameters in a model of a bioleach-
ing process have been proposed. We have derived a
very simple model from natural laws which is sim-
pler compared with standard models in the literature.
Although this simple model is nonlinear, it has the
advantage of to be linear on its parameters, which is
useful for estimation purposes.

The model initially obtained on first principles lack
some dynamic structure to generate reasonable pre-
dictions for the BHPM data. Hence, some ad-hoc
modifications were introduced to obtain the proposed
LCM, based on trial-error method. However, a more
formal way to deal with lack of structure is given in
(Lindskog, 1996) and one of our future research topic
will be given in this direction.

The LCM parameters were estimated using data gen-
erated by the experimentally validated, high complex-
ity model BHPM. Simulations indicate that in spite
of the simplicity of the proposed LCM, the data gen-
erated by the BHPM could be adjusted adequately.
These observations show that the LCM could be used

as a basis for future control design stage, which is an
undeveloped field of study in bioleaching.

Our approach has still the disadvantage of being de-
pendent on a number of measurements, possibly in-
accessible in a real-world process. Future research
efforts will be concentrated on developing state esti-
mation algorithms using the low complexity structure
proposed in this paper. Possible improvements will
also be explored following the line of work done by
(Lindskog, 1996).
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