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Abstract

This paper analyzes the feasibility of quantifying design tradeoffs on the transient step response of a
class of nonlinear systems. This feasibility analysis builds on available tools for the characterization of
performance limitations in the optimal quadratic response of the class of strict feedback nonlinear systems.
We present results that show that, as in linear systems, for certain classes of nonminimum phase systems,
the closed loop transient step response must display undershoot. A lower bound on this undershoot can
be computed based on the settling time of the system, and this bound increases as the settling time is
decreased.
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optimal regulators, Non-minimum phase systems.

1 Introduction

Nonlinear control systems theory has in recent years significantly evolved towards the generation of systematic
design procedures of effective application in engineering practice. As exposed in the recent survey paper [11],
this evolution, during the 1990s, was marked by the transformation of the predominantlydescriptiveand
analysis-oriented concepts and tools of the 1980s into theconstructiveconcepts and tools that are nowadays
applied to the control of special classes of nonlinear systems that include ships, jet engines, turbo-diesel
engines and electric induction motor drives [11, 7, 13].

As pointed out in [11], the industrial application of these systematic design procedures for nonlinear
systems under acceptable margins of safety requires the availability of clear design rules indicating how to
select a satisfactory design approach. For linear systems such design rules have been developed through
the precise quantification of the system attainable performance, which aides the generation of appropriate
design specifications [6, 18]. Well-known examples of these developments are the traditional Bode frequency-
response methods and the modernH∞ design techniques. These tools for performance quantification, however,
are generally applied in the transformed domain (frequency response) and do not extend to nonlinear systems.
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The quantification of performance limitations in nonlinear systems has been recently studied in [19, 3]
for the L2 optimal regulation problem, and in [9] for theL2 optimal disturbance attenuation problem. In
particular, [19, 3] approach the problem of quantification of performance limitations in the time domain by
considering the best attainable optimal quadratic regulation performance. One of the main conclusions in [19]
is that for the class of strict-feedback nonlinear systems it is impossible to arbitrarily reduce theL2 norm of the
regulation error if the system is non-minimum phase; a result that matches the linear case [14]. Recent works
applying optimal control tools to characterize performance limitations include [2, 1] for nonlinear systems,
and [20, 4, 16, 5] for linear systems.

Nevertheless, the development of design tradeoffs and practical rules for general classes of nonlinear
systems largely remains as an open area to research. One possible approach to this problem is to study the
quantification of tradeoffs in the transient step response of the system by considering specifications such as
rise time, over and undershoot, and settling time. This kind of tradeoffs and a set of practical design rules have
already been developed for linear systems in [15]. This paper analyzes the feasibility of developing similar
design tradeoffs for a class of nonlinear systems based on the characterization of performance limitations
introduced in [19, 3]. We present results that show that, as in linear systems, for certain classes of nonminimum
phase systems, the closed loop transient step response must display undershoot. A lower bound on this
undershoot can be computed based on the settling time of the system, and this bound increases as the settling
time is decreased, as we illustrate by considering a simple second order example. Alhough these results are
preliminary, they indicate that generalizations are indeed possible.

2 Performance Limitations in Nonlinear Control Systems

2.1 Cheap Nonlinear Control

The tools developed in [19, 3] are based on the application of optimalcheapcontrol techniques and singular
perturbations theory [12, 17]. The idea behind optimal cheap control is that the control effort may be scaled
by means of a single scalar parameterε > 0 in the cost function

J = 1
2

∫ ∞

0

(
‖y(t)‖2 + ε

2‖u(t)‖2
)

dt (1)

to be minimized. Asε → 0, the control effort is less penalized, becomingfree in the limit whenε = 0.
Hence, the “ideal” limiting performance attained by the optimal cheap control represents a bound that cannot
be improved by any other control.

The works in [19, 3, 2, 1] show that for nonlinear systems with thestrict feedbackstructure

ẋ0 = f0(x0)+g0(x0)x1 ,

ẋ1 = f1(x0,x1)+g1(x0,x1)x2 ,

...

ẋr = fr(x0,x1, . . . ,xr)+gr(x0,x1, . . . ,xr)u,

x0 ∈ R
p ,

xi ∈ R
m, i = 1, . . . , r ,

u∈ Rm,

(2)

as it happens for linear systems [14, Thm. 3.14], the optimal value of the cost (1) must be positive even when
the control effort is free (ε = 0) if the plant lacks a stable inverse. Namely, there will be a fundamental obstacle
to L2 performance if, on takingy as a performance output of (2), the system is

(i) non-minimum phase (e.g., ify = x1 and the corresponding zero dynamics ˙x0 = f0(x0) is unstable), or

(ii) non-right invertible (there are more independent outputs than control inputs, e.g.,y = [x0,x1]T).

To be more precise, considery = x1 in (1), (2), and suppose that the corresponding zero dynamics ˙x0 =
f0(x0) is anti-stable (the origin of ˙x = − f0(x0) is globally asymptotically stable). We assume, as in [1], that
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for i = 1, . . . , r, the functionsgi are nonsingular and the functionsfi have linear growth in a sufficiently small
neighborhood of the origin. It then follows from [19, 1] that the minimum attainable value forJ

lim
ε→0

min
u

J = V0(x0), (3)

whereV0 (whenever it exists) is theC r+1 proper and positive semidefinite solution of the (reduced order)
Hamilton-Jacobi equation (HJE)

∂V0

∂x0
f0(x0)− 1

2

∥∥∥∥gT
0 (x0)

∂
TV0

∂x0

∥∥∥∥2

= 0, (4)

with

α(x0),−gT
0 (x0)

∂
TV0

∂x0
(5)

such that the equilibrium of ˙x0 = f0(x0)+g0(x0)α(x0) is globally asymptotically stable.
Although they could be treated numerically, HJEs are in general very difficult to solve. Nevertheless,

even without solving an HJE, the characterization of the limiting cheap control problem may reveal important
qualitative interpretations. For example, the minimum attainable value of the regulation costJ (3) is the
minimum energy required to stabilize the unstable zero dynamics of the system, that is, the optimal value

min
y

J0 = 1
2

∫ ∞

0
‖y(t)‖dt (6)

such thaty, promoted to control input for the zero dynamics equation

ẋ0 = f0(x0)+g0(x0)y,

achieves global asymptotic stability of the origin [19].

2.2 Time Domain Interpretation of Cheap Nonlinear Control Results

In special cases, however, it may be possible to derive quantitative time domain interpretations of the results
reviewed in Section 2.1 in terms of step response parameters. Consider further the strict feedback system (2)
with outputy = x1. Suppose for example that we wish to take the system from the origin,xi(0) = 0, i = 0. . . r
to an equilibrium whereiny(t) = ȳ. Further, let us assume that there exist unique equilibrium states and inputs
associated with this new equilibrium, that is, there exist unique ¯xi , i = 0. . . r andū such that

0 = f
(
x̄0

)
+g0

(
x̄0

)
x̄1

0 = f1
(
x̄0, x̄1

)
+g1

(
x̄0, x̄1

)
x̄2

...

0 = fr
(
x̄0, x̄1, . . . x̄r

)
+gr

(
x̄0, x̄1, . . . x̄r

)
ū

ȳ = x̄1

Then define “error coordinates”e(t) = y(t)− ȳ, v(t) = u(t)− ū, andηi (t) = xi (t)− x̄i . In these new error
coordinates, the dynamic equations (2) become1

η̇0 = f̄
(
η0

)
+ ḡ0

(
η0

)
η1

η̇1 = f̄1
(
η0,η1

)
+ ḡ1

(
η0,η1

)
η2

...

η̇r = f̄r
(
x̄0, x̄1, . . . x̄r

)
+ ḡr

(
x̄0, x̄1, . . . x̄r

)
ū

e= η1

(7)

1Note that we have suppressed the dependence off̄i and ḡi on ȳ in these equations. For example,f̄0
(
η0

)
= f0

(
η0 + x̄0 (ȳ)

)
−

f0
(
x̄0 (ȳ)

)
+
[
g0

(
η0 + x̄0 (ȳ)

)
−g0

(
x̄0 (ȳ)

)]
x̄1 (ȳ) andḡ0

(
η0

)
= g0

(
η0 + x̄0 (ȳ)

)
.
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with initial conditionsηi (0) =−x̄i , i = 0,1. . . r. We then have the following results, which follow as simple
extensions of the results in [19, 1].

Proposition 1. For a givenȳ, suppose that there exists a suitably continuous, proper and positive definite
solution,V̄0

(
η0

)
to the error coordinates HJE

∂V̄0

∂η0
f̄0
(
η0

)
− 1

2

∥∥∥∥ ∂V̄0

∂η0
ḡ0

(
η0

)∥∥∥∥2

= 0 (8)

such that the origin oḟη0 = f̄0(η0)− ḡ0(η0)gT
0 (η0) ∂V̄0

∂η0
is globally asymptotically stable. Then any stabilizing

control which takes the system (2) from rest to the equilibrium y= ȳ satisfies∫ ∞

0
‖y(t)− ȳ‖2dt ≥ 2V̄0

(
−x̄0

)
. (9)

Corollary 1. Under the conditions of Proposition 1, and the additional constraint that equilibrium is attained
at t ≤ T, that is for all t> T , y(t) = ȳ then

sup
t∈(0,T)

‖y(t)− ȳ‖ ≥

√
2V̄0

(
−x̄0

)
T

(10)

Proof. Follows immediately from (9) since
∫ ∞

T ‖y(t)− ȳ‖2dt = 0.

Note that (10) gives a lower bound on the peak error for a given reference step, ¯y and a given “settling”
time, T. This lower bound is dictated by the unstable zero dynamics in the error equations (7). Note further
that in general, this lower bound will not be tight. In the next subsection, we show how for certain classes of
zero dynamics, other bounds on the transient response may be obtained.

2.3 Scalar Nonminimum Phase Zero Sub-Dynamics

Suppose the zero dynamics equation of (2) can be transformed to the equations

ż0 = F0

(
z0

)
+G0

(
z0

)
y

ξ̇0 = h0

(
ξ0,z0,y

)
,

(11)

where bothz0 andy are scalar functions of time; with zero initial conditions. We refer to the ˙z0 equation in
(11) assub-dynamics, since they represent a partially decoupled set of dynamics of the overall nonlinear zero
dynamics. We make use of the following assumption.

Assumption 1.

(i) The set point for tracking,̄y is positive.

(ii) The zero sub-dynamics, F0

(
z0

)
lies entirely in the first and third quadrants.

(iii) The zero sub-dynamics gain matrix, G0(·), is positive for all values of its argument.

(iv) There exists at least one solution,z̄0 to the steady state equation F0

(
z̄0

)
+G0

(
z̄0

)
ȳ = 0.

We then have the following results.

Proposition 2. Suppose that for all t, y(t)≥−yus and the conditions of Assumption 1 are satisfied. Let z− (t)
denote the solution to

ż− = F0(z−)−G0(z−)yus (12)

with initial condition z− (0) = 0. Then for all t, z0(t)≥ z− (t).
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Proof. Note that att = 0 we havez0(0) = z− (0) = 0. Also note from the formulation, that for anyt such that
z0(t) = z− (t) it follows from the comparison principle [10,§2.5] thatż0(t)≥ ż− (t).

Corollary 2. Under the conditions of Assumption 1, for any suitableȳ and anyαus> 0 define

Ts(αus),
∫ 0

z̄0

dz
αusȳG0(z)−F0(z) .

(13)

Then at least one of the following two statements is false:

(i) For all t ≥ 0, it holds y(t)>−yus =−αusȳ.

(ii) There exists t1 < Ts(αus) such that y(t1) = ȳ and z0(t1) = z̄0.

Proof. Note firstly that under the conditions of Assumption 1, the denominator of the integrand in (13) is
always positive, and soTs in (13) is well defined and positive. Then consider the solution to (12) withyus =
αusȳ. This equation defines a scalar differential equation with a negative right-hand side and thereforez− (t)
is monotonically decreasing. The solution to this differential equation can be expressed by

t =
∫ 0

z−(t)

dz
αusȳG0(z)−F0(z)

.

Therefore,Ts in (13) defines the first time at whichz− reaches ¯z0 and the contradiction follows from Proposi-
tion 2.

Corollary 2 therefore gives a nonlinear generalization of the time domain constraints introduced in [15]. In
particular, it follows that for systems with scalar, anti-stable zero sub-dynamics which satisfy Assumption 1,
any stable step response must undershoot. Furthermore, for a given step change ¯y and permitted level of
undershootαus, there is a non-trivial lower bound on the settling time permitted. This lower bound decreases
with an increase inαus (the permitted level of undershoot).

In the linear case, where without loss of generality we may takeG0(z) = 1
τz

andF0(z) = z
τz

, we obtain
z̄0 =−ȳ and

Ts(αus) =
∫ 0

z̄0

dz
αusȳG0(z)−F0(z)

= τz

∫ 0

−ȳ

dz
αusȳ−z

= τz ln

(
αus+1

αus

)
which is in accord with the equivalent interpretation of the results in [15].

3 Tradeoffs in the Step Response: A Simple Example

Let us consider the simple second order nonlinear system

ẋ0 = x3
0 +y

ẏ = 6x0 +u,
(14)

wherey∈ R is the output,x0 ∈ R is the zero dynamics state, andu∈ R is the system control input. When the
output is identically zero,y(t) ≡ 0, it is seen that the zero dynamics ˙x0 = x3

0 is anti-stable(that is,ẋ0 = −x3
0

is asymptotically stable), which means that the system is (strictly) non-minimum phase in the sense of Isidori
[8].
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Suppose that the outputy(t) is specified to asymptotically track a constant reference of amplitude ¯y> 0
starting from zero initial statesy(0) = 0 = x0(0). Then, from (14), this specification requires that

ȳ, lim
t→∞

y(t), x̄0, lim
t→∞

x0(t) =− 3
√

ȳ, ū, lim
t→∞

u(t) = 6 3
√

ȳ.

Qualitative properties of the transient response of system (14) can be obtained from a steady-state analysis.
For example, it can be concluded that, because the zero dynamics is anti-stable, the response iny(t) must
display undershoot, as is the case for non-minimum phase linear systems [15]. This fact is easily seen by
analyzing the zero dynamics equation ˙x0 = x3

0 + y: the assumption thaty(t)≥ 0 for all t ≥ 0 implies thaty(t)
cannot drivex0(t) from x0(0) = 0 to its required asymptotic value ¯x0 =− 3

√
ȳ< 0. Thus,y(t) must be negative

at somet, which implies thaty(t) must undershoot before reaching its asymptotic value ¯y.
Quantitative information about the system transient response, such as bounds on the undershoot or settling

time, can be obtained by making a change of variables as in Section 2.2, that is,

e(t), y(t)− ȳ, η(t), x0(t)− x̄0, ν(t), u(t)− ū,

which takes the system (14) to

η̇ = η
3−3 3
√

ȳη
2 +3 3

√
ȳ2

η +e

ė= 6η + ν .
(15)

Now the original tracking problem is set in (15) as the asymptotic regulation problem in which the variables
e(t) (the tracking error) andη(t) must be driven to zero from the initial statese(0) =−ȳ andη(0) = 3

√
ȳ.

System (15) has a strict-feedback structure and is in Isidori’snormal form[8]. Because its zero dynamics
is anti-stable, system (15) is also non-minimum phase. Then, it follows from the results in [19] and [3] that
there exists a positive lower bound on theL2 norm ofe(t) independently of the control applied to achieve the
regulation. This lower bound can be computed as the solution to (4), (5), which from theη̇ equation in (15)
gives the proper and positive definite function

V0(η) =
[

η
2

η

]T [ 1/2 − 3
√

ȳ
− 3
√

ȳ 3 3
√

ȳ2

][
η

2

η

]
= 1

2η
4−2 3
√

ȳη
3 +3 3

√
ȳ2

η
2.

Thus, from (3) we obtain that the regulation error must satisfy

1
2

∫ ∞

0
|e(t)|2dt ≥V0( 3

√
ȳ) = 3

2
3
√

ȳ4. (16)

The bound (16) on theL2 norm of the tracking error holds for any control that achieves the system specified
regulation. In particular, the lowest valueV0( 3

√
ȳ) can be arbitrarily closely approximated by using thenear

optimal cheapcontrol law [19] (in the originalx0,y coordinates)

u(t) = 6 3
√

ȳ−
y(t)+2x3

0(t)+ ȳ

ε

asε → 0, with ε > 0. (17)

Alternatively, faster tracking may be achieved at the expense of a largerL2 norm in the tracking error by using
the control law

u(t) = 6 3
√

ȳ−
y(t)+2kx3

0(t)+(2k−1)ȳ
ε

for anyk> 1. (18)

Figure 1 shows the closed-loop responses of the system (14) to a unitary step change in the reference,
ȳ = 1, using the control law (18) withε = 10−3 andk = 1,1.5 and 2. The response fork = 1, which yields the
near optimal cheap control (17), has the lowestL2 norm of the tracking error, but is also the slowest, with a
settling timeT ≈ 2.5. Note that, as predicted, there is undershoot in all three responses. Note also the tradeoff
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Figure 1: Tracking responses of the system (14) usingu(t) from (18) withk = 1,1.5 and 2.
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Figure 2: Responses of ˙x0 = x3
0 +y with minimum undershoot iny(t).
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between settling time and undershoot, the magnitude of which increases as the response is made faster. This
design tradeoff seems inescapable, as the following argument indicates.

Suppose thaty(t) settles at the finite timeT > 0. Then it follows from Corollary 1 that

3 3
√

ȳ4≤
∫ T

0
|e(t)|2dt ≤ sup

t∈[0,T)
|e(t)|2T ⇒ sup

t∈[0,T)
|e(t)| ≥

√
3√
T

3
√

ȳ2. (19)

The inequality on the right of (19) shows that the peaks in the tracking error must increase as the settling
time is made shorter, which is confirmed by the magnitude of the undershoot in the responses of Figure 1.
Strictly, the bound (19) is on thepeak deviationin the error signal rather than on the undershoot. It may
be shown, however, that the control law (18), based on the near optimal cheap control law, cannot produce
overshoot (e(t) > 0) in this system. Indeed, the high gain action of the near optimal cheap control initially
drivese(t) in a fast motion towards theslow invariant manifold

e= α(η),−2η
3 +6 3
√

ȳη
2−6 3

√
ȳ2

η ,

to then make it slide along it in a slow motion towards the origin [19]. Thus, the initial fast transition of
e(t) from e(0) = −ȳ to α(η(0)) = −2ȳ produces the undershoot iny(t); since the slow invariant manifold
is monotonic inη , the errore(t) cannot subsequently change sign as it drifts towards the origin along the
manifold.

On dividing both sides of the inequality on the right of (19) by ¯y,

supt |e(t)|
ȳ

≥
√

3√
T 3
√

ȳ
,

we see that for larger values of ¯y the relative peak ine(t) gets smaller, and hence, the penalty imposed by
the unstable zero dynamics relaxes. This observation is consistent with the known relaxation of constraints in
linear systems, for which fast non-minimum phase zeros impose less constraints than slow ones [6]. Indeed,
on writing the zero dynamics equation as

ẋ0 = (x2
0)x0 +y, (20)

system (14) may be assimilated to a “linear” one with a state-dependent non-minimum phase “zero”. A larger
step change ¯y implies relatively larger values ofx0(t), that is, “faster” zero dynamics in (20).

Lower values of undershoots could be obtained using a control law that specifically accounts for anL∞
optimization criterion. For example, the responses in Figure 2 show minimum undershoot solutions, which
have been numerically computed from ˙x0 = x3

0 + y to satisfy the tracking specifications. Table 1 compares
the magnitudes of undershoot in these responses with those in Figure 1 and the lower bounds on the peak
tracking error computed from (19). Note that the bounds given by (19) are conservative (“optimistic”) for
the undershoots actually achieved by theL2 norm-based solutions of Figure 1, but are, as should be expected,
much more tight with respect to theL∞ norm-based solutions of Figure 2.

T Lower bound from (19) Actual undershoot sup−e(t)√
3/T Usingu(t) from (18) With minimum undershoot iny(t)

2.5 1.0954 2 1.2617

1.5 1.4142 3 1.4985

1 1.7320 4 1.8112

Table 1: Peak tracking error versus settling time for system (14).

Since this system naturally falls in the class described in Section 2.3, we may also quantify the undershoot/settling-
time tradeoff using Corollary 2. Figure 3 shows the relation between settling-timeTs and undershoot permitted
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αus for different values of the reference ¯y, obtained from the explicit solution of (13). We see how the settling
time increases as we reduce the permitted level of undershoot. These bounds hold foranycontroller achieving
the regulation specifications, and are “optimistic”, in the sense that they arelower boundson the actual settling
time that would be obtained with a specific controller.
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Figure 3: Undershoot and settling time

4 Conclusions

This paper studied the feasibility of quantifying design tradeoffs in the step response of nonlinear systems.
Building on the recent characterizations of bounds on the achievableL2 optimal performance for strict feed-
back nonlinear systems, we have presented results that show that, as in linear systems, for certain classes of
nonminimum phase systems, the closed loop transient step response must display undershoot. The results and
the simple example considered show how a bound on attainableL2 optimal performance can be translated
into qualitative and quantitative properties of the transient response of the system. Since these properties hold
irrespective of the particular control design applied, they may be used to compare different approaches or to
make an appropriate choice of parameters in a given design. We expect to extend these tools to more general
classes of nonlinear control systems in follow-up studies.

References

[1] J.H. Braslavsky, R.H. Middleton, and J.S. Freudenberg. Cheap control performance of a class of non-
right-invertible nonlinear systems. InProc. 38th IEEE Conf. on Decision and Control, Phoenix, USA,
1999. AlsoIEEE Trans. on Automatic Control, to appear.

[2] J.H. Braslavsky, R.H. Middleton, and J.S. Freudenberg. Performance limitations in a class of single-
input two-output nonlinear systems. InProc. 1999 American Control Conf., pages 3564–68, San Diego,
CA, USA, 1999.



References 10
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