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Abstract

This paper analyzes the feasibility of quantifying design tradeoffs on the transient step response of a
class of nonlinear systems. This feasibility analysis builds on available tools for the characterization of
performance limitations in the optimal quadratic response of the class of strict feedback nonlinear systems.
We present results that show that, as in linear systems, for certain classes of nonminimum phase systems,
the closed loop transient step response must display undershoot. A lower bound on this undershoot can
be computed based on the settling time of the system, and this bound increases as the settling time is
decreased.
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1 Introduction

Nonlinear control systems theory has in recent years significantly evolved towards the generation of systematic
design procedures of effective application in engineering practice. As exposed in the recent surveylpaper [11],
this evolution, during the 1990s, was marked by the transformation of the predomidastyiptiveand
analysis-oriented concepts and tools of the 1980s intedhstructiveconcepts and tools that are nowadays
applied to the control of special classes of nonlinear systems that include ships, jet engines, turbo-diesel
engines and electric induction motor drives [11,7, 13].

As pointed out in [[T1], the industrial application of these systematic design procedures for nonlinear
systems under acceptable margins of safety requires the availability of clear design rules indicating how to
select a satisfactory design approach. For linear systems such design rules have been developed through
the precise quantification of the system attainable performance, which aides the generation of appropriate
design specificationsl[6,118]. Well-known examples of these developments are the traditional Bode frequency-
response methods and the moddgndesign techniques. These tools for performance quantification, however,
are generally applied in the transformed domain (frequency response) and do not extend to nonlinear systems.
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The quantification of performance limitations in nonlinear systems has been recently studiedlin [19, 3]
for the L, optimal regulation problem, and inl [9] for tHe, optimal disturbance attenuation problem. In
particular, [T9[13] approach the problem of quantification of performance limitations in the time domain by
considering the best attainable optimal quadratic regulation performance. One of the main conclusions in [19]
is that for the class of strict-feedback nonlinear systems it is impossible to arbitrarily redugentbren of the
regulation error if the system is non-minimum phase; a result that matches the linedrtcase [14]. Recent works
applying optimal control tools to characterize performance limitations include [2, 1] for nonlinear systems,
and [20,4[16[15] for linear systems.

Nevertheless, the development of design tradeoffs and practical rules for general classes of nonlinear
systems largely remains as an open area to research. One possible approach to this problem is to study the
guantification of tradeoffs in the transient step response of the system by considering specifications such as
rise time, over and undershoot, and settling time. This kind of tradeoffs and a set of practical design rules have
already been developed for linear systems’in [15]. This paper analyzes the feasibility of developing similar
design tradeoffs for a class of nonlinear systems based on the characterization of performance limitations
introduced in[TO[13]. We present results that show that, as in linear systems, for certain classes of nonminimum
phase systems, the closed loop transient step response must display undershoot. A lower bound on this
undershoot can be computed based on the settling time of the system, and this bound increases as the settling
time is decreased, as we illustrate by considering a simple second order example. Alhough these results are
preliminary, they indicate that generalizations are indeed possible.

2 Performance Limitations in Nonlinear Control Systems

2.1 Cheap Nonlinear Control

The tools developed in 19, 3] are based on the application of opthedpcontrol techniques and singular
perturbations theory 112, 17]. The idea behind optimal cheap control is that the control effort may be scaled
by means of a single scalar parameter 0 in the cost function

S =4 [y +e2u) ) de ()

to be minimized. Asc — 0, the control effort is less penalized, becominge in the limit whene = 0.
Hence, the “ideal” limiting performance attained by the optimal cheap control represents a bound that cannot
be improved by any other control.

The works in [TB[13[1211] show that for nonlinear systems withdthiet feedbaclstructure

%o = To(Xo) +90(%0)%y ; X € RP,
Xy = f1(X: Xp) + 91 (X0, X )%, @)
: x eRMi=1,...r,
Xe = Tr(Xgs Xg, -+, %) +0r (X, Xp, - - -, X0 )U, uecR™,
as it happens for linear systemsi[14, Thm. 3.14], the optimal value of the[fost (1) must be positive even when

the control effort is freeq = 0) if the plant lacks a stable inverse. Namely, there will be a fundamental obstacle
to L, performance if, on taking as a performance output ¢f (2), the system is

() non-minimum phase (e.g., ¥f= x; and the corresponding zero dynamigs= f,(x,) is unstable), or
(i) non-rightinvertible (there are more independent outputs than control inputsy exgx,, X,] ).

To be more precise, considge= x; in (), (2), and suppose that the corresponding zero dynaxgies
fo(Xo) is anti-stable (the origin af = —f,(X,) is globally asymptotically stable). We assume, a<’in [1], that
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fori=1,...,r, the functiongy; are nonsingular and the functiofishave linear growth in a sufficiently small
neighborhood of the origin. It then follows frorn {19, 1] that the minimum attainable valug/for

lim min 7" = Vo (%), (3)

whereV, (whenever it exists) is th&" ! proper and positive semidefinite solution of the (reduced order)
Hamilton-Jacobi equation (HJE)

A 1 5 9™V
axo fO(XO> - é % (XO) 8X0 =0, (4)
with
(%) = —gg ( )—8TV° (5)
a(Xy) = —do (%o 5%

such that the equilibrium of, = f,(x,) + 9y(X) (%) is globally asymptotically stable.

Although they could be treated numerically, HJEs are in general very difficult to solve. Nevertheless,
even without solving an HJE, the characterization of the limiting cheap control problem may reveal important
qualitative interpretations. For example, the minimum attainable value of the regulationZc@8j is the
minimum energy required to stabilize the unstable zero dynamics of the system, that is, the optimal value

min 7o~ [ Iyt (6)
such thaty, promoted to control input for the zero dynamics equation

X9 = fo(X) + 9o (X0)V:
achieves global asymptotic stability of the origini[19].

2.2 Time Domain Interpretation of Cheap Nonlinear Control Results

In special cases, however, it may be possible to derive quantitative time domain interpretations of the results
reviewed in Sectiofn 2.1 in terms of step response parameters. Consider further the strict feedback]system (2)
with outputy = x,. Suppose for example that we wish to take the system from the oxjg®),=0,i =0...r

to an equilibrium whereig(t) =y. Further, let us assume that there exist unique equilibrium states and inputs
associated with this new equilibrium, that is, there exist uniqtie= 0...r andu such that

0= (%) < o(0)%
0= f; (X, %) + 9 (X %) %o

0= fr (X Xps--- %) + 0 (Xgs X, ... %) U

y=x
Then define “error coordinate€(t) =y(t) —y, v(t) = u(t) —u, andn, (t) = % (t) — %. In these new error
coordinates, the dynamic equatiofis (2) bedbme

Mo =T (110) + 9o (M0) My
M

f1 (Mo>M1) + 01 (M, M1) M2
(7)

e = fr (Ko Xp, - %) +Gr (Ko g, %) 0
e=mn,
1_Note that we have suppressed the d_ependencf_?aa:fdgi_on yin these equations. For examplg,(1,) = fo (Mg +% (V) —
fo (% () + 90 (M0 +% (¥)) — 9o (% (%)) ] X4 (V) @ndgy (1) = Go (M0 +% (¥))-
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with initial conditionsn, (0) = —x;, i=0,1...r. We then have the following results, which follow as simple
extensions of the results inJ19, 1].

Proposition 1. For a giveny, suppose that there exists a suitably continuous, proper and positive definite
solution,V, (1) to the error coordinates HIE

2

Ny — . -

Mo fo(10) =5
such that the origin ofj, = f_o(no) — %(no)gg(no)g—\fg is globally asymptotically stable. Then any stabilizing
control which takes the systefi (2) from rest to the equilibriumyysatisfies

1|0V, —
Hanogo (10)

v =517t > 2% (%) ©

Corollary 1. Under the conditions of Propositigh 1, and the additional constraint that equilibrium is attained
att<T,thatisforallt>T ,y(t) =y then

A (x
sup ) 5] > | 2o L) (10)
te(0,T)

Proof. Follows immediately from|(9) sincﬁT"°||y(t)—}7[|2dt:0. O

Note that [ID) gives a lower bound on the peak error for a given referenceystad,a given “settling”
time, T. This lower bound is dictated by the unstable zero dynamics in the error equéations (7). Note further
that in general, this lower bound will not be tight. In the next subsection, we show how for certain classes of
zero dynamics, other bounds on the transient response may be obtained.
2.3 Scalar Nonminimum Phase Zero Sub-Dynamics
Suppose the zero dynamics equationdf (2) can be transformed to the equations
% =Fo(2) +Go(2)y 1)
50 = hO (go,zo,y) )

where bothz, andy are scalar functions of time; with zero initial conditions. We refer tozhequation in
(1) assub-dynamicssince they represent a partially decoupled set of dynamics of the overall nonlinear zero
dynamics. We make use of the following assumption.

Assumption 1.
(i) The set point for trackingy is positive.
(if) The zero sub-dynamics, on) lies entirely in the first and third quadrants.
(i) The zero sub-dynamics gain matrix,G), is positive for all values of its argument.
(iv) There exists at least one soluti@g,to the steady state equatiog ;) + G, (z,) y = 0.
We then have the following results.

Proposition 2. Suppose that for all t, {t) > —y,s and the conditions of Assumptifin 1 are satisfied. L&ty
denote the solution to

2_ == FO (Z_) - GO (Z_) yus (12)
with initial condition z (0) = 0. Then for allt, g(t) > z_ (t).
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Proof. Note that at =0 we havez, (0) = z_(0) = 0. Also note from the formulation, that for ahguch that
z,(t) = z_ (1) it follows from the comparison principlé1@2.5] thatz, (t) > z_ (t). O

Corollary 2. Under the conditions of Assumptign 1, for any suitabnd anyoys > 0 define

0
To(ou) £ [ dz (13)

7 OusyGy(2) —Fy(2).
Then at least one of the following two statements is false:

(i) Forallt >0, itholds y(t) > —yus= —ousy.

(i) There existst < Ts(ays) such that yt,) =y and z(t;) = z,.

Proof. Note firstly that under the conditions of Assumptidn 1, the denominator of the integrapd in (13) is
always positive, and s@; in ([L3) is well defined and positive. Then consider the solutiof o (12) yvitk=

ougy. This equation defines a scalar differential equation with a negative right-hand side and theréfpre

is monotonically decreasing. The solution to this differential equation can be expressed by

0 dz
t= /z(t) wsyGy (2) —Fo(2)

Therefore,Ts in (L3) defines the first time at which reaches,, and the contradiction follows from Proposi-
tion 2. O

Corollary[2 therefore gives a nonlinear generalization of the time domain constraints introduced in [15]. In
particular, it follows that for systems with scalar, anti-stable zero sub-dynamics which satisfy Assuption 1,
any stable step response must undershoot. Furthermore, for a given step glamgpermitted level of
undershooty,s, there is a non-trivial lower bound on the settling time permitted. This lower bound decreases
with an increase im,s (the permitted level of undershoot).

In the linear case, where without loss of generality we may Gkez) = Tiz andFR,(z) = T—ZZ we obtain

z,=—-yand

0 dz
) = [ o o R

/0 dz
:Tz —
73706usy—2
Q 1
:Tz|n<£>
Ous

which is in accord with the equivalent interpretation of the resultsin [15].

3 Tradeoffs in the Step Response: A Simple Example

Let us consider the simple second order nonlinear system

Xo=X3+Y

14
y = 6x,+U, (14)

wherey € R is the outputx, € R is the zero dynamics state, and R is the system control input. When the
output is identically zeroy(t) = 0, it is seen that the zero dynamixs= xg is anti-stable(that is,X; = —>§
is asymptotically stable), which means that the system is (strictly) non-minimum phase in the sense of Isidori

[].
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Suppose that the outpuytt) is specified to asymptotically track a constant reference of amplitue®
starting from zero initial stateg0) = 0 = x,(0). Then, from [T4), this specification requires that

yEImy(), %= limxpt)=—95 T2 limu(t) =67y.

Qualitative properties of the transient response of sysiem (14) can be obtained from a steady-state analysis.
For example, it can be concluded that, because the zero dynamics is anti-stable, the resp@hseust
display undershogtas is the case for non-minimum phase linear systéms [15]. This fact is easily seen by
analyzing the zero dynamics equatig= X3 +Y: the assumption thatt) > 0 for allt > 0 implies thaty(t)
cannot drivex,(t) from x,(0) = 0 to its required asymptotic valug = —/y < 0. Thusy(t) must be negative
at some, which implies thay(t) must undershoot before reaching its asymptotic vglue

Quantitative information about the system transient response, such as bounds on the undershoot or settling
time, can be obtained by making a change of variables as in S€cCfjon 2.2, that is,

e(t) 2y(t) -y, n(t) =x(t) =X, V() =u(t) -,
which takes the systerfi {14) to

n=n°-3%yn’+3Y¥2n+e

15
e=6n+v. (13)

Now the original tracking problem is set in[15) as the asymptotic regulation problem in which the variables
e(t) (the tracking error) ang (t) must be driven to zero from the initial statg®) = —y andn (0) = Jy.

System [I5) has a strict-feedback structure and is in Isidooimal form[8]. Because its zero dynamics
is anti-stable, systeni{[15) is also non-minimum phase. Then, it follows from the resuits in [19] and [3] that
there exists a positive lower bound on thenorm ofe(t) independently of the control applied to achieve the
regulation This lower bound can be computed as the solutiofijto [#), (5), which from #guation in [T5)
gives the proper and positive definite function

Vo(n) = HT [_1/;7 3_3/3% [772]
= In*—29yn°+3Yy2n2

Thus, from [B) we obtain that the regulation error must satisfy

[ ettt = vy(9) = § U7 a6)

The bound[(T6) on thie, norm of the tracking error holds for any control that achieves the system specified
regulation. In particular, the lowest valig(/y) can be arbitrarily closely approximated by using tiear
optimal cheagrontrol law [19] (in the originak,, y coordinates)

2 _
u(t) = 6y — W ase — 0, withe > 0. (17)

Alternatively, faster tracking may be achieved at the expense of a laygerm in the tracking error by using
the control law
t) + 2kxg(t 2k—1
u(t) = 695 YO ><8(£>+< )
Figure[1l shows the closed-loop responses of the sygigm (14) to a unitary step change in the reference,
y= 1, using the control law{18) with = 10~2 andk = 1,1.5 and 2. The response fke= 1, which yields the
near optimal cheap contrdl{17), has the lowleshorm of the tracking error, but is also the slowest, with a
settling timeT = 2.5. Note that, as predicted, there is undershoot in all three responses. Note also the tradeoff

y for anyk > 1. (18)
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051 k=15 §
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0 0.5 1 1.5 2 25 3 35 4 4.5 5
time

Figure 1: Tracking responses of the systém (14) usihgfrom (I8) withk =1,1.5 and 2.

15

0.5 1
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0 0.5 1 15 2 25 3 3.5 4 45 5
time

Figure 2: Responses gf = X3 + Yy with minimum undershoot ig(t).
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between settling time and undershoot, the magnitude of which increases as the response is made faster. This
design tradeoff seems inescapable, as the following argument indicates.
Suppose thaf(t) settles at the finite tim& > 0. Then it follows from Corollary]1 that

397 < [ lePdt< sup lePT = sup le(t)] > Sy (19)
0 te[0,T) te[o,T) VT

The inequality on the right of{19) shows that the peaks in the tracking error must increase as the settling
time is made shorter, which is confirmed by the magnitude of the undershoot in the responses dfj Figure 1.
Strictly, the bound[(19) is on thpeak deviatiorin the error signal rather than on the undershoot. It may
be shown, however, that the control law](18), based on the near optimal cheap control law, cannot produce
overshoot €(t) > 0) in this system. Indeed, the high gain action of the near optimal cheap control initially
drivese(t) in a fast motion towards th&low invariant manifold

e=a(n) 2 -2n°+6yyn®—63/y?n,

to then make it slide along it in a slow motion towards the oridgin [19]. Thus, the initial fast transition of
e(t) from e(0) = —y to a(n(0)) = —2y produces the undershoot yt); since the slow invariant manifold
is monotonic inn, the errore(t) cannot subsequently change sign as it drifts towards the origin along the
manifold.

On dividing both sides of the inequality on the right pfl(19)\py

suple(t) . V3
y VT
we see that for larger values pfthe relative peak ire(t) gets smaller, and hence, the penalty imposed by
the unstable zero dynamics relaxes. This observation is consistent with the known relaxation of constraints in

linear systems, for which fast non-minimum phase zeros impose less constraints than slaw ones [6]. Indeed,
on writing the zero dynamics equation as

Xo = (X)X + Y, (20)

system [I4) may be assimilated to a “linear” one with a state-dependent non-minimum phase “zero”. A larger
step changg implies relatively larger values o(t), that is, “faster” zero dynamics ifi{20).

Lower values of undershoots could be obtained using a control law that specifically accountd for an
optimization criterion. For example, the responses in Fifjure 2 show minimum undershoot solutions, which
have been numerically computed frog= x3 + y to satisfy the tracking specifications. Table 1 compares
the magnitudes of undershoot in these responses with those in Fgure 1 and the lower bounds on the peak
tracking error computed fromi{[L9). Note that the bounds giver By (19) are conservative (“optimistic”) for
the undershoots actually achieved by thenorm-based solutions of Figure 1, but are, as should be expected,
much more tight with respect to the, norm-based solutions of Figufe 2.

T  Lower bound from[(19) Actual undershoot sup(t)
V3/T Usingu(t) from (I8) With minimum undershoot (t)
25 10954 2 12617
15 14142 3 14985
1 17320 4 18112

Table 1: Peak tracking error versus settling time for sys{em (14).

Since this system naturally falls in the class described in Seciipn 2.3, we may also quantify the undershoot/settl
time tradeoff using Corollary 2. Figufg 3 shows the relation between settlingftiared undershoot permitted
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oys for different values of the referengeobtained from the explicit solution of {[13). We see how the settling
time increases as we reduce the permitted level of undershoot. These bounds aojctortroller achieving
the regulation specifications, and are “optimistic”, in the sense that thégveee boundn the actual settling
time that would be obtained with a specific controller.

NL Undershoot and Settling time example
10 r T T T T T T T T

Bound on Settling Time (sec)
[
o

10 I I I I I I I I
5 10 15 20 25 30 35 40 45 50

% Undershoot Permitted

Figure 3: Undershoot and settling time

4 Conclusions

This paper studied the feasibility of quantifying design tradeoffs in the step response of nonlinear systems.
Building on the recent characterizations of bounds on the achieligldptimal performance for strict feed-

back nonlinear systems, we have presented results that show that, as in linear systems, for certain classes of
nonminimum phase systems, the closed loop transient step response must display undershoot. The results and
the simple example considered show how a bound on attaihgbd@timal performance can be translated

into qualitative and quantitative properties of the transient response of the system. Since these properties hold
irrespective of the particular control design applied, they may be used to compare different approaches or to
make an appropriate choice of parameters in a given design. We expect to extend these tools to more general
classes of nonlinear control systems in follow-up studies.
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