ELEC4410

Control System Design

Lecture 2: Mathematical Description of Systems

School of Electrical Engineering and Computer Science
The University of Newcastle
Outline

- A Taxonomy of Systems
Outline

- A Taxonomy of Systems
- Linear Systems
Outline

- A Taxonomy of Systems
- Linear Systems
- Linear Time-Invariant Systems
Outline

- A Taxonomy of Systems
- Linear Systems
- Linear Time-Invariant Systems
- Linearisation
Outline

- A Taxonomy of Systems
- Linear Systems
- Linear Time-Invariant Systems
- Linearisation
- Discrete-Time Systems
Outline

- A Taxonomy of Systems
- Linear Systems
- Linear Time-Invariant Systems
- Linearisation
- Discrete-Time Systems
- A Few General Facts to Remember
Outline

- A Taxonomy of Systems
- Linear Systems
- Linear Time-Invariant Systems
- Linearisation
- Discrete-Time Systems
- A Few General Facts to Remember

Reference: Linear System Theory and Design, Chen.
A Taxonomy of Systems

- Consider a simple problem in robotics, i.e. control of the position of a robot arm using a motor located at the arm joint.
A Taxonomy of Systems

- Consider a simple problem in robotics, i.e. control of the position of a robot arm using a motor located at the arm joint.

- Mathematically, this system is nothing else than a pendulum controlled by torque.
A Taxonomy of Systems

- Assume:
 - friction at the joint is negligible,
 - the arm is rigid, and
 - all the mass of the arm is concentrated on its free end,
then angle with respect to the vertical θ is given by the differential equation

\[ml^2 \ddot{\theta}(t) + mgl \sin \theta(t) = u(t). \]
A Taxonomy of Systems

- The single robot arm model given by the differential equation

\[ml^2 \ddot{\theta}(t) + mgl \sin \theta(t) = u(t). \]

is an example of a system that is:

- dynamic
- causal
- finite-dimensional
- continuous-time
- nonlinear
- time-invariant
Dynamic /Static?

- **Dynamic** means that the variables θ and $\dot{\theta} = d\theta(t)/dt$, which define the state of the arm at a given instant of time t, have a non-instantaneous dependency on the control torque u. A dynamic system is said to possess memory, i.e. its output depends also on previous inputs.
A Taxonomy of Systems

Dynamic / Static?

- *Dynamic* means that the variables θ and $\dot{\theta} \triangleq d\theta(t)/dt$, which define the *state* of the arm at a given instant of time t, have a non-instantaneous dependency on the control torque u. A dynamic system is said to possess memory, i.e. its output depends also on previous inputs.

- A system that is *not* dynamic is called *static*. In a static system the output has an instantaneous dependency on the evolution of the input. Static systems are also called *memoryless*.
A Taxonomy of Systems

Causal?

- *Causal* means that the output of the system at a given instant of time only depends on present and past values of the input, and not on future values.
A Taxonomy of Systems

Causal?

- *Causal* means that the output of the system at a given instant of time only depends on present and past values of the input, and not on future values.

- In a causal system the output cannot anticipate or predict future values of the input.
A Taxonomy of Systems

Causal?

- *Causal* means that the output of the system at a given instant of time only depends on present and past values of the input, and not on future values.

- In a causal system the output cannot anticipate or predict future values of the input.

- All real physical systems are causal.
A Taxonomy of Systems

Causal?

- *Causal* means that the output of the system at a given instant of time only depends on present and past values of the input, and not on future values.

- In a causal system the output cannot anticipate or predict future values of the input.

- All real physical systems are causal.

- The current output of a causal dynamic system always depends on past values of the input. But how far back in time do these past values still have an effect on the output?
Causal?

- *Causal* means that the output of the system at a given instant of time only depends on present and past values of the input, and not on future values.

- In a causal system the output cannot anticipate or predict future values of the input.

- All real physical systems are causal.

- The current output of a causal dynamic system always depends on past values of the input. But how far back in time do these past values still have an effect on the output?

 - Strictly, we would need to go back in time up to $t = -\infty$, which is not very practical. This difficulty is resolved with the concept of *state*.

A Taxonomy of Systems

State?

- The *state* \(x(t_0) \) of a system at the time instant \(t_0 \) is the information that together with the input \(u(t) \) for \(t \geq t_0 \) univocally determines the output \(y(t) \) for all \(t \geq t_0 \).
A Taxonomy of Systems

State?

- The state $x(t_0)$ of a system at the time instant t_0 is the information that together with the input $u(t)$ for $t \geq t_0$ univocally determines the output $y(t)$ for all $t \geq t_0$.

- The state $x(t_0)$ summarises all the system history from $t = -\infty$ to t_0, e.g. with the knowledge of the angle θ and the angular velocity $\dot{\theta}$ at time t_0, we can predict the response of the robot arm to torque inputs u for all time $t \geq t_0$.

State?

- The state $x(t_0)$ of a system at the time instant t_0 is the information that together with the input $u(t)$ for $t \geq t_0$ univocally determines the output $y(t)$ for all $t \geq t_0$.

- The state $x(t_0)$ summarises all the system history from $t = -\infty$ to t_0, e.g. with the knowledge of the angle θ and the angular velocity $\dot{\theta}$ at time t_0, we can predict the response of the robot arm to torque inputs u for all time $t \geq t_0$.

- The input at $t \geq t_0$ and the initial conditions $x(t_0)$ determine the evolution of the system for $t \geq t_0$, which we could represent as

$$y(t), \ t \geq t_0 \iff \begin{cases} x(t_0) \\ u(t), \ t \geq t_0 \end{cases}$$
A Taxonomy of Systems

Finite-dimensional?

- Means that the state $x(t)$ at any given instant of time t can be completely characterised by a finite number of parameters.
A Taxonomy of Systems

Finite-dimensional?

- Means that the state \(x(t) \) at any given instant of time \(t \) can be completely characterised by a finite number of parameters.

- In the case of the robot arm, two parameters: angle \(\theta \) and angular velocity \(\dot{\theta} \).
A Taxonomy of Systems

Continuous-time?

- Means that the independent variable, time t, takes values in a *continuum*, the set of real numbers \mathbb{R}.
A Taxonomy of Systems

Continuous-time?

- Means that the independent variable, time t, takes values in a *continuum*, the set of real numbers \mathbb{R}.

- In contrast, a system defined by a *difference equation*, like

$$x[k + 1] = Ax[k] + Bu[k],$$

the independent variable k can, for example, take values only in the set of integers \mathbb{N}, $k = \cdots - 1, 0, 1, 2 \ldots$.
A system is said to be linear if it satisfies the superposition principle, that is, if given two pairs of initial conditions and inputs,

\[y_i(t), \ t \geq t_0 \iff \begin{cases} x_i(t_0) \\ u_i(t), \ t \geq t_0 \end{cases} \quad \text{for } i = 1, 2, \]
Linear Systems

- A system is said to be linear if it satisfies the *superposition principle*, that is, if given two pairs of initial conditions and inputs,

\[
y_i(t), \ t \geq t_0 \iff \begin{cases} x_i(t_0) \\ u_i(t), \ t \geq t_0 \end{cases} \quad \text{for } i = 1, 2,
\]

then we have that

\[
y_1(t) + y_2(t), \ t \geq t_0 \iff \begin{cases} x_1(t_0) + x_2(t_0) \\ u_1(t) + u_2(t), \ t \geq t_0 \end{cases} \quad \text{(additivity)}
\]

\[
\alpha y_i(t), \ t \geq t_0 \iff \begin{cases} \alpha x_i(t_0) \\ \alpha u_i(t), \ t \geq t_0 \end{cases} \quad \alpha \in \mathbb{R} \quad \text{(homogeneity)}
\]
Linear Systems

- The combination of the properties of *additivity* and that of *homogeneity* yields the property of *superposition*.
Linear Systems

- The combination of the properties of additivity and that of homogeneity yields the property of superposition.
- A system that does not satisfy the property of superposition is nonlinear.
Linear Systems

- The combination of the properties of *additivity* and that of *homogeneity* yields the property of *superposition*.

- A system that does not satisfy the property of superposition is nonlinear.

- By the property of additivity we can consider the response of the system to initial conditions independently from that due to inputs.

\[
y(t) = y_l(t) + y_f(t), \quad t \geq t_0
\]

\[
\begin{cases}
\begin{align*}
y_l(t), & \quad t \geq t_0 \\
y_f(t), & \quad t \geq t_0
\end{align*}
\end{cases}
\]

\[
\begin{cases}
\begin{align*}
x(t_0)
\end{align*}
\end{cases}
\]

\[
\begin{cases}
\begin{align*}
u(t) = 0, & \quad t \geq t_0 \\
x(t_0) = 0
\end{align*}
\end{cases}
\]

\[
\begin{cases}
\begin{align*}
u(t), & \quad t \geq t_0
\end{align*}
\end{cases}
\]
Linear Systems

The response of a linear system is the superposition of its *free* response (that to initial conditions only, without external input) and its *forced* response (that to an external input, with zero initial conditions).
A system is \textit{time-invariant} if for each pair of initial conditions and inputs

\[
y(t), \ t \geq t_0 \ \Leftrightarrow \begin{cases}
x(t_0) \\ u(t), \ t \geq t_0
\end{cases}
\]

and each \(T \in \mathbb{R} \), we have that

\[
y(t - T), \ t \geq t_0 + T \ \Leftrightarrow \begin{cases}
x(t_0 + T) \\ u(t - T), \ t \geq t_0 + T
\end{cases}
\]
Linear Time-Invariant Systems

- A system is *time-invariant* if for each pair of initial conditions and inputs

\[
y(t), \ t \geq t_0 \equiv \begin{cases}
 x(t_0) \\
 u(t), \ t \geq t_0
\end{cases}
\]

and each \(T \in \mathbb{R} \), we have that

\[
y(t - T), \ t \geq t_0 + T \equiv \begin{cases}
 x(t_0 + T) \\
 u(t - T), \ t \geq t_0 + T.
\end{cases}
\]

- In other words, the system gives the same response, but shifted in time, that if we apply to it the same input shifted in time, while keeping the same initial conditions.
A system is *time-invariant* if for each pair of initial conditions and inputs

\[y(t), \ t \geq t_0 \ \Leftrightarrow \begin{cases} x(t_0) \\ u(t), \ t \geq t_0 \end{cases} \]

and each \(T \in \mathbb{R} \), we have that

\[y(t - T), \ t \geq t_0 + T \ \Leftrightarrow \begin{cases} x(t_0 + T) \\ u(t - T), \ t \geq t_0 + T \end{cases} \]

In other words, the system gives the same response, but shifted in time, that if we apply to it the same input shifted in time, while keeping the same initial conditions.

A system without this property is called *time-varying*.
Linear Time-Invariant Systems

Input-Output Representation

From the superposition principle, we can obtain the representation of a linear system by the convolution integral

\[y(t) = \int_{-\infty}^{\infty} g(t, \tau) u(\tau) \, d\tau , \]

(1)

where \(g(t, \tau) \) is the impulse response of the system, that is, the output produced by a unitary impulse \(\delta(t) \) applied at the input at the time instant \(\tau \).
Linear Time-Invariant Systems

Input-Output Representation

- From the superposition principle, we can obtain the representation of a linear system by the convolution integral

\[y(t) = \int_{-\infty}^{\infty} g(t, \tau) u(\tau) \, d\tau, \] (2)

where \(g(t, \tau) \) is the impulse response of the system, that is, the output produced by a unitary impulse \(\delta(t) \) applied at the input at the time instant \(\tau \).

- Causality implies that causality \(\Leftrightarrow g(t, \tau) = 0 \) for \(t < \tau \),

and on assuming zero initial conditions, Equation (1) then yields

\[y(t) = \int_{t_0}^{t} g(t, \tau) u(\tau) \, d\tau. \]
Linear Time-Invariant Systems

Input-Output Representation

- When the system has p inputs and q outputs, then we use the *impulse response matrix* $G(t, \tau) \in \mathbb{R}^{q \times p}$.

When the system has p inputs and q outputs, then we use the impulse response matrix $G(t, \tau) \in \mathbb{R}^{q \times p}$.

If the system is time-invariant, then for any T we have that

$$g(t, \tau) = g(t + T, \tau + T) = g(t - \tau, 0),$$

and we can redefine $g(t - \tau, 0)$ simply as $g(t - \tau)$. Thus the input-output representation of the system reduces to

$$y(t) = \int_0^t g(t - \tau) u(\tau) \, d\tau = \int_0^t g(\tau) u(t - \tau) \, d\tau.$$
Linear Time-Invariant Systems

Input-Output Representation

- When the system has p inputs and q outputs, then we use the impulse response matrix $G(t, \tau) \in \mathbb{R}^{q \times p}$.

- If the system is time-invariant, then for any T we have that

 $$g(t, \tau) = g(t + T, \tau + T) = g(t - \tau, 0),$$

 and we can redefine $g(t - \tau, 0)$ simply as $g(t - \tau)$. Thus the input-output representation of the system reduces to

 $$y(t) = \int_0^t g(t - \tau)u(\tau) \, d\tau = \int_0^t g(\tau)u(t - \tau) \, d\tau.$$

- The condition of causality for a linear time-invariant system can be alternatively stated as $g(t) = 0$ for $t < 0$.

Every linear finite-dimensional system can be described by state space equations:

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \]
\[y(t) = C(t)x(t) + D(t)u(t). \]

(3)
Linear Time-Invariant Systems

State Space Representation

- Every linear finite-dimensional system can be described by state space equations

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \]
\[y(t) = C(t)x(t) + D(t)u(t). \] \hspace{1cm} (4)

- For a system with order \(n \), the state vector is a vector of dimensions \(n \times 1 \), that is, it stacks \(n \) state variables, \(x(t) \in \mathbb{R}^n \), for every \(t \). If the system has \(p \) inputs and \(q \) outputs, then \(u(t) \in \mathbb{R}^p \) and \(y(t) \in \mathbb{R}^q \).
Linear Time-Invariant Systems

State Space Representation

- Every linear finite-dimensional system can be described by state space equations

\[
\dot{x}(t) = A(t)x(t) + B(t)u(t) \\
y(t) = C(t)x(t) + D(t)u(t).
\]

(5)

- For a system with order \(n \), the state vector is a vector of dimensions \(n \times 1 \), that is, it stacks \(n \) state variables, \(x(t) \in \mathbb{R}^n \), for every \(t \). If the system has \(p \) inputs and \(q \) outputs, then \(u(t) \in \mathbb{R}^p \) and \(y(t) \in \mathbb{R}^q \).

- The matrices \(A, B, C, D \) are usually called

\[
A \in \mathbb{R}^{n \times n} : \text{evolution matrix} \\
B \in \mathbb{R}^{n \times p} : \text{input matrix} \\
C \in \mathbb{R}^{q \times n} : \text{output matrix} \\
D \in \mathbb{R}^{q \times p} : \text{direct feedthrough matrix}
\]
Linear Time-Invariant Systems

State Space Representation

- When, in addition, the system is time-invariant, then the state space representation (3) reduces to

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t).
\]

(6)
Linear Time-Invariant Systems

State Space Representation

- When, in addition, the system is time-invariant, then the state space representation (3) reduces to

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t).
\]

(8)

- By applying the Laplace transform to (6) we obtain

\[
s\hat{x}(s) - x(0) = A\hat{x}(s) + B\hat{u}(s) \\
\hat{y}(s) = C\hat{x}(s) + D\hat{u}(s),
\]

from which follow

\[
\hat{x}(s) = (sI - A)^{-1}x(0) + (sI - A)^{-1}B\hat{u}(s) \\
\hat{y}(s) = C(sI - A)^{-1}x(0) + [C(sI - A)^{-1}B + D]\hat{u}(s).
\]

(9)
The algebraic equations (7) allow us to compute $\hat{x}(s)$ and $\hat{y}(s)$ from $x(0)$ and $\hat{u}(s)$. Then the inverse Laplace transform will give $x(t)$ and $y(t)$. By letting $x(0) = 0$ we see that the transfer function of the system is

$$\hat{G}(s) = C(sI - A)^{-1}B + D$$
State Space Representation

- The algebraic equations (7) allow us to compute \(\hat{x}(s) \) and \(\hat{y}(s) \) from \(x(0) \) and \(\hat{u}(s) \). Then the inverse Laplace transform will give \(x(t) \) and \(y(t) \). By letting \(x(0) = 0 \) we see that the transfer function of the system is

\[
\hat{G}(s) = C(sI - A)^{-1}B + D
\]

- In MATLAB the functions tf2ss and ss2tf allow us to convert from and to one representation to the other.
State Space Representation

- The algebraic equations (7) allow us to compute \(\hat{x}(s) \) and \(\hat{y}(s) \) from \(x(0) \) and \(\hat{u}(s) \). Then the inverse Laplace transform will give \(x(t) \) and \(y(t) \). By letting \(x(0) = 0 \) we see that the transfer function of the system is

\[
\hat{G}(s) = C(sI - A)^{-1}B + D
\]

- In MATLAB the functions `tf2ss` and `ss2tf` allow us to convert from and to one representation to the other.
- See also the functions `ss`, `tf`, `ssdata` and `tfdata`, for system representations in MATLAB.
Linearisation

Most physical systems are nonlinear. An important class of them can be represented by state space equations in the form

\[
\dot{x}(t) = f(x(t), u(t), x(t_0), t), \quad x(t_0) = x_0 \\
y(t) = h(x(t), u(t), x(t_0), t),
\]

where \(f \) and \(h \) are nonlinear vector fields, that is, in scalar terms, the \(i \)-component of \(\dot{x}(t) \) in (10) is written as

\[
\dot{x}_i(t) = f_i(x_1(t), \ldots, x_n(t); u_1(t), \ldots, u_m(t); x_1(t_0), \ldots, x_n(t_0); t) \quad x_i(t_0) = x_{i0}.
\]
Linearisation

Most physical systems are nonlinear. An important class of them can be represented by state space equations in the form

$$\dot{x}(t) = f(x(t), u(t), x(t_0), t), \quad x(t_0) = x_0$$
$$y(t) = h(x(t), u(t), x(t_0), t),$$

where f and h are nonlinear vector fields, that is, in scalar terms, the i-component of $\dot{x}(t)$ in (10) is written as

$$\dot{x}_i(t) = f_i(x_1(t), \ldots, x_n(t); u_1(t), \ldots, u_m(t); x_1(t_0), \ldots, x_n(t_0); t) \quad x_i(t_0) = x_{i0}.$$

A linear state space equation is a useful tool to describe systems like (10) in an approximate way.
Linearisation

- Most physical systems are nonlinear. An important class of them can be represented by state space equations in the form

\[\dot{x}(t) = f(x(t), u(t), x(t_0), t), \quad x(t_0) = x_0 \]
\[y(t) = h(x(t), u(t), x(t_0), t), \]

(12)

where \(f \) and \(h \) are nonlinear vector fields, that is, in scalar terms, the \(i \)-component of \(\dot{x}(t) \) in (10) is written as

\[\dot{x_i}(t) = f_i(x_1(t), \ldots, x_n(t); u_1(t), \ldots, u_m(t); x_1(t_0), \ldots, x_n(t_0); t) \quad x_i(t_0) = x_{i0}. \]

- A linear state space equation is a useful tool to describe systems like (10) in an *approximate* way.

- The process of obtaining a linear model from a nonlinear one is called *linearisation*.
Linearisation

- The linearisation is performed around a nominal point or trajectory, defined by nominal values \(\tilde{x}(t) \), \(\tilde{x}_0 \) and \(\tilde{u}(t) \) that satisfy (10),

\[
\tilde{x}(t), \; t \geq t_0 \iff \begin{cases} \tilde{x}(t_0) \\ \tilde{u}(t), \; t \geq t_0 \end{cases}
\]
Linearisation

- The linearisation is performed around a nominal point or trajectory, defined by nominal values $\tilde{x}(t)$, \tilde{x}_0 and $\tilde{u}(t)$ that satisfy (10),

 $$\tilde{x}(t), \ t \geq t_0 \iff \begin{cases} \tilde{x}(t_0) \\ \tilde{u}(t), \ t \geq t_0 \end{cases}$$

- We are interested in the behaviour of the nonlinear differential equation (10) for an input and initial state which are “close” to the nominal values, that is, $u(t) = \tilde{u}(t) + u_\delta(t)$ and $x_0 = \tilde{x}_0 + x_{0\delta}$ for $u_\delta(t)$ and $x_{0\delta}$ sufficiently small for all $t \geq t_0$.

Linearisation

- The linearisation is performed around a nominal point or trajectory, defined by nominal values $\tilde{x}(t)$, \tilde{x}_0 and $\tilde{u}(t)$ that satisfy (10),

$$\tilde{x}(t), \ t \geq t_0 \Leftrightarrow \begin{cases} \tilde{x}(t_0) \\ \tilde{u}(t), \ t \geq t_0 \end{cases}$$

- We are interested in the behaviour of the nonlinear differential equation (10) for an input and initial state which are “close” to the nominal values, that is, $u(t) = \tilde{u}(t) + u_\delta(t)$ and $x_0 = \tilde{x}_0 + x_0\delta$ for $u_\delta(t)$ and $x_0\delta$ sufficiently small for all $t \geq t_0$.

![Diagram showing linearisation process]
Linearisation

Suppose that the solution stays close to the nominal trajectory, and write \(x(t) = \bar{x}(t) + x_\delta(t) \) for each \(t \geq t_0 \).
Linearisation

- Suppose that the solution stays close to the nominal trajectory, and write \(x(t) = \tilde{x}(t) + x_\delta(t) \) for each \(t \geq t_0 \).

- In terms of the nonlinear state space equation (10) we have

\[
\dot{\tilde{x}}(t) + \dot{x_\delta}(t) = f(\tilde{x}(t) + x_\delta(t), \tilde{u}(t) + u_\delta(t), t), \quad \tilde{x}(t_0) + x_\delta(t_0) = \tilde{x}_0 + x_0\delta \quad (15)
\]
Linearisation

- Suppose that the solution stays close to the nominal trajectory, and write \(x(t) = \ddot{x}(t) + x_\delta(t) \) for each \(t \geq t_0 \).

- In terms of the nonlinear state space equation (10) we have

\[
\dot{x}(t) + \dot{x}_\delta(t) = f(\ddot{x}(t) + x_\delta(t), \ddot{u}(t) + u_\delta(t), t), \quad \ddot{x}(t_0) + x_\delta(t_0) = \ddot{x}_0 + x_{0\delta} \tag{17}
\]

- Assuming differentiability, we can expand the right hand side of (13) in Taylor series around \(\ddot{x}(t) \) and \(\ddot{u}(t) \), keeping only the first order terms. Note that the expansion is performed in terms of \(x \) and \(u \), and not for the independent variable \(t \).
Linearisation

- Suppose that the solution stays close to the nominal trajectory, and write \(x(t) = \tilde{x}(t) + x_\delta(t) \) for each \(t \geq t_0 \).

- In terms of the nonlinear state space equation (10) we have
 \[
 \dot{x}(t) + \dot{x}_\delta(t) = f(\tilde{x}(t) + x_\delta(t), \tilde{u}(t) + u_\delta(t), t), \quad \tilde{x}(t_0) + x_\delta(t_0) = \tilde{x}_0 + x_{0\delta} \quad (19)
 \]

- Assuming differentiability, we can expand the right hand side of (13) in Taylor series around \(\tilde{x}(t) \) and \(\tilde{u}(t) \), keeping only the first order terms. *Note* that the expansion is performed in terms of \(x \) and \(u \), and not for the independent variable \(t \).

- We make the operation more explicit for the \(i \)-component, which yields
 \[
 f_i(\tilde{x} + x_\delta, \tilde{u} + u_\delta, t) \approx f_i(\tilde{x}, \tilde{u}, t) + \frac{\partial f_i}{\partial x_1}(\tilde{x}, \tilde{u}, t)x_{\delta 1} + \cdots + \frac{\partial f_i}{\partial x_n}(\tilde{x}, \tilde{u}, t)x_{\delta n} \\
 + \frac{\partial f_i}{\partial u_1}(\tilde{x}, \tilde{u}, t)u_{\delta 1} + \cdots + \frac{\partial f_i}{\partial u_m}(\tilde{x}, \tilde{u}, t)u_{\delta m} \quad (20)
 \]
Linearisation

- By repeating this operation for each \(i = 1, \ldots, n \), and returning to the vectorial notation, we have

\[
\dot{x}(t) + \dot{x}_\delta(t) \approx f(\tilde{x}(t), \tilde{u}(t)) + \frac{\partial f}{\partial x}(\tilde{x}, \tilde{u}, t)x_\delta + \frac{\partial f}{\partial u}(\tilde{x}, \tilde{u}, t)u_\delta
\]

where \(\frac{\partial f}{\partial x} \) represents the \textit{Jacobian}, or \textit{Jacobian Matrix}, of the vector field \(f \) with respect to \(x \),

\[
\frac{\partial f}{\partial x} \triangleq \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}
\]
Linearisation

Since \(\dot{x}(t) = f(\bar{x}(t), \bar{u}(t), t) \), \(\bar{x}(t_0) = \bar{x}_0 \), the relation between \(x_\delta(t) \) and \(u_\delta(t) \) (the incremental model) is approximately described by a linear, time-varying state equation of the form

\[
\dot{x}_\delta(t) = A(t)x_\delta(t) + B(t)u_\delta(t), \quad x_\delta(t_0) = x_0 - \bar{x}_0
\]

where

\[
A(t) = \frac{\partial f}{\partial x}(\bar{x}(t), \bar{u}(t), t), \quad B(t) = \frac{\partial f}{\partial u}(\bar{x}(t), \bar{u}(t), t).
\]
Linearisation

Since \(\dot{x}(t) = f(\tilde{x}(t), \tilde{u}(t), t) \), \(\tilde{x}(t_0) = \tilde{x}_0 \), the relation between \(x_\delta(t) \) and \(u_\delta(t) \) (the incremental model) is approximately described by a linear, time-varying state equation of the form

\[
\dot{x}_\delta(t) = A(t)x_\delta(t) + B(t)u_\delta(t), \quad x_\delta(t_0) = x_0 - \tilde{x}_0
\]

where

\[
A(t) = \frac{\partial f}{\partial x}(\tilde{x}(t), \tilde{u}(t), t), \quad B(t) = \frac{\partial f}{\partial u}(\tilde{x}(t), \tilde{u}(t), t).
\]

In the same way we can expand the output equation

\(y(t) = h(x(t), u(t), t) \), from which we obtain the linear approximation

\[
y_\delta(t) = C(t)x_\delta(t) + D(t)u_\delta(t),
\]

where \(y_\delta(t) = y(t) - \tilde{y}(t) \), with \(\tilde{y}(t) = h(\tilde{x}(t), \tilde{u}(t), t) \) and

\[
C(t) = \frac{\partial h}{\partial x}(\tilde{x}(t), \tilde{u}(t), t), \quad D(t) = \frac{\partial h}{\partial u}(\tilde{x}(t), \tilde{u}(t), t).
\]
Linearisation

Note that the state equations obtained by linearisation will in general be *time-varying*, even when the original vector fields f and h were time-invariant, because the Jacobian matrices are evaluated along trajectories, and not stationary points.
Discrete-Time Systems

Most of the state space concepts for linear continuous-time systems can be directly translated to discrete-time systems, described by *linear difference equations*. In this case the time variable t only takes values on a denumerable set, like the integers.
Discrete-Time Systems

- Most of the state space concepts for linear continuous-time systems can be directly translated to discrete-time systems, described by *linear difference equations*. In this case the time variable \(t \) only takes values on a denumerable set, like the integers.

- When the discrete-time system is obtained from sampling a continuous-time system, we will only consider *regular* sampling, where \(t = kT, \ k = 0, 1, 2, \ldots \), and \(T \) is the *sampling period*. In this case we denote the discrete-time variables (sequences) as \(u[k] \triangleq u(kT) \), etc.
Discrete-Time Systems

- Most of the state space concepts for linear continuous-time systems can be directly translated to discrete-time systems, described by linear difference equations. In this case the time variable \(t \) only takes values on a denumerable set, like the integers.

- When the discrete-time system is obtained from sampling a continuous-time system, we will only consider regular sampling, where \(t = kT, \ k = 0, 1, 2, \ldots \), and \(T \) is the sampling period. In this case we denote the discrete-time variables (sequences) as \(u[k] \triangleq u(kT) \), etc.

- The concepts of finite dimensionality, causality, linearity and the superposition principle for responses to initial conditions and inputs are exactly the same as those in the continuous-time case.
Discrete-Time Systems

- Most of the state space concepts for linear continuous-time systems can be directly translated to discrete-time systems, described by linear difference equations. In this case the time variable t only takes values on a denumerable set, like the integers.

- When the discrete-time system is obtained from sampling a continuous-time system, we will only consider regular sampling, where $t = kT$, $k = 0, 1, 2, \ldots$, and T is the sampling period. In this case we denote the discrete-time variables (sequences) as $u[k] \triangleq u(kT)$, etc.

- The concepts of finite dimensionality, causality, linearity and the superposition principle for responses to initial conditions and inputs are exactly the same as those in the continuous-time case.

- One difference though: pure delays in discrete-time do not give rise to an infinite-dimensional system, as is the case of continuous-time systems, if the delay is a multiple of the sampling period T.
We define the *impulse sequence* $\delta[k]$ as

$$\delta[k - m] = \begin{cases}
1 & \text{if } k = m \\
0 & \text{if } k \neq m
\end{cases}$$

where k and m are integers.
Input-Output Representation

- We define the *impulse sequence* $\delta[k]$ as

$$
\delta[k - m] = \begin{cases}
1 & \text{if } k = m \\
0 & \text{if } k \neq m
\end{cases}
$$

where k and m are integers.

- Note how in the discrete-time case impulses are easy to implement physically, in contrast to the continuous-time case.
Discrete-Time Systems

Input-Output Representation

- We define the impulse sequence $\delta[k]$ as

$$
\delta[k - m] = \begin{cases}
1 & \text{if } k = m \\
0 & \text{if } k \neq m
\end{cases}
$$

where k and m are integers.

- Note how in the discrete-time case impulses are easy to implement physically, in contrast to the continuous-time case.

- In a discrete-time linear system every input sequence $u[k]$ can be represented by means of the series

$$
u[k] = \sum_{m=-\infty}^{\infty} u[m] \delta[k - m].$$
If $g[k, m]$ denotes the output of a discrete time system to an impulse sequence applied at the instant m, then we have that

$$\delta[k - m] \rightarrow g[k, m]$$

$$\delta[k, m]u[m] \rightarrow g[k, m]u[m] \quad \text{(by homogeneity)}$$

$$\sum_m \delta[k, m]u[m] \rightarrow \sum_m g[k, m]u[m] \quad \text{(by additivity)}.$$
Discrete-Time Systems

Input-Output Representation

- If $g[k, m]$ denotes the output of a discrete time system to an impulse sequence applied at the instant m, then we have that

\[
\delta[k - m] \rightarrow g[k, m]
\]

\[
\delta[k, m]u[m] \rightarrow g[k, m]u[m] \quad \text{(by homogeneity)}
\]

\[
\sum_m \delta[k, m]u[m] \rightarrow \sum_m g[k, m]u[m] \quad \text{(by additivity)}.
\]

- Thus the output $y[k]$ obtained from the input $u[k]$ can be written by means of the series

\[
y[k] = \sum_{m=-\infty}^{\infty} g[k, m]u[m].
\] (22)
Discrete-Time Systems

Input-Output Representation

- If the system is *causal* there wouldn’t be output signal before the input is applied, hence

\[
\text{causality} \iff g[k, m] = 0 \text{ for } k < m.
\]
Discrete-Time Systems

Input-Output Representation

- If the system is *causal* there wouldn’t be output signal before the input is applied, hence

 \[
 \text{causality } \iff g[k, m] = 0 \text{ for } k < m.
 \]

- For *causal* discrete-time systems the representation (21) reduces to

 \[
 y[k] = \sum_{m=k_0}^{k} g[k, m]u[m],
 \]

 and, if in addition we have *time-invariance*, the property of invariance with respect to shifts in time holds, and thus we arrive to the system representation by the *discrete convolution*

 \[
 y[k] = \sum_{m=0}^{k} g[k - m]u[m] = \sum_{m=0}^{k} g[m]u[k - m].
 \]
State Space Representation

- Every discrete-time, finite dimensional, linear system can be represented by state space difference equations, as in

\[
\begin{align*}
x[k + 1] &= A[k]x[k] + B[k]u[k] \\
y[k] &= C[k]x[k] + D[k]u[k],
\end{align*}
\]

and in the time-invariant case

\[
\begin{align*}
x[k + 1] &= Ax[k] + Bu[k] \\
y[k] &= Cx[k] + Du[k].
\end{align*}
\]
Discrete-Time Systems

State Space Representation

In this case, it corresponds to talk about discrete transfer functions, \(\hat{G}(z) = Z[g[k]] \). The relation between discrete transfer function representation and state space representation is identical to the continuous-time case,

\[
\hat{G}(z) = C(zI - A)^{-1}B + D,
\]

and the same MATLAB functions can be used.
A Few General Facts to Remember

- A transfer matrix is *rational* if and only if the corresponding system is linear, time-invariant and finite-dimensional.
A Few General Facts to Remember

- A transfer matrix is *rational* if and only if the corresponding system is linear, time-invariant and finite-dimensional.
- Input-output representations usually assume zero initial conditions.
A Few General Facts to Remember

- A transfer matrix is *rational* if and only if the corresponding system is linear, time-invariant and finite-dimensional.
- Input-output representations usually assume zero initial conditions.
- Infinite-dimensional systems cannot be represented by state space equations (they would require an infinite number of them).
A Few General Facts to Remember

- A transfer matrix is *rational* if and only if the corresponding system is linear, time-invariant and finite-dimensional.

- Input-output representations usually assume zero initial conditions.

- Infinite-dimensional systems cannot be represented by state space equations (they would require an infinite number of them).

- By linearisation, one can describe the behaviour of a nonlinear system *approximately* by means of an incremental linear state space model.
A Few General Facts to Remember

- A transfer matrix is *rational* if and only if the corresponding system is linear, time-invariant and finite-dimensional.
- Input-output representations usually assume zero initial conditions.
- Infinite-dimensional systems cannot be represented by state space equations (they would require an infinite number of them).
- By linearisation, one can describe the behaviour of a nonlinear system *approximately* by means of an incremental linear state space model.
- Linearisation is performed around a known *nominal trajectory*, and the incremental models obtained will, in general, be *time-varying*.
A Few General Facts to Remember

- A transfer matrix is *rational* if and only if the corresponding system is linear, time-invariant and finite-dimensional.
- Input-output representations usually assume zero initial conditions.
- Infinite-dimensional systems cannot be represented by state space equations (they would require an infinite number of them).
- By linearisation, one can describe the behaviour of a nonlinear system *approximately* by means of an incremental linear state space model.
- Linearisation is performed around a known *nominal trajectory*, and the incremental models obtained will, in general, be *time-varying*.
- Discrete-time systems have representations equivalent to those of continuous-time systems by *convolution series*, transfer functions in the discrete \mathcal{Z} transform, and state space difference equations.
A Few General Facts to Remember

- A transfer matrix is *rational* if and only if the corresponding system is linear, time-invariant and finite-dimensional.
- Input-output representations usually assume zero initial conditions.
- Infinite-dimensional systems cannot be represented by state space equations (they would require an infinite number of them).
- By linearisation, one can describe the behaviour of a nonlinear system *approximately* by means of an incremental linear state space model.
- Linearisation is performed around a known *nominal trajectory*, and the incremental models obtained will, in general, be *time-varying*.
- Discrete-time systems have representations equivalent to those of continuous-time systems by *convolution series*, transfer functions in the discrete Z transform, and state space difference equations.
- In contrast to the continuous time case, pure delays do not necessarily give rise to an infinite-dimensional discrete-time system.
A Few General Facts to Remember

<table>
<thead>
<tr>
<th>Type of system</th>
<th>Internal representation</th>
<th>External representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>infinite dim. linear</td>
<td>(y(t) = \int_{t_0}^{t} G(t, \tau)u(\tau)d\tau)</td>
<td></td>
</tr>
<tr>
<td>finite dim., linear</td>
<td>(\dot{x} = A(t)x + B(t)u)</td>
<td>(y(t) = \int_{t_0}^{t} G(t, \tau)u(\tau)d\tau)</td>
</tr>
<tr>
<td></td>
<td>(y = C(t)x + D(t)u)</td>
<td></td>
</tr>
<tr>
<td>infinite dim. LTI</td>
<td>(y(t) = \int_{t_0}^{t} G(t, \tau)u(\tau)d\tau)</td>
<td>(\hat{y}(s) = \hat{G}(s)\hat{u}(s))</td>
</tr>
<tr>
<td>finite dim., LTI</td>
<td>(\dot{x} = Ax + Bu)</td>
<td>(y(t) = \int_{t_0}^{t} G(t, \tau)u(\tau)d\tau)</td>
</tr>
<tr>
<td></td>
<td>(y = Cx + Du)</td>
<td>(\hat{y}(s) = \hat{G}(s)\hat{u}(s))</td>
</tr>
</tbody>
</table>