Outline

- Review Affine Parameterisation.
Outline

- Review Affine Parameterisation.
- Reference Feedforward.
Outline

- Review Affine Parameterisation.
- Reference Feedforward.
- Disturbance Feedforward.
Outline

- Review Affine Parameterisation.
- Reference Feedforward.
- Disturbance Feedforward.
- Cascade Control.
Outline

- Review Affine Parameterisation.
- Reference Feedforward.
- Disturbance Feedforward.
- Cascade Control.

All sensitivity functions are affine in $Q(s)$.

\[
T_o(s) = Q(s)G_o(s) \quad \text{Complementary Sensitivity}
\]
\[
S_o(s) = 1 - Q(s)G_o(s) \quad \text{Sensitivity}
\]
\[
S_{io}(s) = (1 - Q(s)G_o(s))G_o(s) \quad \text{Input Disturbance Sensitivity}
\]
\[
S_{uo}(s) = Q(s) \quad \text{Control Sensitivity}
\]

Unlike the case of $C(s)$, which is nonlinear in the sensitivity functions, making it difficult to tune $C(s)$ to achieve a desired closed loop performance i.e.

\[
T_o(s) = \frac{G_o(s)C(s)}{1 + G_o(s)C(s)}
\]
Review Affine Parameterisation - Open Loop Stable Model

- All sensitivity functions are affine in $Q(s)$.

\[
T_o(s) = Q(s)G_o(s) \quad \text{Complementary Sensitivity}
\]

\[
S_o(s) = 1 - Q(s)G_o(s) \quad \text{Sensitivity}
\]

\[
S_{io}(s) = (1 - Q(s)G_o(s))G_o(s) \quad \text{Input Disturbance Sensitivity}
\]

\[
S_{uo}(s) = Q(s) \quad \text{Control Sensitivity}
\]

Unlike the case of $C(s)$, which is nonlinear in the sensitivity functions, making it difficult to tune $C(s)$ to achieve a desired closed loop performance i.e.

\[
T_o(s) = \frac{G_o(s)C(s)}{1 + G_o(s)C(s)}
\]

- The nominal loop is internally stable if and only if $Q(s)$ is a stable and proper transfer function and $C(s)$ is

\[
C(s) = \frac{Q(s)}{1 - Q(s)G_o(s)}
\]
Affine Parameterisation in terms of Q

- $R(s)$ to $Q(s)$
- $Q(s)$ to $U(s)$
- $U(s)$ to Plant
- Plant to $Y(s)$
- $D_i(s)$ to $Q(s)$
- $D_0(s)$ to Plant

The University of Newcastle

Lecture 5: Reference & Disturbance Feedforward. Cascade Control – p. 4/21
Affine Parameterisation in terms of Q

Affine Parameterisation in terms of C

$$C = \frac{Q(s)}{1-Q(s)G_0(s)}$$
By use of $Q(s)$ we can shape 1 of 4 nominal sensitivities.

- $T_o(s) = Q(s)G_o(s)$
 Complementary Sensitivity
- $S_o(s) = 1 - Q(s)G_o(s)$
 Sensitivity
- $S_{io}(s) = (1 - Q(s)G_o(s))G_o(s)$
 Input Disturbance Sensitivity
- $S_{uo}(s) = Q(s)$
 Control Sensitivity
By use of $Q(s)$ we can shape 1 of 4 nominal sensitivities.

$$T_o(s) = Q(s)G_o(s)$$ \hspace{1cm} \text{Complementary Sensitivity}

$$S_o(s) = 1 - Q(s)G_o(s)$$ \hspace{1cm} \text{Sensitivity}

$$S_{io}(s) = (1 - Q(s)G_o(s))G_o(s)$$ \hspace{1cm} \text{Input Disturbance Sensitivity}

$$S_{uo}(s) = Q(s)$$ \hspace{1cm} \text{Control Sensitivity}

Some trade-offs with respect to bandwidth of the closed loop that need to be considered are: reference tracking ($B.W \uparrow$), measurement noise ($B.W \downarrow$), modelling errors ($B.W \downarrow$), output disturbance rejection ($B.W \uparrow$) and the controller output ($B.W \downarrow$).
Review Affine Parameterisation - Open Loop
Stable Model

- By use of $Q(s)$ we can shape 1 of 4 nominal sensitivities.

\[
T_o(s) = Q(s)G_o(s) \quad \text{Complementary Sensitivity}
\]
\[
S_o(s) = 1 - Q(s)G_o(s) \quad \text{Sensitivity}
\]
\[
S_{io}(s) = (1 - Q(s)G_o(s))G_o(s) \quad \text{Input Disturbance Sensitivity}
\]
\[
S_{uo}(s) = Q(s) \quad \text{Control Sensitivity}
\]

- Some trade-offs with respect to bandwidth of the closed loop that need
 to be considered are: reference tracking ($B.W \uparrow$), measurement
 noise ($B.W \downarrow$), modelling errors ($B.W \downarrow$), output disturbance rejection ($B.W \uparrow$)
 and the controller output ($B.W \downarrow$).

- We know inversion is a key idea of control.
One way to design $Q(s)$ is

$$Q(s) = F_Q(s)[G_o(s)]^{-1}$$

However, recall, it is not always possible to invert $G_o(s)$ exactly. Therefore use $G_o^i(s)$ which is a stable approximation to $[G_o(s)]^{-1}$

$$Q(s) = F_Q(s)G_o^i(s)$$
One way to design $Q(s)$ is

$$Q(s) = F_Q(s)[G_o(s)]^{-1}$$

However, recall, it is not always possible to invert $G_o(s)$ exactly. Therefore use $G_o^i(s)$ which is a stable approximation to $[G_o(s)]^{-1}$

$$Q(s) = F_Q(s)G_o^i(s)$$

Use $F_Q(s)$ to ensure properness of $Q(s)$.
One way to design $Q(s)$ is

$$Q(s) = F_Q(s)[G_o(s)]^{-1}$$

However, recall, it is not always possible to invert $G_o(s)$ exactly. Therefore use $G_o^i(s)$ which is a stable approximation to $[G_o(s)]^{-1}$

$$Q(s) = F_Q(s)G_o^i(s)$$

Use $F_Q(s)$ to ensure properness of $Q(s)$.

Note that the characteristic equation of $F_Q(s)$ will also be the characteristic equation of $T_o(s)$ (and of $S_o(s)$) if all the stable poles of $G_o(s)$ are included in the approximate inversion.
What about $S_{io}(s)$? We can see that the poles of $G_o(s)$ will appear in it. These poles will only be controllable from the disturbance!

$$S_{io}(s) = (1 - Q(s)G_o(s))G_o(s)$$
What about $S_{io}(s)$? We can see that the poles of $G_o(s)$ will appear in it. These poles will only be controllable from the disturbance!

$$S_{io}(s) = (1 - Q(s)G_o(s))G_o(s)$$

What can we do about this? Slow poles in $G_o(s)$ will cause a transient associated with an input disturbance to decay at a rate dictated by these modes. The fix, essentially adding zeros to $S_o(s)$ at the location of the poles in $G_o(s)$ to be cancelled.
What about time delay, $e^{-s\tau}$? For small τ, use Padé approximation to model delay. Otherwise use Smith controller design, where $Q(s)$ is based on the rational part of the model only.

$$G_o(s) = e^{-s\tau} \bar{G}_o(s) \text{ and}$$

$$Q(s) = F_Q(s) \bar{G}_o(s)$$
What about time delay, $e^{-s\tau}$? For small τ, use Padé approximation to model delay. Otherwise use Smith controller design, where $Q(s)$ is based on the rational part of the model only.

$$G_o(s) = e^{-s\tau} \tilde{G}_o(s) \text{ and } Q(s) = F_Q(s) \tilde{G}_o(s)$$

Smith Controller in Q Parameterisation Form
A disadvantage of a one-degree-of-freedom control system is that the performance criteria that can be realised are limited.
A disadvantage of a one-degree-of-freedom control system is that the performance criteria that can be realised are limited.

For example: if the roots of the characteristic equation are selected to provide a certain amount of relative damping, the maximum overshoot of the step response may still be excessive, owing to the zeros in the closed loop transfer function.
A disadvantage of a one-degree-of-freedom control system is that the performance criteria that can be realised are limited.

For example: if the roots of the characteristic equation are selected to provide a certain amount of relative damping, the maximum overshoot of the step response may still be excessive, owing to the zeros in the closed loop transfer function.

Reference Feedforward can help reduce this and other effects as we will see.
Reference Feedforward

- Reference Feedforward is also known as the 2nd degree-of-freedom control.
Reference Feedforward

- Reference Feedforward is also known as the 2nd degree-of-freedom control.

- We can use a two-degree-of-freedom architecture to improve reference tracking.
Reference Feedforward

- Reference Feedforward is also known as the 2nd degree-of-freedom control.

- We can use a two-degree-of-freedom architecture to improve reference tracking.

- Consider the two-degree-of-freedom architecture:
Reference Feedforward

- Reference Feedforward is also known as the 2nd degree-of-freedom control.

- We can use a two-degree-of-freedom architecture to improve reference tracking.

- Consider the two-degree-of-freedom architecture:

The Feedforward control element is in the forward path of the feedback loop.
Reference Feedforward

- The tracking performance can be quantified through the following equations (assuming the disturbances \(D_i(s)\) and \(D_o(s)\) are zero):

\[
Y(s) = H(s)T_o(s)R(s)
\]

\[
U(s) = H(s)S_{uo}(s)R(s)
\]
Reference Feedforward

The tracking performance can be quantified through the following equations (assuming the disturbances $D_i(s)$ and $D_o(s)$ are zero):

$$Y(s) = H(s)T_o(s)R(s)$$
$$U(s) = H(s)S_{uo}(s)R(s)$$
Reference Feedforward

Another way of describing the flexibility of the two-degree-of-freedom controller is that the controller $C(s)$ is usually designed to provide a certain degree of system stability and performance, but since the zeros of $C(s)$ always become the zeros of the closed loop transfer function, unless some zeros are cancelled by the poles of the process, these zeros may cause a large overshoot in the system output even when the relative damping as determined by the characteristic equation is satisfactory.
Reference Feedforward

- Another way of describing the flexibility of the two-degree-of-freedom controller is that the controller $C(s)$ is usually designed to provide a certain degree of system stability and performance, but since the zeros of $C(s)$ always become the zeros of the closed loop transfer function, unless some zeros are cancelled by the poles of the process, these zeros may cause a large overshoot in the system output even when the relative damping as determined by the characteristic equation is satisfactory.

- In this case and for other reasons, the transfer function $H(s)$ may be used for the control or cancellation of the undesirable poles or zeros of the closed loop transfer function, while keeping the characteristic equation intact.
Another way of describing the flexibility of the two-degree-of-freedom controller is that the controller $C(s)$ is usually designed to provide a certain degree of system stability and performance, but since the zeros of $C(s)$ always become the zeros of the closed loop transfer function, unless some zeros are cancelled by the poles of the process, these zeros may cause a large overshoot in the system output even when the relative damping as determined by the characteristic equation is satisfactory.

In this case and for other reasons, the transfer function $H(s)$ may be used for the control or cancellation of the undesirable poles or zeros of the closed loop transfer function, while keeping the characteristic equation intact.

Of course we could introduce zeros in $H(s)$ to cancel some of the undesirable poles of the closed loop transfer function that result from the controller $C(s)$.

Reference Feedforward
Reference Feedforward

- The key to the reference feedforward controller is that the controller $H(s)$ is not in the loop of the system, so that it does not affect the roots of the characteristic equation of the original system.
Reference Feedforward

- The key to the reference feedforward controller is that the controller $H(s)$ is not in the loop of the system, so that it does not affect the roots of the characteristic equation of the original system.

- The poles and zeros of $H(s)$ may be selected to add to or cancel poles and zeros of the closed loop transfer function, $T_o(s)$.
Reference Feedforward

- The key to the reference feedforward controller is that the controller $H(s)$ is not in the loop of the system, so that it does not affect the roots of the characteristic equation of the original system.

- The poles and zeros of $H(s)$ may be selected to add to or cancel poles and zeros of the closed loop transfer function, $T_o(s)$.

- The essential idea of reference feedforward is to use $H(s)$ to invert $T_o(s)$ at certain key frequencies.
Reference Feedforward

- The key to the reference feedforward controller is that the controller $H(s)$ is not in the loop of the system, so that it does not affect the roots of the characteristic equation of the original system.

- The poles and zeros of $H(s)$ may be selected to add to or cancel poles and zeros of the closed loop transfer function, $T_o(s)$.

- The essential idea of reference feedforward is to use $H(s)$ to invert $T_o(s)$ at certain key frequencies.

- Note that, by this strategy, one can avoid using high gain feedback to bring $T_o(\omega_i)$ to 1.
Reference Feedforward

- The key to the reference feedforward controller is that the controller $H(s)$ is not in the loop of the system, so that it does not affect the roots of the characteristic equation of the original system.

- The poles and zeros of $H(s)$ may be selected to add to or cancel poles and zeros of the closed loop transfer function, $T_o(s)$.

- The essential idea of reference feedforward is to use $H(s)$ to invert $T_o(s)$ at certain key frequencies.

- Note that, by this strategy, one can avoid using high gain feedback to bring $T_o(\omega_i)$ to 1.

- Note, however, that use of reference feedforward in this way does not provide perfect tracking if there is a change in the model.
Recall,

\[
\frac{Y(s)}{R(s)} = H(s)T_o(s) \quad \text{and} \quad T_o(s) = \frac{G(s)C(s)}{1 + G(s)C(s)}
\]
Recall,

\[\frac{Y(s)}{R(s)} = H(s)T_0(s) \quad \text{and} \quad T_0(s) = \frac{G(s)C(s)}{1 + G(s)C(s)} \]

Also,

\[\frac{U(s)}{R(s)} = H(s)S_{uo}(s) \]
Reference Feedforward

Recall,

\[
\frac{Y(s)}{R(s)} = H(s)T_o(s) \quad \text{and} \quad T_o(s) = \frac{G(s)C(s)}{1 + G(s)C(s)}
\]

Also,

\[
\frac{U(s)}{R(s)} = H(s)S_{uo}(s)
\]

Can now shape the sensitivity from \(R(s)\) to \(Y(s)\) independent of the other sensitivities.
Reference Feedforward

- Performance of loop can be made robust by choosing B.W. of $T_o(s)$ small.
Reference Feedforward

- Performance of loop can be made robust by choosing B.W. of $T_o(s)$ small.

- Again key idea \Rightarrow Inversion. However we now invert $T_o(s)$

$$H(s) = F_R(s)[T_o(s)]^{-1}$$
Reference Feedforward

- Performance of loop can be made robust by choosing B.W. of $T_o(s)$ small.

- Again key idea ⇒ Inversion. However we now invert $T_o(s)$

$$H(s) = F_R(s)[T_o(s)]^{-1}$$

- $H(s)$ needs to be stable and proper.
Reference Feedforward

- Performance of loop can be made robust by choosing B.W. of $T_o(s)$ small.

- Again key idea \Rightarrow Inversion. However we now invert $T_o(s)$

$$H(s) = F_R(s)[T_o(s)]^{-1}$$

- $H(s)$ needs to be stable and proper.

- For regulators, which have constant set points, has no benefit.
Reference Feedforward

- Performance of loop can be made robust by choosing B.W. of $T_o(s)$ small.

- Again key idea \Rightarrow Inversion. However we now invert $T_o(s)$

$$H(s) = F_R(s)[T_o(s)]^{-1}$$

- $H(s)$ needs to be stable and proper.

- For regulators, which have constant set points, has no benefit.

- Good for set point tracking loops.
Disturbance Feedforward

- Disturbance Feedforward is also known as the 3rd degree-of-freedom control. Note that it only uses two-degrees-of-freedom in the control.
Disturbance Feedforward

- Disturbance Feedforward is also known as the 3rd degree-of-freedom control. Note that it only uses two-degrees-of-freedom in the control.

- If a disturbance can be measured, then feedforward can be applied to improve disturbance rejection.
Disturbance Feedforward

- Disturbance Feedforward is also known as the 3rd degree-of-freedom control. Note that it only uses two-degrees-of-freedom in the control.
- If a disturbance can be measured, then feedforward can be applied to improve disturbance rejection.
- Once again, a key concept is inversion.
Disturbance Feedforward

- Disturbance Feedforward is also known as the 3rd degree-of-freedom control. Note that it only uses two-degrees-of-freedom in the control.
- If a disturbance can be measured, then feedforward can be applied to improve disturbance rejection.
- Once again, a key concept is inversion.
- We want to use the control signal, $U(s)$, to cancel the disturbance, $D_g(s)$, at the point where it enters the process.
Disturbance Feedforward

- Assuming zero reference,

\[Y(s) = S_o(s)G_{o2}(s)(1 + G_{o1}G_f(s))D_g(s). \]
Disturbance Feedforward

- Assuming zero reference,

\[Y(s) = S_o(s)G_{o2}(s)(1 + G_{o1}G_f(s))D_g(s). \]

- Also,

\[U(s) = -S_{uo}(s)(G_{o2}(s) + G_f(s))D_g(s). \]
Disturbance Feedforward

- Assuming zero reference,

\[Y(s) = S_o(s)G_{o2}(s)(1 + G_{o1}G_f(s))D_g(s). \]

- Also,

\[U(s) = -S_{uo}(s)(G_{o2}(s) + G_f(s))D_g(s). \]

- \(G_f(s) \) must be stable and proper (it is open loop control).
Disturbance Feedforward

- Assuming zero reference,
 \[Y(s) = S_o(s)G_{o2}(s)(1 + G_{o1}G_f(s))D_g(s). \]

- Also,
 \[U(s) = -S_{uo}(s)(G_{o2}(s) + G_f(s))D_g(s). \]

- \(G_f(s) \) must be stable and proper (it is open loop control).

- What should \(G_f(s) \) be? To reject disturbances, i.e. \(Y(s) = 0 \), ideally

 \[G_{o1}(s)G_f(s) = -1 \]
 \[\therefore G_f(s) = -[G_{o1}]^{-1} \]
Disturbance Feedforward

- Assuming zero reference,

\[Y(s) = S_o(s)G_{o2}(s)(1 + G_{o1}G_f(s))D_g(s). \]

- Also,

\[U(s) = -S_{uo}(s)(G_{o2}(s) + G_f(s))D_g(s). \]

- \(G_f(s) \) must be stable and proper (it is open loop control).

- What should \(G_f(s) \) be? To reject disturbances, i.e. \(Y(s) = 0 \), ideally

\[G_{o1}(s)G_f(s) = -1 \]

\[\therefore G_f(s) = -[G_{o1}]^{-1} \]

- \(G_f(s) \) would be expected to be high pass as \(G_{o1}(s) \) will typically possess a low pass characteristic. Therefore will have to include “fast” poles in \(G_f(s) \) to make proper.
Disturbance Feedforward

- Assuming zero reference,

\[Y(s) = S_0(s)G_{o2}(s)(1 + G_{o1}G_f(s))D_g(s). \]

- Also,

\[U(s) = -S_{uo}(s)(G_{o2}(s) + G_f(s))D_g(s). \]

- \(G_f(s) \) must be stable and proper (it is open loop control).

- What should \(G_f(s) \) be? To reject disturbances, i.e. \(Y(s) = 0 \), ideally

\[G_{o1}(s)G_f(s) = -1 \]

\[\therefore G_f(s) = -[G_{o1}]^{-1} \]

- \(G_f(s) \) would be expected to be high pass as \(G_{o1}(s) \) will typically possess a low pass characteristic. Therefore will have to include “fast” poles in \(G_f(s) \) to make proper.

- Gives more flexibility in the design as trade-offs can be relaxed.
Cascade Control

- If a measurement of a variable can be made between the point where a disturbance enters the process and the output of the process, then we can utilise feedback for disturbance rejection. This gives rise to “cascade control”.

![Cascade Control Diagram]
Cascade Control

- If a measurement of a variable can be made between the point where a disturbance enters the process and the output of the process, then we can utilise feedback for disturbance rejection. This gives rise to “cascade control”.

- Cascade control usually consists of two feedback loops
Cascade Control

- If a measurement of a variable can be made between the point where a disturbance enters the process and the output of the process, then we can utilise feedback for disturbance rejection. This gives rise to "cascade control".

Cascade control usually consists of two feedback loops
 - Primary (outer) controlled by C_1,

![Cascade Control Diagram]
Cascade Control

- If a measurement of a variable can be made between the point where a disturbance enters the process and the output of the process, then we can utilise feedback for disturbance rejection. This gives rise to "cascade control".

- Cascade control usually consists of two feedback loops
 - Primary (outer) controlled by C_1,
 - Secondary (inner) controlled by C_2.

![Cascade Control Diagram]
Cascade Control

- $C_2(s)$ can be designed to attenuate $D_g(s)$ before it affects the output.
Cascade Control

- $C_2(s)$ can be designed to attenuate $D_g(s)$ before it affects the output.
- Main benefits arise when
Cascade Control

- $C_2(s)$ can be designed to attenuate $D_g(s)$ before it affects the output.
- Main benefits arise when
 - $G_a(s)$ contains nonlinearities that limit the loop performance
Cascade Control

- $C_2(s)$ can be designed to attenuate $D_g(s)$ before it affects the output.
- Main benefits arise when
 - $G_a(s)$ contains nonlinearities that limit the loop performance
 - $G_b(s)$ is N.M.P. and / or contains time delays that limit B.W.
Cascade Control

- The output of the system is given by:

\[
Y(s) = C_2(s)G_0(s)S_{o2}(s)U_1(s) + G_{o2}(s)S_{o2}(s)D_g(s)
\]

\[
G_0(s) = G_{o1}(s)G_{o2}(s)
\]
Cascade Control

- The output of the system is given by:

\[Y(s) = C_2(s)G_o(s)S_{o2}(s)U_1(s) + G_{o2}(s)S_{o2}(s)D_g(s) \]

\[G_o(s) = G_{o1}(s)G_{o2}(s) \]

- This can be re-written as:

\[Y(s) = G_b(s)T_{o2}(s)U_1(s) + G_{o2}(s)S_{o2}(s)D_g(s) \] (3)
Cascade Control

- The output of the system is given by:

\[Y(s) = C_2(s)G_0(s)S_{o2}(s)U_1(s) + G_{o2}(s)S_{o2}(s)D_g(s) \]

\[G_0(s) = G_{o1}(s)G_{o2}(s) \]

- This can be re-written as:

\[Y(s) = G_b(s)T_{o2}(s)U_1(s) + G_{o2}(s)S_{o2}(s)D_g(s) \] (5)

- If we don’t have an inner loop, the output is given by

\[Y(s) = G_o(s)U(s) + G_{o2}(s)D_g(s) \] (6)
Cascade Control

- The output of the system is given by:

\[Y(s) = C_2(s)G_o(s)S_{o2}(s)U_1(s) + G_{o2}(s)S_{o2}(s)D_g(s) \]

\[G_o(s) = G_{o1}(s)G_{o2}(s) \]

- This can be re-written as:

\[Y(s) = G_b(s)T_{o2}(s)U_1(s) + G_{o2}(s)S_{o2}(s)D_g(s) \] \hspace{1cm} (7)

- If we don’t have an inner loop, the output is given by

\[Y(s) = G_o(s)U(s) + G_{o2}(s)D_g(s) \] \hspace{1cm} (8)

- It can be seen in (1) that the disturbance will be somewhat attenuated when compared to (2).
Cascade Control

- The secondary controller is usually designed first.
Cascade Control

- The secondary controller is usually designed first.

- The primary controller is then designed based on an equivalent plant.

\[G_{eq} \triangleq G_b(s)T_{o2}(s) \]
Cascade Control

- The secondary controller is usually designed first.

- The primary controller is then designed based on an equivalent plant.

\[G_{eq} \triangleq G_b(s)T_{o2}(s) \]

- Generally, the secondary controller is designed such that

\[
\text{B.W of } T_{o2}(s) > \text{B.W of } T_{o1}(s)
\]