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Introduction

What is Identification?

Identification is the process of constructing a mathematical model of a

(dynamical) system from observations of its inputs and outputs. Recall the

definition of a dynamical system: the output at any instant depends on its

history not just present input, i.e. it has some form of memory (storage).
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Classification of the System Identification Prob-
lem

Based on the degree of a priori knowledge of the system.

Black Box: This means we know nothing about the basis properties

of the system. Extremely difficult to solve. Usually some kind of

assumptions have to be made before any meaningful solution can be

attempted.
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Classification of the System Identification Prob-
lem

Based on the degree of a priori knowledge of the system.

Black Box: This means we know nothing about the basis properties

of the system. Extremely difficult to solve. Usually some kind of

assumptions have to be made before any meaningful solution can be

attempted.

Grey Box: In this case, some basic characteristics of the system are

known (ie. linearity, bandwidth, structure). However, order of the

dynamic equation or values of the associated co-efficients may be

unknown.
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The Purpose of a Model

Prediction and control: Design of any control scheme more

ambitious than trial and error tuned PI(D) controller requires a model.

To keep the design procedure tractable, the model must be

reasonably simple, and may not be entirely accurate. (i.e. fast

poles v.s. bandwidth).

Prediction is associated more with feed forward control. In

feedforward, a disturbance is detected early in its propagation

through the system. Its effects on the system output are then

predicted and the relevant control action is taken.

Simulation: Makes it possible to explore situations that would be

either hazardous, difficult or prohibitively expensive. (i.e. evaluating

the performance of different controllers on a model rather than on a

nuclear reactor.)
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Types of Models

There are a number of different types of models:

time domain / frequency domain

linear / non-linear

time invariant / time varying

continuous time / discrete time

parametric / non-parametric

lumped / distributed.
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Time domain vs frequency domain: models may be differential

equations or impulse responses in the time domain or transfer

functions in the frequency or Laplace-transform domain.
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Types of Models

Time domain vs frequency domain: models may be differential

equations or impulse responses in the time domain or transfer

functions in the frequency or Laplace-transform domain.

A linear system satisfies superposition and homogeneity whereas a

non-linear system does not.

In a time invariant system the input / output relationships do not vary

with time. In a time varying system these relationships change with

time.

A continuous time model describes the system at any given instance

of time. Discrete time models describe input and output relationships

at distinct instances of time.
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Types of Models

Nonparametric models are characterised as curves or functions, not

a set of parameters. e.g. nonparametric model consist of a time record

of the impulse or step response in the time domain, or a frequency

record of the transfer function in the frequency domain. e.g. Bode

diagram. Essentially, an infinite number of measurements would be

needed to represent the system. Practically, a “sufficiently” large

number is required to “acceptably” represent the system. Parametric

models concentrate all information in a model structure with a limited

set of parameters. This makes the parametric model “economical” and

powerful.
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Types of Models

Nonparametric models are characterised as curves or functions, not

a set of parameters. e.g. nonparametric model consist of a time record

of the impulse or step response in the time domain, or a frequency

record of the transfer function in the frequency domain. e.g. Bode

diagram. Essentially, an infinite number of measurements would be

needed to represent the system. Practically, a “sufficiently” large

number is required to “acceptably” represent the system. Parametric

models concentrate all information in a model structure with a limited

set of parameters. This makes the parametric model “economical” and

powerful.

Lumped models are based on a finite number of ODE’s. Distributed

models use an infinite number of equations or based on PDE’s.

A particular sort of model can be defined by a combination of these

different types. e.g. One of the most common forms is the continuous time,

linear, time invariant parametric model.
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System Identification Procedure

The experiment design

objective is to make choices

such that the collected data is

maximally informative, i.e.

types of signals,

amplitudes,

what to measure

input/outputs

In the model calculation block,

decisions need to be made on:

what type of model,

model structure,

parameter estimation

technique

To validate the model, the

following questions need to be

asked:

How does the model output

relate to the data observed?

Is it good enough for specific

purpose?

Experiment Design

Collect Data

Calculate Model

Validate Model

OK

Prior Knowledge
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Types of Test Signals

The input signal used in an identification experiment can have a

significant influence on the resulting parameter estimates.

Typical types of input signal often used in practice include:

Impulse function (approximate)

Step function

Pseudorandom binary sequence

Sinusoids

The signals we consider in this course are step functions and

sinusoids.
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Types of Test Signals

Step Input Signal

u(t) =


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Step signals have decreasing power at high frequencies where

processes usually show attenuation.
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Step signals have decreasing power at high frequencies where

processes usually show attenuation.

From the response of a process to a step input a number of practical

parameters can be obtained, i.e. dead time, time constant, etc.
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Step Input Signal

It is easy to apply.

It is very sensitive to noise. (Usually requires a rather large amplitude

to obtain reasonable results)

Generally, it can only give a basic model.

Steady state gain is easily found, in the absence of drift, from the initial

and final values of the step response.

User choices to be considered:
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Types of Test Signals

Step Input Signal

It is easy to apply.

It is very sensitive to noise. (Usually requires a rather large amplitude

to obtain reasonable results)

Generally, it can only give a basic model.

Steady state gain is easily found, in the absence of drift, from the initial

and final values of the step response.

User choices to be considered:

Amplitude (uf )

Duration (T )
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Types of Test Signals

Sinusoidal Signals

u(t) = a sin (2πf t + φ)
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Information in the frequency domain is most easily obtained by using

sinusoidal or other periodic signals. Makes it suitable for finding

continuous time models.
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Types of Test Signals

Sinusoidal Signals

Sinusoidal signals have many advantages:

limit the signal to frequencies of interest

duration of the test can be chosen quite arbitrarily

generation of the signal is quite straightforward

The amplitude of the sinewave can be traded off for the duration of

test, i.e. For a smaller amplitude you would perform the test for a

longer time.

A disadvantage is that one sinusoid only gives you one test frequency.

To obtain an adequate model of a system you would need to perform a

number of experiments.
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Types of Test Signals

Multi-Sinusoidal Signals

u(t) =
m
∑

k=1

ak sin (2πfk t + φk )

As an example consider m = 5,

ak = 2, φk = 0 ∀k and

f = [1, 2, 3, 4, 5].
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Note the amplitude is large.

To reduce this we can change

the phase of each sine wave,

i.e.

φk = φ1−
k (k − 1)π

m
; 2 ≤ k ≤ m

where φ1 is chosen arbitrary.
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Design of Identification Experiments

There are a number of factors to consider before performing an

identification experiment.

What form of test signal should be used, i.e. step, sinusoidal? This

depends on the quality of the model you require. In most cases, for

PID control, step tests are adequate.

What size should the amplitude be? There a quite a number of factors

to consider here.

There may be constraints on how much variation can be tolerated

in the input and/or output. (economic, safety, actuator limits, etc).

One reason for a large amplitude is that the effects of noise

become less (signal to noise ratio is larger).

For systems with known nonlinearities it is best to keep the

amplitude small as generally you are interested in a model around

a particular operating point.
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Design of Identification Experiments

What sampling frequency should be used?

Typically, the sampling frequency should be chosen as 10 - 20×
that of the test signal frequency. (5× should be considered as the

absolute minimum).

For a step test, you want to capture at least 5 samples per the time

constant of the process.

What should the frequencies of my multi-sinusoidal test signal be?

The frequencies of these test signals should be in the frequency

region of interest and should be chosen as a multiple of the sampling

frequency and of each other. This will minimise errors.

When collecting data from a sinusoidal test one should wait until the

transients have decayed significantly.
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Estimating Transfer Functions from Step Re-
sponses

First Order Lag

Measure

U0: Initial input level.

Uf : Final input level.

Y0: Initial output level.

Yf : Final output level.

T0: Time of input step

change.

T63: Time for output to reach

63% of (Yf − Y0).

Calculate

K̂ =
Yf − Y0

Uf − U0
and τ̂ = T63 − T0

Ĝ(s) =
K̂

τ̂s + 1
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Estimating Transfer Functions from Step Re-
sponses

Time Delayed First Order Lag

dd

Measure

U0: Initial input level.

Uf : Final input level.

Y0: Initial output level.

Yf : Final output level.

T0: Time of input step

change.

Td : Time at which system

starts reacting to step.

T63: Time for output to reach

63% of (Yf − Y0).

(cont...)
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Estimating Transfer Functions from Step Re-
sponses

Time Delayed First Order Lag (cont.)

Calculate

K̂ =
Yf − Y0

Uf − U0

T̂d = Td − T0

τ̂ = T63 − Td

Ĝ(s) =
K̂e−sT̂d

τ̂s + 1
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Estimating Transfer Functions from Step Re-
sponses

Second Order Resonant System

Measure

U0: Initial input level.

Uf : Final input level.

Y0: Initial output level.

Yf : Final output level.

Peak 1: An arbitrary peak.

Peak n: Peak n counting

from Peak 1: (n = 3 in

Figure).

A1: Amplitude from Yf to

Peak 1.

An: Amplitude from Yf to

Peak n

Tw : Time between two

successive peaks. (cont...)
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Estimating Transfer Functions from Step Re-
sponses

Second Order Resonant System (cont.)

Calculate

K̂ =
Yf − Y0

Uf − U0
, dr =

(

An

A1

)
1

n−1

,

ζ̂ =
ln
(

1
dr

)

√

4π2
+

(

ln
(

1
dr

))2

, T̂n =

Tw

√

1 − ζ̂2

2π
.

Ĝ(s) =
K̂

T̂2
n s2
+ 2ζ̂T̂ns + 1
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Estimating Transfer Functions from Step Re-
sponses

Second Order Overdamped

System

Measure

U0: Initial input level.

Uf : Final input level.

Y0: Initial output level.

Yf : Final output level.

T0: Time of input step

change.

T73: Time of output to reach

73% of (Yf − Y0).

Ý : Value of output at time:
(

T0 +
T73 − T0

2.6

)

.
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Estimating Transfer Functions from Step Re-
sponses

Second Order Overdamped System (cont.)

Calculate

K̂ =
Yf − Y0

Uf − U0
, τ̂TOT =

T73 − T0

1.3

and Yf r =
Ý − Y0

Yf − Y0

Find τ̂rat from Yf r using the

supplied graph and compute

τ̂1 = τ̂rat τ̂TOT

τ̂2 = τ̂TOT − τ̂1

The estimated model is:

Ĝ(s) =
K̂

(τ̂1s + 1) (τ̂1s + 1)

NOTE: If Yf r is greater than 0.39 or less than 0.26, the response is either

underdamped second order or higher order.
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Estimating Transfer Functions from Step Re-
sponses

Integrating System

Measure

U0: Initial input level.

Uf : Final input level.

Y01: Output level at time T01

(before step).

Y02: Output level at time T02

(before step).

Time (secs)

Y04

Y03

Y02

Y01

T04

T03

T02T01

Uf

U0

Time (secs)

Y04

Y03

Y02

Y01

T04

T03

T02T01

Uf

U0

Y03: Output level at time T03

(after step).

Y04: Output level at time T04

(after step).

Calculate

m1 =
Y02 − Y01

T02 − T01

m2 =
Y04 − Y03

T04 − T03

K̂ =
m2 − m1

Uf − U0

Ĝ(s) =
K̂
s
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Frequency Analysis

Recall, for the system

u y
G

that

Y (s) = G(s)U(s)

If we apply a sinewave to the

input,

u(t) = a sin(ωt)

(remember) ω = 2πf

and G is stable and in steady

state, then

y(t) = b sin(ωt + φ)

where b = a |G(jω)|
φ = arg (G(jω))

Hence, by measuring b and φ,

we can obtain an estimate of G

at frequency ω.

20 30 40 50 60 70 80
−1.2

Time (sec)

A
m

pl
itu

de

φ 

a 

b 

0 
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Frequency Analysis

By repeating this for a number of frequencies, one can obtain a

reasonable graphical representation of the process, i.e. the Bode

Diagram, a non-parametric model.

In practice, this type of measurement is sensitive to noise,

Y (s) = G(s)U(s) + V(s)

where V(s) is a representation of the noise appearing at the output of

the system.

Then

y(t) = b sin(ωt + φ) + e(t)

which introduces errors into the measurement of y(t) and hence the

parameters b and φ.
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Frequency Analysis

An Improved Frequency Analysis Method

To improve estimation of the frequency response, correlate the output y(t)
with sin and cos at the desired frequency.

x

x

1
s

sin(wt)

cos(wt)

ys(t)

yc(t)

y(t)

1
s
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Frequency Analysis

ys(t) =

T
∫

0

y(t) sin(ωt)dt

=

T
∫

0

b sin(ωt + φ) sin(ωt)dt +

T
∫

0

e(t) sin(ωt)dt

(using the identity: 2 sin(A ) sin(B) = cos(A − B) − cos(A + B))

=

T
∫

0

b

2
cos(φ)dt −

T
∫

0

b

2
cos(2ωt + φ)dt +

T
∫

0

e(t) sin(ωt)dt

=
bT

2
cos(φ) +

T
∫

0

e(t) sin(ωt)dt

Note: If integration time (T ) is a multiple of the sinusoidal period, say k2π
ω

then the second term in the fourth line above = 0.
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Frequency Analysis

Similarly,

yc(t) =
bT

2
sin(φ) +

T
∫

0

e(t) cos(ωt)dt

Let us first consider e(t) = 0. Then

ys(t) =
bT

2
cos(φ)

yc(t) =
bT

2
sin(φ)

Recall,

b = a |G(jω)|
φ = arg (G(jω))
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Frequency Analysis

Then

ys(t) =
aT

2
|G(jω)| cos (arg (G(jω)))

and yc(t) =
aT

2
|G(jω)| sin (arg (G(jω))) .

Now G(jω) = |G(jω)| e j(arg(G(jω)))

= |G(jω)| [cos (arg (G(jω))) + j sin (arg (G(jω)))]

We then have

ys(t) =
aT

2
ℜ{G(jω)}

yc(t) =
aT

2
ℑ {G(jω)}
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Frequency Analysis

Therefore we can calculate real and imaginary parts G(jω), hence

construct a Bode Diagram.

Now if e(t) , 0, then we still get errors in the estimate!

However, as T ↑ the error decreases. (In the case of i.i.d. noise). Due

to the fact that it is not correlated with the sin and cos terms.
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Frequency Analysis

Can also use discrete Fourier Transforms.

UN(ω) =
N
∑

t=1

u(t)e−jωt

YN(ω) =
N
∑

t=1

y(t)e−jωt

Then G(jω) =
YN(ω)

UN(ω)

Notes:

Works best for periodic signals.

For best results, N should be an integer multiple of the periodic signal.

Scaling not really necessary as we are mainly concerned with the ratio.
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Least Squares Model Fitting

The Least Squares method estimates the coefficients for a given model by

minimising the sum of squared errors between the observations and the

model output.

large errors are heavily punished, an error twice as large is four times

worse.

uses quite simple matrix algebra

estimates are computed as a solution to a set of linear equations.

The model is required to

relate observed variable y(t) (regressand), to p explanatory variables

u1t . . . upt (regressors), all of which are observed.

have one unknown coefficient θ per explanatory variable.
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Least Squares Model Fitting

At one time instance, t

u
t
=

[

u1t u2t . . . upt

]T

, θ =

[

θ1 θ2 . . . θp

]T

the model is then

yt = uT
t
θ + et , t = 1, 2, 3, . . . N

where et is the observation error.

The aim is to find the value θ̂ of θ which minimises the cost function,

θ̂ = arg min
θ

V(θ)

where V(θ) ,
N
∑

t=1

e2
t

=

N
∑

t=1

(

yt − uT
t
θ
)2
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Least Squares Model Fitting

For N samples, y is a N length vector, the u
t

vectors form into an N × P

matrix U and a N length vector e is formed by the errors. Then,

y = Uθ + e

and V(θ) = eT e

=

(

yT − θT UT
) (

y − Uθ
)

.

The value θ̂ that minimises V makes the gradient of V with respect to θ

zero, i.e

∂V

∂θ
=

[

∂V

∂θ1

∂V

∂θ2
· · · ∂V
∂θp

]T

= 0

Now

V(θ) = yT y − θT UT y − yT Uθ + θT UT Uθ
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Least Squares Model Fitting

Using standard results for vector and matrix differentiation,

∂(aTψ)

∂ψ
= a

∂(ψT Aψ)

∂ψ
= (A + AT )ψ.

Then
∂V

∂θ
= 2UT y + 2UT Uθ = 0.

Thus the θ that makes the gradient of V(θ) = 0 is given by,

θ̂ =
[

UT U
]−1

UT y
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Least Squares Model Fitting

Notes:

The model must be linear in the unknown coefficients

It need not be linear in the regressors

Be careful of an ill-conditioned normal matrix!

Lecture 10: Elements of System Identification – p. 38/55



The University of Newcastle

Least Squares Model Fitting

Example: Consider a temperature measuring device with a voltage

output, u. It is known that the temperature, y, is a function of the output

voltage. The model is given by,

y(u) = x1 + x2u + x3
u2

2
.

The observations are:

u =
[

0 0.2 0.4 0.6 0.8 1
]

(volts)

y =
[

3 59 98 151 218 264
]T

◦(C)

and the parameter vector is

θ =

[

x1 x2 x3

]T
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Least Squares Model Fitting

Example: cont.

1. Now we form,

U =










































1 0 0

1 0.2 0.02

1 0.4 0.08

1 0.6 0.18

1 0.8 0.32

1 1 0.5










































UT y =



















793

580

237.96



















UT U =



















6 3 1.1

3 2.2 0.9

1.1 0.9 0.3916



















2. We can then solve for an

estimate of the parameters

using

θ̂ =
[

UT U
]−1

UT y

=

[

4.79 234 55.4
]T
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Frequency Domain Parametric Models

Consider the model,

G(s) =
B(s)

A (s)

where B(s) = b0 + b1s + . . . + bn−1sn−1

and A (s) = 1 + a1s + . . . + ansn.

We perform an experiment which consists of applying sinewaves of

frequency ω1, ω2, . . . ωN to the system. The DFT can be used to

obtain a nonparametric model of the system

Ĝ(jω).

Note thatˆ is used here as there will be unavoidable errors in the

measurement.
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Frequency Domain Parametric Models

Now

A (jω)G(jω) = B(jω)

then V(θ) =
N
∑

i=1

e∗
i
ei

where ei = A (jωi)Ĝ(jωi) − B(jωi)

here the i subscript represents the ith frequency of the test signal. We

temporarily drop the i subscript for clarity,

e =
[

1 + a1jω + . . . + an(jω)n] Ĝ(jω) −
[

b0 + b1jω + . . . + bn−1(jω)n−1
]

= Ĝ(jω) −
[

−jωĜ(jω), . . . , −(jω)nĜ(jω), 1, jω, . . . , (jω)n−1
]

θ

where θ =

[

a1 . . . an bo . . . bn−1

]T
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Frequency Domain Parametric Models

The cost function V(θ) can now be expressed as

V(θ) = (Y − Uθ)∗(Y − Uθ)

where θ =

[

a1 a2 . . . an bo . . . bn−1

]T

Y =
[

Ĝ(jω1) Ĝ(jω1) . . . Ĝ(jωN)
]T

U =





















−jω1Ĝ(jω1) . . . −(jω1)nĜ(jω1) 1 jω1 . . . (jω1)n−1

...
...

−jωNĜ(jωN) . . . −(jωN)nĜ(jωN) 1 jωN . . . (jωN)n−1




















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Frequency Domain Parametric Models

Using the same procedure as before to find the minimum gradient of the

cost function,

∂V

∂θ
= −U∗

(

Y − Uθ
)

− UT
(

Y − Uθ
)

= −
(

U∗Y + UT Y
)

+

(

U∗U + UT U
)

θ

set
∂V

∂θ
= 0

then θ̂ =

(

U∗U + UT U
)−1 (

U∗Y + UT Y
)

=

(

U∗U + U∗U
)−1 (

U∗Y + U∗Y
)

=
(ℜ {U∗U})−1

(

ℜ
{

U∗Y
})
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Model Order Determination

A number of possibilities, two of these are:

Use the Bode diagram to identify poles / zeros

Calculate the L.S. model for an increasing number of parameters, and

evaluate the cost function V(θ̂) for each model. Look for small △V .

(△V = |V1 − V2|).

1 2 3 4 5 6 7 8 9 10
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Model Order

V
(θ

)

V
1
 

V
2
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Model Validation

Is a given model appropriate? i.e. does it meet the expectation you

have of it representing the system?

Most systematic methods of validation are based on statistics.

An ad-hoc (simple method) is to visually approve the model by

observing the output of the model and the true system for the same

input signal.

Lecture 10: Elements of System Identification – p. 46/55



The University of Newcastle

Model Validation

Systematic Methods

If the model is a true representation of the system and the

“disturbance” is assumed to be independent white noise, then the

residuals,

e = y − uθ̂

should also be independent white noise.

Notes:

Never use the same data for validation that was used for estimation.

Least Squares estimation makes e uncorrelated with the

regressors on which the data the estimation is performed.

Lecture 10: Elements of System Identification – p. 47/55



The University of Newcastle

Model Validation

Changes of sign method

Let

δk =













1 : e(k )e(k + 1) < 0 (change of sign)

0 : e(k )e(k + 1) > 0 (no change of sign)

and

Xn =

N−1
∑

k=1

δk

For white independent residuals,

mean(Xn) =
N

2

var iance(Xn) =
N

4
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Model Validation

Correlation Between Residuals and Past Inputs

R̂N
eu(τ) =

1
N

N
∑

t=1

e(t)u(t − τ)

If the correlation is “high”, there may be some of the input contained in

the residuals e and hence not taken into account in the model.

Ideally we want no correlation between input and residuals.

R̂N
eu(τ) ≤ α

√

P1

N

where α represents a confidence value and

P1 =

∞
∑

k=−∞
Re(k )Ru(k )

Re(k ) and Ru(k ) are the autocorrelation of e(t) and u(t) respectively.
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Model Validation

Correlation Between Residuals and Past Inputs (cont.)

Typically plot R̂N
eu(τ) and the lines ±3

√

P1

N .

If R̂N
eu(τ) goes outside of this then most probably due to e(t) and

u(t − τ) being dependant.
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Model Validation

Correlation between residuals

R̂(τ) =
1
N

N
∑

t=1

e(t)e(t + τ)

Should be white.

Plot R̂(τ) against τ.

Other measures used in validation:

Maximum Error: Largest Residual {max(e)}.

Mean Square Error: MSE = 1
N

N
∑

t=1
e(t)2.

Root Mean Square Error: RMSE =
√

MSE.
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Identification in Closed Loop

Until now what has been considered is open loop identification. If we

use the same principles in closed loop, we must be careful.

Two commonly used types of identification are:

Direct: measure U and Y then identify G.

Indirect: measure R and Y then identify G using knowledge of C.

R
C G

U Y

D

+
+

+

-
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Identification in Closed Loop

For example lets consider direct identification:

Now we want to estimate G.

Ĝ =
Y

U
=

D + GU

U
=

D

U
+ G.

Now let UR denote the controller output signal due to the reference R,

then

UR = C(R − GUR )

UR =
CR

1 + GC

Let UD denote the controller output due to the disturbance D,

UD = −C(D + GUD)

UD =
−CD

1 + GC
.
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Identification in Closed Loop

We are assuming a linear system, then by superposition

U = UR + UD =
CR − CD

1 + GC

Then

Ĝ =
D (1 + GC)

CR − CD
+ G

=
D + GCR

CR − CD

=
1

R − D

(D

C
+ GR

)
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Identification in Closed Loop

Defining the noise to signal ratio as α = D
R ,

Ĝ =

1
R

1 − D

R

(D

C
+ GR

)

=

(

α

1 − α

)
(

1

C

)

+

(

1

1 − α

)

G.

When D = 0, α = 0 therefore Ĝ = G.

When D >> R, α is large and Ĝ ⇒ −1
C .

Therefore in closed loop identification one needs to ensure the

reference signal is larger than the disturbance, (R > D).
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