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SUMMARY

This paper considers the problem of quadratic mean-square stabilization of a class of stochastic linear
systems using quantized state feedback. Different from the previous works where the system is restricted
to be deterministic, we focus on stochastic systems with multiplicative noises in both the system matrix and
the control input. A static quantizer is used in the feedback channel. It is shown that the coarsest quantization
density that permits stabilization of a stochastic system with multiplicative noises in the sense of quadratic
mean-square stability is achieved with the use of a logarithmic quantizer, and the coarsest quantization den-
sity is determined by an algebraic Riccati equation, which is also the solution to a special stochastic linear
control problem. Our work is then extended to exponential quadratic mean-square stabilization of the same
class of stochastic systems. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the rapid advancement of digital networks, the problems of network time-delay, packet
dropout, and quantization error (caused by limited data rate) arise for network-based feedback con-
trol systems. These problems can significantly deteriorate the performance of a control system,
thus appropriate measures need to be taken in designing network-based control systems. Feedback
control using quantized information can be traced back to 1960s (e.g., [1–5]). The development
of modern network control systems has brought a resurgent interest in quantized feedback control.
Recent works on quantized feedback control include [6–9].

The research on quantized feedback control can be categorized depending on whether the quan-
tizer is static or dynamic. A static quantizer is a memoryless nonlinear function, whereas a dynamic
quantizer involves memory and thus can be more complex but more powerful. Most of the research
about static quantizers use either uniform or logarithmic quantization. A uniform quantizer can
minimize the information loss, especially when the input signal falls into the dynamic range of the
quantizer with a uniform distribution, and the number of quantization levels required for a given
quantization step-size increases linearly as the dynamic range increases. A uniform quantizer is
used in [10] to stabilize a linear time-invariant control system; [11] investigates the quantized H1
control problem for discrete-time systems with random packet losses; [12] studies the asymptotic
characteristics of uniform scalar quantizers that are optimal with respect to some mean-squared
error. But [13] shows that the uniform quantization approach is inappropriate when the quantization
resolution is coarse or when the open-loop system is unstable.
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In [14], it has been proved that there exists a minimum data rate for a dynamic quantizer that below
which, there does not exist any quantized feedback controller that can stabilize an unstable system.
For a deterministic linear time-invariant system, it is revealed in [6] that the coarsest quantization
density for quantized feedback stabilization of a linear time-invariant system using a static quan-
tizer is achieved with the use of a logarithmic quantizer, and its quantization density is related to the
unstable roots of the system matrix. In [7], it is shown that the quantization error of a logarithmic
quantizer can be modeled as a norm-bounded multiplicative noise, and the problem of quantized
feedback control can be transformed into a classical robust control problem. As for the stochas-
tic systems, [14] considers the system with additive noises under the assumption that the noises are
bounded. A logarithmic quantizer with finite levels to guarantee the practical stability for the closed-
loop system has been designed. Quantized feedback with packet dropouts is considered in [8], and it
is shown that the coarsest quantization density for a system with quantized feedback control subject
to the Bernoulli packet dropout model is related to the packet dropout rate and the unstable roots
of the system matrix. Reference [9] considers the minimum data rate for mean-square stability of
linear systems over a lossy channel that is modeled as a time-homogenous binary Markov process.
The minimum data rate for a scalar system is given in terms of the magnitude of the unstable roots
and the transition probabilities of the Markov process, and necessary and sufficient conditions are
provided for scalar systems. For stabilization of stochastic systems with multiplicative noises, [15]
uses a generalized Lyapunov equation approach to give some testable criteria for stochastic stabi-
lization. Under a different class of criteria, [16] uses a linear matrix inequality approach to illustrate
how to design an almost surely stabilizing controller for a stochastic system that is otherwise unable
to be stabilized in the mean-square sense. As for the stochastic systems with additive noises, [17]
gives an explicit expression for the minimum data rate by using the entropy power inequality of
information theory and a new quantization error bound.

In this paper, we consider the problem of finding the coarsest quantization density required for
quadratic mean-square stabilization of a class of stochastic systems with multiplicative noises. The
coarsest quantizer is proved to be logarithmic with countable levels. By finding the optimal quadratic
Lyapunov function that allows for the coarsest logarithmic quantizer, it is shown that the solvability
of the coarsest quantization density is related to a special stochastic linear control problem. The
exact solution to the coarsest quantization density is given in terms of a special Riccati equation,
and an approximate numerical solution is given in terms of a linear matrix inequality. The coarsest
quantizer for exponential quadratic mean-square stability is discussed in this paper.

This paper is organized as follows: Section 2 formulates the quantized state feedback control prob-
lem; Section 3 presents the solution of the problem; Section 4 generalizes the previously mentioned
results to exponential mean-square stabilization; and Section 5 draws conclusions.

2. PROBLEM FORMULATION

Consider the following discrete-time stochastic system with multiplicative noise:

x.t C 1/D Ax.t/CBu.t/C ŒA0x.t/CB0u.t/� w.t/, x.0/D x0, (1)

where x.t/ 2 Rn and u.t/ 2 R are, respectively, the system state and control input, w.t/ 2 R is a
white noise with zero mean and variance �2 and is uncorrelated with initial state x.0/. It is assumed
that .A,A0,B ,B0/ is stabilizable and .A,A0/ is observable. The stabilization assumption means
that there exists a constant matrix K such that the control law u.t/ D Kx.t/ renders the following
closed-loop system

x.t C 1/D .ACBK/x.t/C .A0CB0K/x.t/w.t/, x.0/D x0, (2)

asymptotically mean-square stable, that is, limt!1EŒjjx.t/jj
2�D 0 for any initial state x0.

We will denote

VP .x.t//,E
�
xT .t/P x.t/

�
, P D P T > 0, (3)

rVP .x.t//, VP .x.t C 1//� VP .x.t//. (4)
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QUANTIZED STABILIZATION FOR STOCHASTIC DISCRETE-TIME SYSTEMS 593

The dependence on time t will be dropped when there is no confusion. We will call VP .x/ a control
Lyapunov function.

Definition 1
The discrete-time stochastic system (1) is said to be quadratically mean-square stabilizable if there
exists a state feedback control law u.t/ D U.x.t// such that for any initial state x0 2 Rn, the
closed-loop system

x.t C 1/D Ax.t/CBU.x.t//C ŒA0x.t/CB0U.x.t//�w.t/, x.0/D x0 (5)

satisfies

rVP .x.t// < 0, 8 t > 0. (6)

The system (1) is said to be exponentially quadratically mean-square stabilizable with convergence
rate 0 < ˛ < 1 if (6) is replaced with

VP .x.t C 1// < ˛VP .x.t//, 8 t > 0. (7)

We first adopt some notation as defined in [6]: Q.VP / denotes the set of all the symmetric
quantizers that solve Problem 1 for a given control Lyapunov function VP .x/. For f 2 Q.VP /
and 0 < " < 1, denote ]f Œ"� the number of quantization levels in the interval Œ", 1="�. Then, the
quantization density of f is defined as

�f D lim sup
"!0

]f Œ"�

ln.1="/
. (8)

A quantizer f ? 2Q.VP / is said to be coarsest for a given VP .x/ if it has the least quantization
density, that is,

f ? D arg inf
f 2Q.VP /

�f . (9)

Note that, because of the infimum action mentioned earlier, the coarsest quantization density may
not be reachable, that is, f ? may belong to the closure of Q.VP / instead of being in the interior of
Q.VP /.

A logarithmic quantizer is expressed as follows:

Q.u/D

8̂<
:̂

ui , if 1
1C�

ui < u6 1
1��

ui , u > 0

0, if uD 0

�Q.�u/, if u < 0

(10)

with quantization levels as

U D
®
˙ui W ui D �

iu0, i D 1, 2, � � �
¯[
¹˙u0º

[
¹0º,with 0 < � < 1,u0 > 0, (11)

where � is called quantized density of the quantizer and u is the signal that has to be quantized. It
is easy to show that �f D

2
ln.1=�/ . Because �f is a monotonic function of � (i.e., a smaller � cor-

responding to a coarser quantizer density), we will abuse the notation a bit and also refer � as the
quantization density for a logarithmic quantizer.
Problem 1: The first (main) quantized stabilization problem to be considered in the paper aims
to find a control law U.x/ called quantized state feedback control law to achieve quadratic mean-
square stabilization. In particular, the control signal involves a linear or nonlinear state feedback
control law u and a quantized version of it with a symmetric quantizer f .u/ (i.e., f .�u/D�f .u/)
and a finite or countable number of quantization levels. Our goal is to find a coarsest quantization
density that permits quadratic mean-square stabilization.
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3. SOLUTION TO QUADRATIC MEAN-SQUARE STABILIZATION

In order to find the coarsest quantization density for system (1), we will first derive all the quantized
feedback controllers that render the closed-loop system of (1) quadratically mean-square stable for
a given P . The following lemma characterizes all such controllers.

Lemma 1
Let VP .x/DEŒxTPx� for some P > 0 be a control Lyapunov function for the system (1). A nec-
essary condition for the system (1) to be quadratically mean-square stabilizable via the given control
Lyapunov function is that

QD P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0

> 0. (12)

Under the assumption that (12) holds, then for any x ¤ 0, the set of all the u that yield rVP .x/ < 0
along the trajectory of (1) is characterized by

U.x/D ¹u 2R j u1.x/ < u < u2.x/º , (13)

where

u1.x/DKGDx.t/�

s
xT .t/Qx.t/

BTPB C �2BT0 PB0
,u2.x/DKGDx.t/C

s
xT .t/Qx.t/

BTPB C �2BT0 PB0
(14)

with

KGD D�
BTPAC �2BT0 PA0

BTPB C �2BT0 PB0
. (15)

Proof
It is direct to verify that

rVP .x/Du.t/
�
BTPB C �2BT0 PB0

�
u.t/C 2xT .t/

�
ATPB C �2AT0 PB0

�
u.t/

C xT .t/
�
ATPAC �2AT0 PA0 �P

�
x.t/. (16)

Note that …D BTPB C �2BT0 PB0 > 0. By completing the squares, (16) can be rewritten as

rVP .x/D
�
u�…�1

�
ATPB C �2AT0 PB0

��T
…
�
u�…�1

�
ATPB C �2AT0 PB0

��
� xTQx,

(17)

whereQ is given in (12). Thus, it is necessary thatQ> 0 in order to achieve quadratic mean-square
stabilization using the given control Lyapunov function. Now, assumingQ> 0, settingrVP .x/D 0
in (17) leads to the two boundary points u1.x/ and u2.x/ as in (14) and the admissible control set
as in (13). �

It is easy to check that the admissible control set (13) has the following properties:

� P1: U.˛x/D ˛U.x/ for ˛ > 0;
� P2: u1.x/D�u2.x/ if KGDx D 0.

From P2, we know that when x ? KTGD , u D 0 can be used to ensure that the Lyapunov function
decreases along the state trajectory. Thus, it suffices to quantize the state x in the direction of KGD .
In fact, consider the subspace spanned by

YGD D

´
x 2Rn W x D y

KTGD

KGDK
T
GD

,y 2R

μ
. (18)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:591–601
DOI: 10.1002/rnc
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Without sacrificing the quantization density, we can restrict the quantizer to be on YGD by taking

f GD.x/D h.KGDx/,

where h.�/ is a scalar quantizer. In view of P2, it follows that f GD 2Q.VP /. Thus, we have

inf
f 2Q.VP /

�f D inf
f GD2Q.VP /

�f GD . (19)

The aforementioned analysis leads to the following result.

Theorem 1
Given a control Lyapunov function VP .x/ and suppose (12) holds, then the coarsest quantizer for
quadratic mean-square stabilization of the system (1) using static quantizer and the given control
Lyapunov function are logarithmic, and the corresponding quantization density is determined by

�D

p
�� 1
p
�C 1

, (20)

where

�D

�
ATPB C �2AT0 PB0

�T
Q�1

�
ATPB C �2AT0 PB0

�
BTPB C �2BT0 PB0

. (21)

Proof
Let

´.t/DQ
1
2 x.t/.

Then the boundary points of the control set as given in Lemma 1 are changed to

u1.x/DKGDQ
� 12 ´.t/�

s
´T .t/´.t/

BTPB C �2BT0 PB0
,

u2.x/DKGDQ
� 12 ´.t/C

s
´T .t/´.t/

BTPB C �2BT0 PB0
.

Decompose ´.t/ into the following form:

´.t/DQ�
1
2

�
ATPB C �2AT0 PB0

�
˛Cwˇ,

for some ˛ 2R and ˇ 2Rn�1, where w 2Rn�n�1, w ?Q�
1
2

�
ATPBC �2AT0 PB0

�
with wTw D I.

With some abuse of notation, we can rewrite u1.x/ and u2.x/ as u1.˛,ˇ/ and u2.˛,ˇ/, respectively,
which are given by

u1.˛,ˇ/D�˛ �

s
˛2�C

kˇk2

BTPB C �2BT0 PB0
, (22)

u2.˛,ˇ/D�˛C

s
˛2�C

kˇk2

BTPB C �2BT0 PB0
. (23)

Denoting the set U.x/ D U.˛,ˇ/ D ¹u1.˛,ˇ/ < u < u2.˛,ˇ/º, then U.˛,ˇ/ is a minimal set
when ˇ D 0, which means that the worst direction of quantization that requires highest quantization
density is along the direction that parallels to Q�

1
2KTGD .

In the next part, we show the coarsest covering in the direction of Q�
1
2KTGD that follows a

logarithmic law. To this end, we set ˇ D 0. It is easy to verify that KGDx D�˛ in this case. Let

u.0/ D��
p
�. (24)
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u(2) u(1) u(−1) u(−2)u(0)

ρΔ Δρ2Δ ρ−1Δ

Figure 1. The optimal quantized control of KGDx.t/.

Then the set of KGDx (or �˛) such that rVP .x/6 0 with uD u0 is given by

U .0/ D
°
�˛ W

�
��
p
�
�
˛ 6 u.0/ 6

�
�C
p
�
�
˛
±

.

Changing the previously mentioned inequalities to equalities and solving the corresponding val-
ues for ˛ lead to U .0/ D ¹��, �º. For KGDx < ��, a smaller value of u needs to be used.
By Property P1, it is clear that u.1/ D �u.0/ guarantees the non-increasing of VP .x/ for all the
KGDx 2 U

.1/, where U .1/ D
®
�2�, ��

¯
. The same argument applies for all u.i/ D �iu.0/ and

U .i/ D
®
�iC1�, �i�

¯
i D ˙1,˙2, : : :. It is clear from the aforementioned analysis that this parti-

tion of KGD.x/ leads to a logarithmic quantizer and this quantizer gives the coarsest quantization
density. The following diagram gives a visual description of the quantizer (see Figure 1). �

Remark 1
When the covariance �2 of the noise w.t/ is 0, which means that the noise w.t/ � 0, the quan-
tization density is the same as in the deterministic case in [6]. When considering the system with
only multiplicative noises in the input channel (i.e., A0 D 0) for the same P , it can be shown that
� is larger in the stochastic system than that in the deterministic case. Thus, the coarsest quantiza-
tion density for a stochastic system with multiplicative noises is larger than that for a deterministic
system. This implies that a finer quantization density is needed to tradeoff the destabilizing effect
caused by the noises.

In what follows, we want to characterize the coarsest quantizer by searching over all quadratic
stochastic control Lyapunov functions and derive the optimal P > 0 such that VP .x/D ExTPx is
a Lyapunov function and the corresponding quantization density � is minimized. We show that the
solvability of the optimal quantizer density is related to solving a special stochastic linear quadratic
regulator (LQR) problem.

Theorem 2
The optimal P corresponding to the coarsest quantization density is given by the unique semi-
positive-definite solution of the following algebraic Riccati equation:

P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0C 1

D 0, (25)

the coarsest quantization density is given by

�� D
�� � 1

��C 1
(26)

with .��/2 D BTPB C �2BT0 PB0 C 1 and P solving (25). Furthermore, The algebraic Riccati
equation (25) is also the solution to the stochastic LQR problem of minJ.x0,u/ with

J.x0,u/D
1X
tD0

E
�
u2.t/

�
, (27)

which corresponds to the minimum energy control that quadratically mean-square stabilizes the
system (1) (without quantization).

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:591–601
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Proof
Denote � D

p
�. Note that � > 1 is required from (20). From Theorem 1, it is clear that the coarsest

quantization density can be achieved by varying P > 0 such that � is minimized, that is, we need
to solve

�� D inf
P>0

� (28)

subject to Q > 0 and
�
ATPB C �2AT0 PB0

�T
Q�1

�
ATPB C �2AT0 PB0

�
6 �2. The following

implications follow immediately:

�
ATPB C �2AT0 PB0

�T
Q�1

�
ATPB C �2AT0 PB0

�
BTPB C �2BT0 PB0

6 �2

” trace

´�
ATPB C �2AT0 PB0

�T
Q�1

�
ATPB C �2AT0 PB0

�
BTPB C �2BT0 PB0

μ

D trace

´
Q�1=2

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0

Q�1=2

μ
6 �2

” �max

 
Q�1=2

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0

Q�1=2

!
6 �2

”Q�1=2
�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0

Q�1=2 6 �2I

”
�
ATPB C �2AT0 PB0

� �
BTPB C �2BT0 PB0

��1 �
ATPB C �2AT0 PB0

�T 6 �2Q
”

�
ATPB C �2AT0 PB0

� �
BTPB C �2BT0 PB0

��1
.ATPB C �2AT0 PB0/

T

6 �2
 
P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

�
.ATPB C �2AT0 PB0/

T

BTPB C �2BT0 PB0

!

” P �ATPA� �2AT0 PA0C
�
ATPB C �2AT0 PB0

�  �2 �BTPB C �2BT0 PB0�
�2 � 1

!�1

�
�
ATPB C �2AT0 PB0

�T > 0. (29)

Define

ˇ D
BTPB C �2BT0 PB0

�2 � 1
. (30)

Note that ˇ > 0 because � > 1. Equation (29) becomes

P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0C ˇ

> 0. (31)

Because the previously mentioned inequality is not affected by positive scaling of P , we can assume
that ˇ D 1 without loss of generality. It is known from [18] that the minimum P satisfying (31) is
obtained by replacing the inequality sign with equality, which is (25), and that the corresponding
solution P becomes semi-positive-definite. It is clear from (29) that when equality is achieved, � is
minimized. The minimum � can be recovered by using (30) with ˇ D 1, that is,

.��/2 D 1CBTPB C �2BT0 PB0.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:591–601
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The connection between (25) and the stochastic LQR problem (27) comes from [19] which shows
that the solution to the stochastic LQR optimal control problem with the following cost function

J.x0,u/D
1X
tD0

E
�
xT .t/	x.t/C u2.t/

�
, 	> 0 (32)

is given by algebraic Riccati equation as follows:

	D P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
1CBTPB C �2BT0 PB0

, (33)

under the assumptions that .A,A0,B ,B0/ is stabilizable and .A,A0=	1=2/ is exactly observable.
More specifically, (33) is guaranteed to have a unique solution P > 0. The optimal controller is
uniquely determined by

u�.t/DKx.t/D�
�
1CBTPB C �2BT0 PB0

��1 �
ATPB C �2AT0 PB0

�T
x.t/,

and the optimal cost is given by

minJ.x0,u/DE
�
xT .0/Px.0/

�
.

Note that the stabilizability and observability assumptions are satisfied if we take	D "I for " > 0.
The system is mean-square stabilized, so ExT .t/x.t/! 0 as t ! 0, and so ExT .t/x.t/ is finite
over all the time t . Now, taking the limit that "! 0, (33) becomes (25) and (32) becomes (27). �

Remark 2
Equation (25) is not a standard algebraic Riccati equation (because of the nonzero � ). We thus need
to comment on its solution. Indeed, (25) can be transferred into solving

max trace(P)

subject to "
P �ATPA� �2AT0 PA0 � "I ATPB C �2AT0 PB0�

ATPB C �2AT0 PB0
�T

�
�
BTPB C �2B0PB0C 1

�
#
< 0, (34)

for some sufficiently small " > 0. The inequality (34) is motivated by the fact that (25) can be
rewritten as

P �ATPA� �2AT0 PA0 � "I C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
1CBTPB C �2BT0 PB0

D�"I < 0

which is converted into the inequality (34) by using the well-known Schur complement method.
The slack introduced by " is negligible when " is sufficiently small. Note that the computation of a
similar algebraic Riccati equation for the continuous-time case is considered in [20]. The proof in
[20] can be easily extended to prove that the solution to (34) overbounds that of (25), but the two
solutions’ coverage to each other was "! 0. As the quantization density is monotone, increasing
with the trace of P [21], the quantization density deduced from the solution of (34) is larger than
the coarsest quantization density.�

4. SOLUTION TO EXPONENTIAL QUADRATIC MEAN-SQUARE STABILIZATION

This section serves as an extension to the results in the previous section by considering the exponen-
tial quadratic mean-square stabilization problem. The problem setting is the same as before, except
that a convergence rate ˛ is required for some ˛ > 0. The main result is given as follows:

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2013; 23:591–601
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Theorem 3
The system (1) is exponentially quadratically mean-square stabilizable with convergence rate
0 < ˛ < 1 by using a quantized state feedback control law if and only if the following algebraic
Riccati inequality

˛P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0C 1

> 0 (35)

has a positive solution P > 0. The corresponding quantizer is a logarithmic one with quantization
density given by

�D

p
�� 1
p
�C 1

(36)

where � is defined in (21) with

QD ˛P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0

. (37)

The coarsest quantization density is achieved by solving the positive definite P for the following
algebraic Riccati equation:

˛P �ATPA� �2AT0 PA0C

�
ATPB C �2AT0 PB0

� �
ATPB C �2AT0 PB0

�T
BTPB C �2BT0 PB0C 1

D 0. (38)

Moreover, the algebraic Riccati equation (38) is also the solution to the special linear quadratic
regulator problem

min
1X
iD0

E
�
u2i
�

(39)

corresponding to the minimum energy control that exponentially mean-square stabilizes the system:

x.t C 1/D
A
p
˛
x.t/C

A0
p
˛
x.t/w.t/CBu.t/CB0u.t/w.t/, x.0/D x0. (40)

Proof
The proof is similar to the proofs of the results in the previous section, so only a sketch of proof
is provided here. The requirement that (35) must hold with some P > 0 for quadratic mean-
square stabilization of (1) is obtained similarly to Lemma 1, and (36)–(37) are obtained similarly
to Theorem 1. The coarsest quantization density result to (38)–(39), and the connection to the
minimum energy control problem is obtained similarly to Theorem 2. �

It is interesting to consider the special case that A0 D A and B0 D B . In this case, the system
(1) becomes

x.t C 1/D Ax.t/.1Cw.t//CBu.t/.1Cw.t//, x.0/D x0. (41)

We have the following interesting observation: define P1 D .1C �2/P , then (21) becomes

�D
BTP1AQ

�1ATP1B

BTP1B
, (42)

and (31) becomes

˛

1C �2
P1 �A

TP1AC
ATP1B.A

TP1B/
T

BTP1B C 1
D 0. (43)

After comparing this with (38), we come to the conclusion that the previously mentioned solution
is equivalent to the exponential stabilization with quantized feedback without multiplicative noise,
but the exponential convergence rate is altered to be ˛

1C�2
. That is, the multiplicative noise worsens

the convergence rate.
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5. ILLUSTRATIVE EXAMPLE

In this section, we give a numerical example to demonstrate the main results of this paper. Consider
the system (1) with A D a D 1, A0 D a0 D 1, B D b D 1, B0 D b0 D 0.5, E
.t/ D 0, and
E
2.t/ D 1 D �2. It is easy to check that .a, a0, b, b0/ is mean-square stabilizable and that .a, a0/
is observable.

By taking "D 0.1, it is easy to see that
�
a, a0="

1
2

�
is observable. Solving the inequality (34)

by hand, we get P D 1.2078. The corresponding quantization density is characterized by (26),
which yields

�D 1�
2q

b2P C �2Pb20 C 1C 1
� 0.2261.

The control gain KGD is computed by using (15). By using the quantized controller of KGDx.t/
with logarithmic quantization density � as indicated earlier, the closed-loop system’s response is
illustrated in Figure 2, which shows the effectiveness of the quantized control.

Figure 3 compares the convergence rate of the quantized feedback system subject to multiplicative
noise with those not subject to multiplicative noise. It is clear that the presence of the multiplicative
noise slows down the convergence rate under the same quantization density. Figure 4 shows the con-
vergence rates for different quantization densities. It is clear from this figure that the convergence
rate is faster when � is closer to 1 (which means without quantization). We note that the coarsest
quantization density for mean-square stabilization can be computed by hand using (25) and (26),
which is �� D 0.2. It is interesting to see from Figure 4 that the state of the closed-loop system still
converges to zero when �D 0.2.

0 5 10 15
0

0.1

0.2

0.3

0.4

E(xT(t)x(t))

Figure 2. The response of ExT .t/x.t/.
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0.4
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0.8

1
σ=0
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Figure 3. The convergence rate of ExT .t/x.t/ with different � but the same quantization density.
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Figure 4. The convergence rate of ExT .t/x.t/ with different �.
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6. CONCLUSION

In this paper, we have investigated quantized state feedback stabilization problems for stochastic sys-
tems with multiplicative noises. Results are given for determining the coarsest quantization density
required to quadratically mean-square stabilize such a system. The optimal quantization structure
is shown to be logarithmic. The solution is expressed in terms of an algebraic Riccati equation.
This solution also corresponds to the minimum energy control problem for the given system with-
out quantization. We have also extended the aforementioned results to the exponential quadratic
mean-square stabilization of such a system.
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