Chapter Title	Switching Adaptive Control		
Copyright Year	2014		
Copyright Holder	Springer-Verlag London		
Corresponding Author	Family Name	Ph.D.	
	Particle		
	Given Name	Minyue Fu	
	Suffix		
	Division	School of Electrical Engineering and Computer Science	
	Organization	University of Newcastle	
	Address	Callaghan, NSW, Australia	
	Email	minyue.fu@newcastle.edu.au	
Abstract	Switching adaptive control is one of the advanced approaches to adaptive control. By employing an array of simple candidate controllers, a properly designed monitoring function and switching law, this approach is capable to search in real time for a correct candidate controller to achieve the given control objective such as stabilization and set-point regulation. This approach can deal with large parameter uncertainties and offers good robustness against unmodelled dynamics. This article offers a brief introduction to switching adaptive control, including some historical background, basic concepts, key design components, and technical issues.		
Keywords (separated by "-")	Adaptive control - Supervisory control - Hybrid systems - Uncertain systems - Multiple models - Switching logic		

Metadata of the chapter that will be visualized online

Switching Adaptive Control

Minyue Fu, Ph.D.* School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia

Abstract

Switching adaptive control is one of the advanced approaches to adaptive control. By employing ⁵ an array of simple candidate controllers, a properly designed monitoring function and switching ⁶ law, this approach is capable to search in real time for a correct candidate controller to achieve the ⁷ given control objective such as stabilization and set-point regulation. This approach can deal with ⁸ large parameter uncertainties and offers good robustness against unmodelled dynamics. This article ⁹ offers a brief introduction to switching adaptive control, including some historical background, ¹⁰ basic concepts, key design components, and technical issues. ¹¹

Keywords Adaptive control • Supervisory control • Hybrid systems • Uncertain systems • 12 Multiple models • Switching logic 13

Introduction

Switching adaptive control, also known as *switched adaptive control* or *multiple model adaptive* ¹⁵ *control*, refers to an *adaptive control* technique which deploys a set of controllers and a switching ¹⁶ law to achieve a given control objective. The concept of switching adaptive control is generalized ¹⁷ from the traditional *gain scheduling* technique (Leith and Leithead 2000). As in the standard ¹⁸ adaptive control setting, the model for the controlled plant is assumed to contain uncertain ¹⁹ parameters, and the control objective is to stablize the system and, in many cases, to deliver certain ²⁰ performance using real-time information in the measured output. What differentiates switching ²¹ adaptive control from gain scheduling is that the uncertain parameters are not directly measured ²² and the switching is determined by the system response. This seemingly minor difference is ²³ very important because parameter estimation may not be possible due to the lack of persistent ²⁴ excitation; moreover, the sensitivity of the measured output is often suppressed by the feedback ²⁵ control which makes closed-loop identification of the uncertain parameters difficult. Compared ²⁶ with classical adaptive control, switching adaptive control has better inherent robustness against ²⁷ parameter uncertainties and unmodelled dynamics. ²⁸

By early 1980s, the classical adaptive control theory for linear systems had been well established ²⁹ under a set of so-called classical assumptions, which include: ³⁰

Known order of the plant (or known maximum order of the plant)
Known relative degree of the plant
Minimum phase dynamics
Known sign of the high-frequency gain (which is the gain of the plant when the input is highfrequency sinusodial signal)
31

Q1

1

2

3

Δ

^{*}E-mail: minyue.fu@newcastle.edu.au

At the same time, it was recognized that the classical adaptive control approach has inherent 36 robustness problems against even miniature unmodelled dynamics (Rohrs et al. 1985). While this 37 generated a wave of research aiming at robustification of the classical adaptive control theory (see, 38 e.g., Ioannou and Sun 1996), a new line of research took place aiming at relaxing the classical 39 assumptions. Nussbaum (1983) paved the way by showing that knowledge of the sign of the 40 high-frequency gain can be avoided for a first order linear system. Morse (1985) developed a 41 "universal controller" which can adaptively stablize any strictly proper, minimum-phase system 42 with relative degree not exceeding two. Martensson (1985) gave a very surprising result by showing 43 that asymptotic stabilization can be achieved adaptively by simply assuming that there exists a 44 finite order stabilizer. But Martensson's controller is impractical due to the need for exhaustive 45 online search of the stabilizer and subsequent excessively high overshoots. Switching adaptive 46 control was then introduced in Fu and Barmish (1986), aiming at achieving adaptive stabilization 47 with minimal assumptions and a guarantee of exponential convergence rate for the state. In contrast 48 to the work of Martensson, a compactness requirement is made on the set of possible plants and 49 an upper bound on the order of the plant is assumed. These assumptions allow a set of possible 50plants to be partitioned into a finite number of subsets, with each stabilizable by a single controller. 51 A monitoring function and a switching law are then designed to sequentially eliminate incorrect 52 candidate controllers until an appropriate controller is found. Due to the fact that the number of 53 candidate controllers may be large, many follow-up works on switching adaptive control focused 54 on speeding up the switching process by eliminating incorrect candidate controllers without trying 55 them (Zhivoglyadov et al. 2000, 2001). These results can also deal with slowly time-varying 56 parameters and infrequent parameter jumps. 57

Another major breakthrough came from the works of Morse (1996, 1997) under the term ⁵⁸ of *supervisory control*. His work considers set-point regulation for uncertain linear systems. ⁵⁹ A different compactness requirement is used to allow unmodelled dynamics in the system. ⁶⁰ More specifically, the given uncertain linear system is assumed to belong to a union of sub- ⁶¹ families of systems, with each sub-family having a linear controller capable to achieve set-point ⁶² regulation. Suitably defined output-squared estimation errors are used as monitoring functions and ⁶³ a candidate controller is selected whose corresponding performance signal is the smallest. The ⁶⁴ major advantages of this switching law are that the "correct" controller can usually be quickly ⁶⁵ identified without cycling through all possible candidate controllers, leading to a good closed-loop ⁶⁶ performance.

More recent research on switching adaptive control focuses on more systematic and alternative ⁶⁸ approaches to the design of candidate controllers and switching laws; see, e.g., Anderson et al. ⁶⁹ (2000), Hespanha et al. (2001), and Morse (2004). Generalizations to nonlinear systems are also ⁷⁰ found Battistelli et al. (2012). ⁷¹

Design of Switching Adaptive Control A switching adaptive controller consists of the following key ingredients: Design of control covering Design of monitoring function Selection of dwell time

72

73

74

75

For illustrative purposes, we consider an adaptive stabilization problem where the system has the 77 following model: 78

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$
⁷⁹

with state $x(t) \in \mathbb{R}^n$ for some $1 \le n \le n_{\text{max}}$ and the measured output $y(t) \in \mathbb{R}^r$. The given set of ⁸⁰ uncertain plants Σ consits of triplets (A, B, C) and we use the notation $\Sigma^{(n)}$ to denote the subset of ⁸¹ Σ consisting of those plants having order n. It is assumed that every possible plant $(A, B, C) \in \Sigma$ ⁸² is a minimal realization (i.e., both controllable and observable) and that every $\Sigma^{(n)}$ is a compact ⁸³ set (i.e., it is closed and bounded). The control objective is to design an adaptive controller to drive ⁸⁴ the state to zero asymptotically, i.e., $x(t) \to 0$ as $t \to \infty$. It is clear that each possible plant in Σ ⁸⁵ admits a linear dynamic stabilizer. An alternative description of the uncertain plant is introduced ⁸⁶ in Morse (1996, 1997) where its transfer function is a member of a continuously parameterized set ⁸⁷ of admissible transfer functions of the form ⁸⁸

$$\Sigma \subset \bigcup_{p \in \mathcal{P}} \left\{ \nu_p + \delta : \|\delta\| \le \varepsilon_p \right\}$$

In the above, \mathcal{P} is a compact set in a finite dimensional space, v_p is a nominal transfer function ⁹⁰ with its coefficients depending continuously on p, δ is the transfer function of some unmodelled ⁹¹ dynamics, $\|\delta\|$ represents a shifted H_{∞} norm (obtained by first shifting the poles of δ slightly to ⁹² the right and then computing its H_{∞} norm), and ε_p is sufficiently small so that each set of plants ⁹³ $\{v_p + \delta : |\delta| \le \varepsilon\}$ is stabilizable by a single controller for all $p \in \mathcal{P}$.

Control covering: The purpose is to decompose the given set of plants into a union of subsets ⁹⁵ such that each subset P_i admits a single controller K_i (called candidate controller) to achieve ⁹⁶ the given control objective. This is typically done using two properties: inherent robustness of ⁹⁷ linear controllers and the existence of a finite cover for any compact set. More specifically, if a ⁹⁸ candidate controller renders a desired control objective for a given plant, then the same objective is ⁹⁹ maintained when the plant is perturbed slightly. For example, Fu and Barmish (1986) uses the fact ¹⁰⁰ that if a given plant is stabilized by a controller then the same controller stabilizes all the plants ¹⁰¹ with sufficiently small parameter perturbations. Similarly, Morse (1996, 1997) uses the fact that ¹⁰² the same controller achieves set-point regulation for a small neighborhood of plants. Combining ¹⁰³ this property with the finite covering property yields

$$\Sigma = \bigcup_{i=1}^{N} \Sigma_i$$
 105

such that each subset Σ_i admits a single controller K_i .

Monitoring Function: The generation of the adaptive switching controller is accomplished using ¹⁰⁷ a *switching law* or *switching logic* whose task is to determine, at each time instant, which candidate ¹⁰⁸ controller is to be applied. The core of the switching law is a monitoring function. Its very basic role ¹⁰⁹ is to be able to detect whether the applied candidate controller is consistent with the corresponding ¹¹⁰ plant subset so that wrong candidate controllers can be eliminated one by one until an appropriate ¹¹¹ controller is found. A major difficulty for switching adaptive control design is that persistent ¹¹²

excitation is not assumed. Consequently, it is not always possible to detect the correct plant subset ¹¹³ using the measured output. The key idea is to check which plant subsets are consistent with the ¹¹⁴ generated output. ¹¹⁵

One simple monitoring function uses a finite-time L_2 norm of the measured output:

$$V(t,\tau) = \int_{t-\tau}^{t} \|y(s)\|^2 ds$$
 117

116

where τ is the so-called *dwell time*. It turns out that for some properly chosen dwell time, a ¹¹⁸ correctly applied candidate controller is able to guarantee some decay property for the monitoring ¹¹⁹ function, i.e., $V(t, \tau) \leq e^{-\lambda \tau} V(t - \tau, \tau)$ for some $\lambda > 0$. This property is sufficient to allow a ¹²⁰ wrong candidate controller to be eliminated. However, much smarter monitoring functions can be ¹²¹ designed so that infeasible candidate controllers (those not corresponding to the true plant) can ¹²² be eliminated without even being applied. This can be done using the *falsification* approach in ¹²³ parameter estimation where the basic idea is to eliminate all plant subsets Σ_i inconsistent with the ¹²⁴ measured output signal. For example, consider the following discrete-time model: ¹²⁵

$$y(t) = -a_1 y(t-1) - a_2 y(t-2) + b_1 u(t-1) + b_2 u(t-2) + w(t)$$
¹²⁶

where a_i and b_i are uncertain parameters and w(t) is a bounded disturbance, i.e., $|w(t)| \le \delta$ for ¹²⁷ some δ . For this example, we may eliminate all the uncertain parameter subsets which violate the ¹²⁸ following constraint (Zhivoglyadov et al. 2000): ¹²⁹

$$|y(t) + a_1 y(t-1) + a_2 y(t-2) - b_1 u(t-1) - b_2 u(t-2)| \le \delta$$
¹³⁰

More generally, one can use the so-called multi-estimator (Morse 1996, 1997) which involves an 131 array of estimators, one for each plant subset Σi using its nominal model. The output estimation 132 error e, (l) for each such estimator is then used to construct a monitoring function, e.g., 133

$$V_{i}(t,\tau) = \int_{t-\tau}^{t} e^{-2\lambda(t-s)} \|e_{i}(s)\|^{2} ds$$
134

where τ is the dwell time as before and $\lambda > 0$ is an exponential weighting parameter used to ¹³⁵ guarantee the decay rate of the monitoring function as before. Instead of using the monitoring ¹³⁶ functions to eliminate infeasible candidate controllers, the candidate controller corresponding to ¹³⁷ the least estimation error, as measured by the least monitoring function, is selected. The main ¹³⁸ advantage of the multi-estimator based monitoring functions is that falsification of candidate ¹³⁹ controllers is done implicitly and a "correct" controller can be quickly reached, leading to good ¹⁴⁰ performance.

Dwell Time: The dwell time τ as defined above is a critical component in switching adaptive ¹⁴² control. Serving in the monitoring function, this is the minimum nonzero amount of time for ¹⁴³ a candidate controller to be applied before switching. That is, this provides a sufficient time ¹⁴⁴ lag to build the monitoring function so that its exponential decay property is detected when a ¹⁴⁵ correct candidate controller is applied. This will allow detection of infeasible plant subsets and ¹⁴⁶ selection of a "correct" controller. The use of a dwell time also avoids arbitrarily fast switching, ¹⁴⁷ thus gauranteeing the solvability of the system dynamics.

The dwell time can be selected a priori by using the fact that if a matrix A is stable, then there 149 exist some positive values λ and τ such that $||e^{At}|| \leq e^{-\lambda\tau}$ for all $i > \tau$. This leads to the desired 150 exponential decaying property 151

$$V(t,\tau) \le e^{-\lambda\tau V} \left(t-\tau,\tau\right)$$
¹⁵²

for the aforementioned monitoring function for adaptive stabilization.

Alternatively, the dwell time can be chosen implicitly. Hespanha et al. (2001) suggest a 154 *hysteresis switching logic* method. This method employs a hysteresis parameter h > 0. Suppose 155 the candidate controller K_j is applied at time t_i , then K_j is kept until the next switching time t_{i+1} 156 which is the minimum $t \le t_i$, such that

$$(1+h)\min_{1\le k\le N} V_k(t,t-t_i) \le V_j(t,t-t_i)$$
158

Because h > 0, the time difference $t_{l+1} - t_i > 0$ is lower bounded, which implies the existence of the adwell time.

Summary and Future Directions

Switching adaptive control is a conceptually simple control technique capable to deal with large 162 parameter uncertainties. The use of simple candidate controllers (typically linear) imply good 163 closed-loop behavior and good robustness against unmodelled dynamics. Although the discussion 164 above assumes that the number of plant subsets is finite, this assumption is not essential; see 165 Anderson et al. (2000).

Switching adaptive control renders the closed-loop system a switched system or hybrid system, ¹⁶⁷ for which a wide range of tools are available to aid the analysis of such a system; see, e.g., Liberzon ¹⁶⁸ (2003). However, unique features of such a system arise from the fact that the switching mechanism ¹⁶⁹ is chosen by the designer, rather than being a part of the given plant. How to best design the ¹⁷⁰ switching mechanism is an interesting issue. ¹⁷¹

Future works for switching adaptive control include:

- How to simplify the design of candidate controllers. Finite covering based design often yields a 173 large number of plant subsets, hence a large number of candidate controllers. Since most of the 174 candidate controllers do not need to apply (which is the case when falsification based switching 175 logic is used, for example), smarter ways are needed for the design of candidate controllers. 176
- Wider applications. Most of the research so far focuses on stabilization and set-point regulation 177 (which is essentially a stabilization problem). How to incorporate general performance criteria 178 is an essential and yet challenging issue. 179
- 3. Better design of monitoring functions and the corresponding switching logic. Most existing 180 monitoring functions use a finite-time L_2 norm of the output (or regulation error), with the 181 key feature that some exponential decay property is guaranteed when the candidate controller is 182 "correct." Note that the key purpose of the monitoring function and the corresponding switching 183 logic is to allow fast falsification of infeasible candidate controllers. Thus, a much wider range 184 of monitoring functions can possibly be used. In particular, how to incorporate set membership 185 identification techniques (Milanese and Taragna 2005) may be of particular interest. 186

172

Q3

Encyclopedia of Systems and Control DOI 10.1007/978-1-4471-5102-9_119-1 © Springer-Verlag London 2014

Bibliography

1	07
ļ	01

Anderson BDO, Brinsmead T, Bruyne FD, Hespanha JP, Liberzon D, Morse AS (2000) Multiple model adaptive conrol. Part 1: finite controller coverings. Int J Robust Nonlinear Control	188 189
10(11–12):909–929	190
Battistelli G. Hespanha JP. Tesi P (2012) Supervisory control of switched nonlinear systems. Int	191
J Adapt Control Signal Process 26(8):723–738. Special issue on Recent Trends on the Use of	192
Switching and Mixing in Adaptive Control	193
Fu M, Barmish BR (1986) Adaptive stabilization of linear systems via switching control. IEEE	194
Trans Autom Control 31(12):1097–1103	195
Hespanha JP, Liberzon D, Morse AS, Anderson BDO, Brinsmead T, Bruyne FD (2001) Multiple	196
model adaptive control. Part 2: switching. Int J Robust Nonlinear Control 11:479–496	197
Ioannou P, Sun J (1996) Robust adaptive control. Prentice Hall, Upper Saddle River	198
Leith DJ, Leithead WE (2000) Survey of gain-scheduling analysis and design. Int J Control	199
73(11):1001–1025	200
Liberzon D (2003) Switching in systems and control. Birkhäuser, Boston	201
Martensson B (1985) The order of any stabilizing regulator is sufficient information for adaptive	202
stabilization. Syst Control Lett 6:87–91	203
Milanese M, Taragna M (2005) H-infinity set membership identification: a survey. Automatica	204
41:2019–2032	205
Morse AS (1985) A three-dimensional universal controller for the adaptive stabiliztion of any	206
strictly proper minimum-phase system with relative degree not exceeding two. IEEE Trans	207
Autom Control 30(12):1188–1191	208
Morse AS (1996) Supervisory control of famillies of linear set-point controllers part I: exact	209
matching. IEEE Trans Autom Control 41(10):1413–1431	210
Morse AS (1997) Supervisory control of families of linear set-point controllers part II: robustness.	211
IEEE Trans Autom Control 42(11):1500–1515	212
Morse AS (2004) Lecture notes on logically switched dynamical systems. In: Nistri P, Stefani G	213
(eds) Nonlinear and optimal control theory. Springer, Berlin, pp 61–162	214
Nussbaum RD (1983) Some remarks on a conjecture in parameter adaptive control. Syst Control	215
Lett 3:243–246	216
Rohrs CE, Valavani L, Athans M, Stein G (1985) Robustness of continuous-time adaptive control	217
algorithms in the presence of un-modeled dynamics. IEEE Trans Autom Control 30(9):881–889	218
Zhivoglyadov PV, Middleton RH, Fu M (2000) Localization based switching adaptive control for	219
time-varying discrete-time systems. IEEE Trans Autom Control 45(4):752–755	220
Zhivoglyadov PV, Middleton RH, Fu M (2001) Further results on localization based switching	221
adaptive control. Automatica 37:257–263	222

Author Queries

Query Refs.	Details Required	Author's response
Q1	Please check if author affiliation is okay.	
Q2	Please provide section "Cross-References."	
Q3	Please check if updated publisher location for "Ioannou and Sun (1996), Liberzon (2003), and Morse (2004)" are okay.	

d de la constant de l