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Abstract— Localizability analysis with respect to either the
whole network or a single node has been explored in previous
work. Usually, a set of nodes and specified connections between
nodes jointly construct a graph. During this paper, the localiz-
ability exploration of two merging network is characterized to
be globally rigidity analysis of the graph. We will give a series
of sufficient and necessary condition on the localizabilityof two
merging graph corresponding to several different combinations
of nodes in each graph.

I. INTRODUCTION

L OCALIZATION problem is the fundamental and im-
portant issue among the abundant expected application

of sensor network [1][2], which include but not limited
in the area of wildlife tracking[4], ocean monitoring[5],
intelligent factory[6][7], information encryption[15] and the
newly appeared carbon sink[8].

Generally, there are two kinds of way for obtaining the
location information. First is the distance-based localization
scheme and the second is the distance-free scheme. The
localization scheme discussed in this paper is based on dis-
tance measurement. We want to remark that the localization
scheme discussed here is a different definition compared
with the range detection technique. The distance detectionor
ranging technique usually means the technique that used for
obtaining the distance measurement. This might be finished
by detecting the flight time of radio or ultrasonic signals
and therefore obtaining the distance between the signal
source and the target [16]. A localization scheme, generally
distance-based localization scheme, can use the detected
distance information for getting location information.

Localization scheme can be divided into two cases: se-
quential scheme and concurrent scheme[22]. For a sequential
scheme, there are usually at least three anchor nodes in a 2D
plane and every node without location information is tested
if it has three direct distance measurement with the nodes
that known location. If so, its location will be computed by
its distance measurement with three location known nodes
and then be added into the set of location known nodes. If
not, its location could not be computed. The scheme will
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test all the nodes one by one according this way. For a
concurrent scheme, every node will compute its location
by using distance measurement within its neighborhood.
Computation at each node can exist currently and this scheme
will iterate to the correct location value finally.

Both sequential and concurrent scheme can only compute
the location of nodes that are ’localizable’ or ’easily localiz-
able’. The localizable nodes should fit some conditions, such
as 3-connected condition in [18] and convex hull constraints
in [8][3].

For a randomly deployed sensor network, it is prob-
ably that not all the sensor nodes are localizable since
the existence of so called flex and flip ambiguity in the
localization problem[18]. The localizability problem is often
characterized through the graph theory.

A graph is rigid if it could not be continuously deformed.
If every realization of the graph with same distance con-
straints is identical, then the graph is globally rigid. A
graph is globally rigid if and only if it is 3-connected and
redundantly rigid. Here, 3-connected means the graph is still
connected after removal of any two nodes. Redundantly rigid
means the graph is still rigid after removal of any edge.

If a globally rigid graph could not be globally rigid any
more after removing any one edge from the graph, it is a
minimally globally rigid graph. We give a description of
those several concepts in Fig.1.

Fig. 1: Several Concepts

The existed work on localizability focused on the localiz-
able conditions of either a whole network[20] or one single
node[21]. They proved conditions for the localizability in
view of the connectivity and rigidity of the graph. The



drawback of localizability conditions for a whole network
is that they can only judge wether the whole network is
localizable but cannot find the localizable nodes from a given
network. Practically, a randomly deployed sensor network is
hardly to be localizable in the view of the whole network[21].
The drawback of localizability conditions for one single node
is that it can test only one node at a time and the condition
is not sufficient and necessary. Connectivity and rigidity test
for both cases need global information.

Neither for a whole network nor for one single node, our
thread is to explore the localizability condition for a set of
nodes. Assume there is one set of location known nodes
during the whole network. Existed work is to analyze the
connectivity and rigidity of every location unknown node
one by one. But during this paper, we want to collect each
single node with its several neighbors together to build a test
set. Different number of neighbors leads to specified test set.
Then analyze the localizable conditions between the test set
and the location known set.

We characterize this set based thread as a connectivity and
rigidity test of two merging graph. The location known set
corresponds to a location fixed graph in 2D plane, while each
test set corresponds to the other graph. The connectivity and
rigidity condition need to answer two questions: how many
connections between these two graph is required and where
should they be draw.

II. PROBLEM STATEMENT AND RELATED WORK

During the localizability exploration, the sensor networkis
usually treated as a graphG(V,E). In graph theory,V andE
stand for the vertex set and edge set of the graph respectively.
Here,V stands for a set of all the nodes andE stands for
a set of the existed edges between connected nodes in real
network.

For a graphG, it is localizable in 2D plane if and only if
the graph is globally rigid and there are three location known
nodes in the graph. Given at least 3 location known nodes,
the localizable condition for a network can be transformed
into a globally rigidity test. During this paper, we want to
explore the localizable condition between two set of nodes.
This can be characterized as the globally rigidity test of two
merging graph, one of which is location-all-known.

It can be mathematically described as below. Given two
graphG1(V1,E1) containingN1 nodes andG2(V2,E2) con-
tainingN2 nodes, we are asked to draw fixed number of edges
between these two graph to merge them together and obtain
a merging minimally globally rigid graphG(V,E) containing
all N1+N2 nodes and edges between them. Without loss of
generality, we assume allN1 nodes inG1 are location known.
Then we turn to our question that, mergingG2 onto G1 to
obtain a globally rigid graphG, how many edges is required
and how to draw these edges between graphG1 andG2. For
simplicity of analysis, we assumeG1 has only three nodes
here and discuss the cases ofG2 having different number of
nodes and variable edges.

A natural question is why we choose to explore conditions
for several specified case ofG1 andG2.

Firstly, two merging graphG1(V1,E1) and G2(V2,E2)
have variable(V1,E1) and (V2,E2) and numerous possible
combination, if either of them if not globally rigid. It is hard
to give a generalized condition for mergingG1 andG2 and
we choose to give a sufficient and necessary condition for
two merging graph with specified number of nodes and edges
and also give a necessary condition for two merging graph
with variable number of nodes and edges.

Secondly, we believe the condition for two merging graph
could be much tighter than the condition for one node
merging with a graph[21] since the interconnection between
nodes in the test graph might eliminate some degree-of-
freedom.

Thirdly, for a localization scheme, the main object is to
localize nodes as many as possible even if not all nodes of the
network are localizable. In other words, we can tolerate an
algorithm that cannot find all possible combinations. There
are kinds of ’easily localizable’ network topology such as 3-
connected case in [18] and referred work inside and ’wheel’
case in [19]. Both cases can find parts of the localizable
nodes through the whole network even if the network is not
whole localizable. But the conditions, such as 3-connected, is
only a sufficient but not necessary condition. In other words,
there are still some localizable nodes that are not included
in either case.

Below we show an example of graph in Fig.2, which does
not fit 3-connected condition but is still localizable. This
example is also mentioned in [19] and its localizability can
be analyzed through the localizable condition of one single
node in [21]. We will explore its localizability by regarding
two location unknown nodes 4 and 5 as a test set. We will
prove the connections shown as dashed line in Fig.2 is the
only choice for merging this set onto the location known set
by introducing minimally connections.

Fig. 2: A Counter Example of 3-connected Condition

The algorithm in [27] based on the 3-connected and
redundantly rigid condition above could be utilized for
testing the globally rigidity of the network. But this condition
is explored in view of the whole network. Utilizing this
judgement condition on a given network graphG, we could
determine whether the whole network is localizable but still
cannot tell which nodes of the network are not localizable.
The work of [20] analyzed the localizability of each single
node. They give a so far closest pair of mutual independent



sufficient condition and necessary condition for one single
node’s localizability.

Similar like our set based thread, there are also some work
giving localizable conditions for the merging of two globally
rigid sub-network[25][26]. Those cases can be recognized as
a localizability analysis between two globally rigid graph.
During this paper, we also give conditions for the globally
rigidity of merging graph, but only one of the graph is
required to be globally rigid and the other graph’s structure
is not constrained, which we name as a free graph here.
According to our definition of free graph, the globally rigid
graph without anchors is free. But the graph without promise
of globally rigid is also contained in the range of free graph.
This is also our main difference with the existed work such
as [25] and [26].

III. C ONDITIONS FORLOCALIZABILITY OF TWO

MERGING GRAPH

During this paper, we want to give some more conditions
for determining the localizability corresponding to several
specialized cases ofG1 and G2. We assumeG1 has three
location known nodes inside.

A. A Necessary Condition for Localizability of Two Merging
Graph

In a 2D plane, if a graph is fixed on the uniquely position,
it has zero degree-of-freedom. But if a graph is globally
rigid, it has still 3 degree-of-freedom since the lack of
three anchors[20]. These 3 degree-of-freedom correspond to
the rotation, translation and reflection of the graph in 2D
plane[14]. So, globally rigid is only a necessary condition
for uniquely localizable.

Actually, each free node’s movement in a 2D plane has
2 degree-of-freedom, so there are 2n degree-of-freedom
for n nodes. One pair-wise connection between two nodes
could eliminate 1 degree-of-freedom. A natural question is
how many connections is required at least to guarantee the
globally rigidity of a graph. And how many connections is
required for our case, during which number of nodes and
connections in two graph is specified.

We first give a lemma about the general case:
Lemma 1: If a graphG with n nodes is globally rigid, it

have at least 2n−2 edges in the graph.
Proof: For a globally rigid graphG containingn nodes,

although relative of each node inside is fixed, it still has 2
degree of freedom in a 2D plane as a whole. If without any
edge, the nodes inG are not connected and each single node
in a 2D plane has 2 degree of freedom. So, there should be
2n degree of freedom forn nodes if the connections was not
built insideG.

Therefore, edges insideG eliminate 2n − 2 degree of
freedom. Considering each edge corresponds to one degree
of freedom, we can conclude that there should be at least
2n−2 edges inG if it is a globally rigid graph.

Then we can obtain the number of required edges between
two merging graph:

Corollary 1: For two graphG1, containingm nodes andp
edges inside, andG2, containingn nodes andq edges inside,
if their merging graphG is globally rigid, there should be
at least 2(m+n)− (p+q)−2 edges connected betweenG1
andG2.
A globally rigid graphG with n nodes is named to be a
minimally globally rigid graph, if it has exactly 2n−2 edges.
The minimally globally rigid graph could be constructed
through a sequential way[28]. The construction way of
minimally globally rigid graph will be described below.

B. Two Nodes Cases

As shown in Fig.3, graphG1 contains three anchor n-
odes and graphG2 contains two nodes. There is an an
interconnected edge between node 4 and node 5 in graph
G2. The reason for utilizing the concept of globally rigidity
between graph is to use interconnections inside the graph to
weaken the globally rigidity condition. The example shown
in Fig.3(b) is almost same with the counter example shown
in Fig.2. Difference is the treatment that we package node
4 and node 5 into a set. Though neither of them fit the 3-
connected condition, but the graph formed by the all 5 nodes
is still globally rigid. We firstly answer the question that how

Fig. 3: Two nodes case

many edges between two graph is required at least. Through
the above corollary, we can compute there should be at least
4 connections to merge two graphG1 andG2 together to be
a globally rigid graph.

Then we should explore how to draw these 4 connections
between two graph to make the merging graph globally rigid.
Since each node in both graph is identical, if the link number
is limited at 4, it is easy to exhaust that there are only two
possible cases for two graph as shown in Fig.3(a).

Here, we introduceJackson and Jordan’s conclusion about
globally rigidity and Berg and Jordan’s conclusion about



minimally globally rigidity as two lemmas:
Lemma 2 ([23]): A distance graph is globally rigid if and

only if the graph is 3-connected and redundantly rigid.
Lemma 3 ([28]): Given a minimally globally rigid graph

G containing at least 4 nodes, suppose one node is added to
it with 3 connections toG. Then, the resulting graph is still
minimally globally rigid if one edge between two of these 3
nodes inG is removed.

Then, we give our condition about the above case:
Theorem 1: Given two graph, one is globally rigidG1,

containing only three anchors inside, and the other oneG2
is free, having two connected nodes inside, the merging of
two graph is globally rigid if and only if there is one node
in G1 connected both of two nodes inG2 and each of the
other two nodes inG1 connects a different node inG2 with
each other.

Proof: First, we give the sufficiency proof. As shown
in Fig.3(d), if the edge between node 3 and 4 is added
into the graph, node 4 would be 3-connected with three
anchors. Then the graph built byS(1,2,3,4) is a minimally
globally rigid graph. After that, add node 5 onto the graph
and build connections with node 2, 3 and 4. As the sequential
setup process of minimally globally rigid graph described in
Lemma 3, the edge between node 3 and 4 is eliminated and
the constructed graph is minimally globally rigid.

Followed is the necessity proof. There are four edges
needed to draw onto three nodes at each side and every node
in corresponding graph is identical. So there are only two
possible connected cases if the number of links is fixed at
4. From Lemma 2, we could determine the merging graph
shown in Fig.3(c) is not globally rigid since the graph would
be not connected if node 1 and node 5 were removed. Then
only one possible connected case is globally rigid.

Remark 1: For the case with more than 3 nodes inG1,
the merging graphG is globally rigid if there are 4 anchor
nodes have connections with the free graph, any three of the
anchor nodes is not collinear, and one of the link from the
intersected node inG1 is replaced by a new edge from the
4th node. This remark could be proved through adding a new
node into the graph inTheorem 1 to build a newly minimally
globally rigid graph.

Remark 2: For the case with more than 4 links between
two graph, it could be recognized as adding redundant
links after building the minimally globally rigid graph. The
condition we given here is a tight bound for the setup of
a merging globally rigid graph. Without the requirement of
minimally links, the sufficient condition still works.

C. Three Nodes Cases

As shown in Fig.4(a), both graphG1 and graphG2 have
3 nodes inside. The difference is that there are still 3 degree
of freedom forG2. In other words, the coordination of nodes
in G1 is fixed but nodes inG2 could move in 2D plane if
without links between two graph. Here, the nodes inG2 is
pairwise connected and formed a triangle.

First, we analyzed possible connected way between two
graph as shown in Fig.4(a). For a graphG containing 6

Fig. 4: Three nodes case

nodes, there should be at least 10 edges to make sure the
globally rigidity. Besides 6 edges forming two triangles,
there still need 4 more edges between two graph. An extra
constraint about these 4 edges is they should be directly
connected with 3 anchors in graphG1.

Since there are 4 edges directly connected with 3 anchor
nodes, one of three anchors inG1 should have two directly
connections withG2. Without loss of generality, we assume
node 1 is the one that has two directly connections with two
nodes in graphG2, say node 4 and 6 as shown in Fig.4.
Then there are only two kinds of choice for the left two
nodes in graphG1, either connected two different nodes in
G2 as shown in Fig.4(b) or connected the same node left in
G2 as shown in Fig.4(c).

Now, we prove the previous one is the right choice to make
the formed graph globally rigid. We describe this conclusion
as a theorem here.

Theorem 2: Given a graphG1 containing 3 anchor nodes
inside, the free graphG2 could be added onG1 to construct
a minimally globally rigid graphG if and only if there are
four edges connected betweenG1 and G2, one node ofG1
has direct connections with 2 different anchor nodes inG1
and two others has single connections with different anchor
nodes ofG1.

Proof: First we prove the sufficiency. Since each node
in corresponding graph is identical, so we can construct
two possible graph and connections, as shown in Fig.4(b),
according to the description of the theorem.

Consider the graphG containing all 6 nodes as a whole
and then decompose graphG into two parts: one part is the
graph formed by node 1 to 5, the other part is node 6 with
its connected edges.

Adding an auxiliary line between node 1 and 5, as shown
in Fig.4(d), we could build a minimally globally rigid graph



formed by node 1 to 5. The proof is same asTheorem 1
since node 4 and 5 could be recognized as the two-node-
graph case described inTheorem 1. The difference is only
on the interconnected node choice, i.e., node 2 in Fig.3 and
node 1 in Fig.4, in two cases.

After adding node 6 onto the minimally globally graph
formed by 1 to 5 in Fig.4(d), we could prove the resulted
graph is still minimally globally rigid throughLemma 3.

Then we prove the necessity. As the analysis before, there
are only two kinds of connections if the number of edges
between two graph is limited at 4. One is shown as Fig.4(c).
Through Lemma 2, the globally rigid graphG should be
3-connected and redundantly rigid. 3-connected means the
graph should be connected after removal of any two nodes.
But the merging graph formed by all 6 nodes shown in
Fig.4(c) is not 3-connected because the merging graph would
not be connected after removal of node 1 and 5. So, the one
shown as Fig.4(b) is the only choice.

D. Four Nodes Cases

So far, we could prove the condition for globally rigidity
of two graph merging in above cases. But the free graph
appeared in both cases are rigid. Here, we want to discuss
the condition for globally rigidity of merging graph when
one of the graph is not rigid.

As shown in Fig.4(a), the nodes in graph 2 construct a
quadrangle. According to the definition of rigid, a quadrangle
is not rigid since it could be deformed. What we want
to do is to explore conditions that can make the merging
graph formed by all nodes in both graph globally rigid while
introducing least edges between two graph. This is an almost
identical requirement with building a minimally graph. The
difference here is the nodes in graph 1 are anchored and
edges in both graph 1 and graph 2 are fixed.

We want to analyze the globally rigidity based on our
conclusion in last subsection. AsLemma 3 described, every
minimally globally rigid graph could be constructed sequen-
tially. Once we obtained a minimally graph as shown in
Fig.4(b), adding one more node onto it, we could get a
new graph like Fig.5(b) or Fig.5(c) according to different
choice of connected node. Take Fig.5(b) for example, node
7 is added into graph 2 and connected with node 5 and 6.
According to Lemma 3, if adding one more edge between
node 7 and any one node in graph 1 and eliminating edge
between node 5 and 6, then the obtained graph would be a
minimally globally graph. The connected case like shown in
Fig.5(c) is same as above.

We give our conclusion about the condition to build a
globally rigid graph between a globally rigid graph and a
non-rigid graph as below.

Theorem 3: Given one graphG1 with three pairwise con-
nected anchors and another graphG2 with four nodes whose
connection formed a quadrangle, the merging graph of them
is globally rigid and there are least connections between
those graph if and only if the three conditions below are
satisfied simultaneously:

Fig. 5: Four nodes case

1. Each of nodes inG1 has at least one connection with
G2;

2. Each of nodes inG2 has at least one connection with
G1;

3. There is only one node inG2 connects with two nodes
in G1 and one of those nodes inG1 has connection with
another node inG2.

Proof: First we prove the sufficiency. Consider the
graph G formed by all 7 nodes in Fig.5(a) as a whole.
Condition 3 leads to a ”Z” shape connection between 4
nodes. Since each node in corresponding graph is identical,
we can build the ”Z” shape connection between node 1,2,4
and 6. Then we connect the left nodes according to condition
1 and 2, we can obtain two kinds of possible combinations
as shown in Fig.5(c) and Fig.5(d).

In both cases, nodes 1 to 6 construct a subgraphGa, shown
as solid line in Fig.5(b). We could notice thatGa is identical
with the graphG described inTheorem 2, i.e., the graph
shown in Fig.4(b). The graph shown asGa has been proved
to be a minimally globally rigid inTheorem 2.

Adding one more node, say node 7, onto the graphGa
shown in Fig.5(b) through connecting node 7 with node 5 and
node 6 and eliminating edge between node 5 and node 6, we
could obtain a graph shown as Fig.5(d). According toLemma
3, adding and eliminating as described above is a typical
process in constructing a minimally globally rigid graph. So,
we can conclude that the graph as shown in Fig.5(d) is a
minimally globally rigid graph.

And then we prove the necessity of those three conditions
one by one.

For condition 1: For nodes inG1, if any one of them has
not direct connection with nodes inG2, then the resulted
graph would be flipped over the edge between the other
two nodes. So, each of nodes inG1 must have at least one



connection withG2.
For condition 2: The nodes inG2 construct a quadrangle.

If any one node of the quadrangle has no connection withG1
, it could be flipped over the diagonal line of the quadrangle.
Then the merging graph is definitely un-localizable. So, each
of nodes inG2 needs at least one connection withG1.

For condition 3: According to corollary in the first subsec-
tion, there are still 5 more edges needed to be added between
two graph. Since there are 5 more edges needed to be added
onto those four nodes ofG2, there must be one node inG2
that has two connections with nodes ofG1.

Consider the graph shown in Fig.5(d), node 4 inG2 has
two connections with node 1 and 2 ofG1 respectively. At
the same time, node 1 inG1 has another connection besides
node 4 inG2. If not so, such as connecting node 6 with
node 3 rather than node 1, the resulted graph is not 3-
connected. This is caused by the fact that the graph would
not be connected after removal of node 3 and 4. According
to Lemma 2, it cannot be globally rigid then.

IV. REMARK ON SEQUENTIAL LOCALIZATION SCHEME

The traditional sequential localization scheme is based on
3-connected condition. Every node’s coordination is com-
puted by its three neighbors if those neighbors’ coordination
was known. The nodes fit 3-connected condition is computed
one by one. This process can be finished in polynomial steps.
But as we pointed before, only small part of the network is
localizable according to this way. The case shown in Fig.2
is a counter example.

Compared with sequential way, a concurrent localization
scheme could use information of neighborhood only. Each
node of the network can compute its coordination by using
information from its three neighbors. But the iteration pro-
cess will not be converged if some tight constrains are fit.
Besides the constrains limitation, another problem for the
concurrent way is its complexity. The iteration will converge
in infinite steps, which is hardly to realize in practice.

We choose a sequential way, but we consider a set of nodes
rather than one single node at each step. This will improve
the efficient of the sequential way and reduce the chance
that miss localizable nodes during the network. Compared
with the concurrent way in [3], we utilize a more reasonable
assumption about the network deployment.

V. CONCLUSION

During this paper, we discussed the localizability of t-
wo merging graph of nodes. The localizability is explored
through graph rigidity theory. Different from existed work,
the analysis object is neither the whole network nor one
single node, but two merging graph of nodes. And the graph
are not required to be all globally rigid. We give localizable
conditions for several specified cases of the graph. Compared
traditional trilateration thread, our set based thread could
reduce the risk of missing localizable nodes. Compared the
conditions of merging one node on a graph, our conditions
is much tighter and more efficient. The analysis of these
condition between graph can guide the localization algorithm

in the following work. For example, if there are some nodes
lying outside the communication range of anchor graph, we
could amplify the communication power of specified nodes
according to the conditions given in this paper.
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