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Abstract— Localizability analysis with respect to either the test all the nodes one by one according this way. For a
whole network or a single node has been explored in previous concurrent scheme, every node will compute its location
work. Usually, a set of nodes and specified connections betere by using distance measurement within its neighborhood.

nodes jointly construct a graph. During this paper, the locdiz- . . .
ability exploration of two merging network is characterized to Computation at each node can exist currently and this scheme

be globally rigidity analysis of the graph. We will give a sefes  Will iterate to the correct location value finally.

of sufficient and necessary condition on the localizabilityf two Both sequential and concurrent scheme can only compute

merging graph corresponding to several different combinabns  the location of nodes that are ’'localizable’ or 'easily Itiza

of nodes in each graph. able’. The localizable nodes should fit some conditionshsuc
|. INTRODUCTION as 3-connected condition in [18] and convex hull constgaint

OCALIZATION problem is the fundamental and im- n I[:8][3]. domlv deploved work. it i b

portant issue among the abundant expected applicatio% or a randomly deployed Sensor network, it IS prob-
of sensor network [1][2], which include but not limited & ly that not all the sensor nodes are IOC‘F’.‘“Z?bI? since
in the area of wildlife tracking[4], ocean monitoring[5],the existence of so called flex and flip ambiguity in the

: . . ; . localization problem[18]. The localizability problem isten
intelligent factory[6][7], information encryption[15]ral the .
newly appeared carbon sink[8]. characterized through the graph theory.

Generally, there are two kinds of way for obtaining thq A graph is rigid if it could not be continuously deformed.
location information. First is the distance-based loedlon f every realization of the graph with same distance con-

scheme and the second is the distance-free scheme. .Isﬁreaintg is identicgl,_ then the gra}ph .is globally rigid. A
localization scheme discussed in this paper is based on dgsr_glphc;s %IOb_al_lg r|1|g|d |f3and onlyt 'fd't IS 3—0?;necte(:“?ndt_
tance measurement. We want to remark that the localizatidRo1 " ?ndyfrtlgl j ere,l -fconnfce rgean; de g&aptl 'S.S.'d
scheme discussed here is a different definition Comparggnnece atter removai ot any o nodes. Redundantly rigi

with the range detection technique. The distance deteotion mTfans tlhf) gflrap.h Ids stil rri]gid alf(;er r?rgova}I gf ﬁny.e%ge.
ranging technique usually means the technique that used for a globally rigid graph could hot be giobally rngid any

obtaining the distance measurement. This might be finish&d°"® after removing any one edge from the graph, it is a

by detecting the flight time of radio or ultrasonic signalsm'mmaIIy globally rigid graph. We give a description of

and therefore obtaining the distance between the signtg'lOse several concepts in Fig.1.

source and the target [16]. A localization scheme, generall
distance-based localization scheme, can use the detected

distance information for getting location information.
Localization scheme can be divided into two cases: se-
guential scheme and concurrent scheme[22]. For a seguentia
scheme, there are usually at least three anchor nodes in a 2 v
plane and every node without location information is tested

if it has three direct distance measurement with the nodes ! Risid Flip Flexible
that known location. If so, its location will be computed by

its distance measurement with three location known nodes

and then be added into the set of location known nodes. If

not, its location could not be computed. The scheme will 7\
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Fig. 1: Several Concepts



drawback of localizability conditions for a whole network Firstly, two merging graphG;(Vi,E1) and Ga(Vy, Ey)
is that they can only judge wether the whole network iave variable(Vy,E;) and (V2,Ez) and numerous possible
localizable but cannot find the localizable nodes from amivecombination, if either of them if not globally rigid. It is ha
network. Practically, a randomly deployed sensor netwsrk ito give a generalized condition for mergi and G, and
hardly to be localizable in the view of the whole network[21]we choose to give a sufficient and necessary condition for
The drawback of localizability conditions for one singledeo two merging graph with specified number of nodes and edges
is that it can test only one node at a time and the conditioend also give a necessary condition for two merging graph
is not sufficient and necessary. Connectivity and rigiditstt with variable number of nodes and edges.
for both cases need global information. Secondly, we believe the condition for two merging graph
Neither for a whole network nor for one single node, oucould be much tighter than the condition for one node
thread is to explore the localizability condition for a sét o merging with a graph[21] since the interconnection between
nodes. Assume there is one set of location known node®des in the test graph might eliminate some degree-of-
during the whole network. Existed work is to analyze thdreedom.
connectivity and rigidity of every location unknown node Thirdly, for a localization scheme, the main object is to
one by one. But during this paper, we want to collect eaclocalize nodes as many as possible even if not all nodes of the
single node with its several neighbors together to buildsa tenetwork are localizable. In other words, we can tolerate an
set. Different number of neighbors leads to specified tdst salgorithm that cannot find all possible combinations. There
Then analyze the localizable conditions between the tést sgre kinds of "easily localizable’ network topology such as 3
and the location known set. connected case in [18] and referred work inside and 'wheel’
We characterize this set based thread as a connectivity ag@be in [19]. Both cases can find parts of the localizable
rigidity test of two merging graph. The location known sethodes through the whole network even if the network is not
corresponds to a location fixed graph in 2D plane, while eachhole localizable. But the conditions, such as 3-connedsed
test set corresponds to the other graph. The connectivity aonly a sufficient but not necessary condition. In other wprds
rigidity condition need to answer two questions: how manyhere are still some localizable nodes that are not included
connections between these two graph is required and whéreeither case.
should they be draw. Below we show an example of graph in Fig.2, which does
not fit 3-connected condition but is still localizable. This
example is also mentioned in [19] and its localizability can
During the localizability exploration, the sensor netw@k pe analyzed through the localizable condition of one single
usually treated as a graj@(V,E). In graph theoryy andE  node in [21]. We will explore its localizability by regardjn
stand for the vertex set and edge set of the graph respgctivelvo location unknown nodes 4 and 5 as a test set. We will
Here,V stands for a set of all the nodes aRdstands for prove the connections shown as dashed line in Fig.2 is the
a set of the existed edges between connected nodes in rgaly choice for merging this set onto the location known set

network. by introducing minimally connections.
For a graphG, it is localizable in 2D plane if and only if

the graph is globally rigid and there are three location kmow

nodes in the graph. Given at least 3 location known nodes,

the localizable condition for a network can be transformed

into a globally rigidity test. During this paper, we want to

explore the localizable condition between two set of nodes.

This can be characterized as the globally rigidity test af tw

merging graph, one of which is location-all-known.
It can be mathematically described as below. Given two |45

graphG1(Vy,E;) containingN; nodes andG,(V,, E;) con-

tainingN, nodes, we are asked to draw fixed number of edges

between these two graph to merge them together and obtainfig, 2: A Counter Example of 3-connected Condition

a merging minimally globally rigid grap&(V, E) containing

all N; + N, nodes and edges between them. Without loss of

generality, we assume @l nodes inG; are location known.  The algorithm in [27] based on the 3-connected and

Then we turn to our question that, mergig onto G; to  redundantly rigid condition above could be utilized for

obtain a globally rigid grapls, how many edges is required testing the globally rigidity of the network. But this cotidn

and how to draw these edges between gi@ptandG,. For is explored in view of the whole network. Utilizing this

simplicity of analysis, we assun®; has only three nodes judgement condition on a given network graghwe could

here and discuss the casesGf having different number of determine whether the whole network is localizable but stil

nodes and variable edges. cannot tell which nodes of the network are not localizable.
A natural question is why we choose to explore condition$he work of [20] analyzed the localizability of each single

for several specified case & and G,. node. They give a so far closest pair of mutual independent

II. PROBLEM STATEMENT AND RELATED WORK




sufficient condition and necessary condition for one single Corollary 1: For two graphG;, containingm nodes ang
node’s localizability. edges inside, anG,, containingn nodes andj edges inside,
Similar like our set based thread, there are also some woifktheir merging graphG is globally rigid, there should be
giving localizable conditions for the merging of two glolyal at least Zm+n) — (p+q) — 2 edges connected betwe€n
rigid sub-network[25][26]. Those cases can be recognized and G,.
a localizability analysis between two globally rigid graph A globally rigid graphG with n nodes is named to be a
During this paper, we also give conditions for the globallyminimally globally rigid graph, if it has exactlyr2- 2 edges.
rigidity of merging graph, but only one of the graph isThe minimally globally rigid graph could be constructed
required to be globally rigid and the other graph’s strugturthrough a sequential way[28]. The construction way of
is not constrained, which we name as a free graph hemainimally globally rigid graph will be described below.
According to our definition of free graph, the globally rigid
graph without anchors is free. But the graph without promisg' Two Nodes_Cas_es )
of globally rigid is also contained in the range of free graph AS shown in Fig.3, graptG, contains three anchor n-
This is also our main difference with the existed work suclpdes and graptG; contains two nodes. There is an an

as [25] and [26]. interconnected edge between node 4 and node 5 in graph
G». The reason for utilizing the concept of globally rigidity

IIl. CONDITIONS FORLOCALIZABILITY OF TwO between graph is to use interconnections inside the graph to
MERGING GRAPH weaken the globally rigidity condition. The example shown

in Fig.3(b) is almost same with the counter example shown

During this paper, we want to give some more conditiong, rig o Difference is the treatment that we package node
for determining the localizability corresponding to s&ler 4 4nq node 5 into a set. Though neither of them fit the 3-

specialized cases dB; and G,. We assumeS; has three  oqnnected condition, but the graph formed by the all 5 nodes
location known nodes inside. is still globally rigid. We firstly answer the question thaivia

1
G\
(a)

A. A Necessary Condition for Localizability of Two Merging
Graph

In a 2D plane, if a graph is fixed on the uniquely position,
it has zero degree-of-freedom. But if a graph is globally
rigid, it has still 3 degree-of-freedom since the lack of
three anchors[20]. These 3 degree-of-freedom correspond t
the rotation, translation and reflection of the graph in 2D
plane[14]. So, globally rigid is only a necessary condition
for uniquely localizable.

Actually, each free node’s movement in a 2D plane has
2 degree-of-freedom, so there are #egree-of-freedom
for n nodes. One pair-wise connection between two nodes
could eliminate 1 degree-of-freedom. A natural question is
how many connections is required at least to guarantee the
globally rigidity of a graph. And how many connections is
required for our case, during which number of nodes and
connections in two graph is specified.

We first give a lemma about the general case:

Lemma 1: If a graphG with n nodes is globally rigid, it
have at leastr2— 2 edges in the graph.

Proof: For a globally rigid grapl@ containingn nodes,
although relative of each node inside is fixed, it still has 2
degree of freedom in a 2D plane as a whole. If without anyhany edges between two graph is required at least. Through
edge, the nodes i are not connected and each single nodehe above corollary, we can compute there should be at least
in a 2D plane has 2 degree of freedom. So, there should Beconnections to merge two gragh andG, together to be
2n degree of freedom fan nodes if the connections was nota globally rigid graph.
built inside G. Then we should explore how to draw these 4 connections

Therefore, edges insid& eliminate 27— 2 degree of between two graph to make the merging graph globally rigid.
freedom. Considering each edge corresponds to one deg&iace each node in both graph is identical, if the link number
of freedom, we can conclude that there should be at leastlimited at 4, it is easy to exhaust that there are only two
2n—2 edges inG if it is a globally rigid graph. B possible cases for two graph as shown in Fig.3(a).

Then we can obtain the number of required edges betweenHere, we introducdackson and Jordan’s conclusion about
two merging graph: globally rigidity and Berg and Jordan’s conclusion about

Fig. 3: Two nodes case



minimally globally rigidity as two lemmas:
Lemma 2 ([23]): A distance graph is globally rigid if and
only if the graph is 3-connected and redundantly rigid.
Lemma 3 ([28]): Given a minimally globally rigid graph
G containing at least 4 nodes, suppose one node is added to
it with 3 connections tds. Then, the resulting graph is still
minimally globally rigid if one edge between two of these 3
nodes inG is removed.
Then, we give our condition about the above case:
Theorem 1: Given two graph, one is globally rigi,,
containing only three anchors inside, and the other Gpe
is free, having two connected nodes inside, the merging of
two graph is globally rigid if and only if there is one node
in G; connected both of two nodes @, and each of the
other two nodes irG; connects a different node i@, with
each other.

Proof: First, we give the sufficiency proof. As shown
in Fig.3(d), if the edge between node 3 and 4 is added
into the graph, node 4 would be 3-connected with three
anchors. Then the graph built [8(1,2,3,4) is a minimally
globally rigid graph. After that, add node 5 onto the graph
and build connections with node 2, 3 and 4. As the sequential
setup process of minimally globally rigid graph described i
Lemma 3, the edge between node 3 and 4 is eliminated amtbdes, there should be at least 10 edges to make sure the
the constructed graph is minimally globally rigid. globally rigidity. Besides 6 edges forming two triangles,

Followed is the necessity proof. There are four edgeéere still need 4 more edges between two graph. An extra
needed to draw onto three nodes at each side and every nedastraint about these 4 edges is they should be directly
in corresponding graph is identical. So there are only twoonnected with 3 anchors in grad.
possible connected cases if the number of links is fixed at Since there are 4 edges directly connected with 3 anchor
4. FromLemma 2, we could determine the merging graphnodes, one of three anchors®y should have two directly
shown in Fig.3(c) is not globally rigid since the graph wouldconnections withG,. Without loss of generality, we assume
be not connected if node 1 and node 5 were removed. Thande 1 is the one that has two directly connections with two
only one possible connected case is globally rigid. m nodes in graphG,, say node 4 and 6 as shown in Fig.4.

Remark 1: For the case with more than 3 nodesGy, Then there are only two kinds of choice for the left two
the merging graplG is globally rigid if there are 4 anchor nodes in graplGy, either connected two different nodes in
nodes have connections with the free graph, any three of the as shown in Fig.4(b) or connected the same node left in
anchor nodes is not collinear, and one of the link from th&z as shown in Fig.4(c).
intersected node i, is replaced by a new edge from the Now, we prove the previous one is the right choice to make
4th node. This remark could be proved through adding a netlve formed graph globally rigid. We describe this conclosio
node into the graph iftheorem 1 to build a newly minimally as a theorem here.
globally rigid graph. Theorem 2: Given a graphG; containing 3 anchor nodes

Remark 2: For the case with more than 4 links betweerinside, the free grap, could be added of; to construct
two graph, it could be recognized as adding redundaat minimally globally rigid graphG if and only if there are
links after building the minimally globally rigid graph. €n four edges connected betwe€i and Gy, one node oG4
condition we given here is a tight bound for the setup ofias direct connections with 2 different anchor nodesin
a merging globally rigid graph. Without the requirement ofand two others has single connections with different anchor
minimally links, the sufficient condition still works. nodes ofG;.

Proof: First we prove the sufficiency. Since each node
C. Three Nodes Cases in corresponding graph is identical, so we can construct

As shown in Fig.4(a), both grapB, and graphG, have two possible graph and connections, as shown in Fig.4(b),
3 nodes inside. The difference is that there are still 3 degraccording to the description of the theorem.
of freedom forG,. In other words, the coordination of nodes Consider the grapl® containing all 6 nodes as a whole
in G, is fixed but nodes irG, could move in 2D plane if and then decompose graghinto two parts: one part is the
without links between two graph. Here, the node<Ginis graph formed by node 1 to 5, the other part is node 6 with
pairwise connected and formed a triangle. its connected edges.

First, we analyzed possible connected way between two Adding an auxiliary line between node 1 and 5, as shown
graph as shown in Fig.4(a). For a gragh containing 6 in Fig.4(d), we could build a minimally globally rigid graph

Fig. 4: Three nodes case



formed by node 1 to 5. The proof is same Hworem 1
since node 4 and 5 could be recognized as the two-node-
graph case described itheorem 1. The difference is only

on the interconnected node choice, i.e., node 2 in Fig.3 and
node 1 in Fig.4, in two cases.

After adding node 6 onto the minimally globally graph
formed by 1 to 5 in Fig.4(d), we could prove the resulted
graph is still minimally globally rigid throughemma 3.

Then we prove the necessity. As the analysis before, there
are only two kinds of connections if the number of edges
between two graph is limited at 4. One is shown as Fig.4(c).
Through Lemma 2, the globally rigid graphG should be
3-connected and redundantly rigid. 3-connected means the
graph should be connected after removal of any two nodes.
But the merging graph formed by all 6 nodes shown in
Fig.4(c) is not 3-connected because the merging graph would
not be connected after removal of node 1 and 5. So, the one
shown as Fig.4(b) is the only choice. ]

D. Four Nodes Cases Fig. 5: Four nodes case

So far, we could prove the condition for globally rigidity
of two graph merging in above cases. But the free graph

appeared in both cases are rigid. Here, we want to discuss) Each of nodes i16; has at least one connection with
the condition for globally rigidity of merging graph when Gy

one of the graph is not rigid. 2. Each of nodes itG, has at least one connection with
As shown in Fig.4(a), the nodes in graph 2 construct g&,;
quadrangle. According to the definition of rigid, a quadiang 3. There is only one node 6, connects with two nodes
is not rlgld since it could be deformed. What we wantn Gy and one of those nodes @1 has connection with
to do is to explore conditions that can make the mergingnother node irG,.
graph formed by all nodes in both graph globally rigid while  proof:  First we prove the sufficiency. Consider the
introducing least edges between two graph. This is an almagtaph G formed by all 7 nodes in Fig.5(a) as a whole.
identical requirement with building a minimally graph. Thecgondition 3 leads to a "Z” shape connection between 4
difference here is the nodes in graph 1 are anchored apgdes. Since each node in corresponding graph is identical,
edges in both graph 1 and graph 2 are fixed. we can build the "Z” shape connection between node 1,2,4
We want to analyze the globally rigidity based on oumand 6. Then we connect the left nodes according to condition
conclusion in last subsection. Asmma 3 described, every 1 and 2, we can obtain two kinds of possible combinations
minimally globally rigid graph could be constructed sequenas shown in Fig.5(c) and Fig.5(d).
tially. Once we obtained a minimally graph as shown in |n both cases, nodes 1 to 6 construct a subg@gishown
Fig.4(b), adding one more node onto it, we could get as solid line in Fig.5(b). We could notice that, is identical
new graph like Fig.5(b) or Fig.5(c) according to differentwith the graphG described inTheorem 2, i.e., the graph
choice of connected node. Take Fig.5(b) for example, nodghown in Fig.4(b). The graph shown &g has been proved
7 is added into graph 2 and connected with node 5 and & be a minimally globally rigid irTheorem 2.
According toLemma 3, if adding one more edge between Adding one more node, say node 7, onto the gr&h
node 7 and any one node in graph 1 and eliminating edg®own in Fig.5(b) through connecting node 7 with node 5 and
between node 5 and 6, then the obtained graph would benade 6 and eliminating edge between node 5 and node 6, we
minimally globally graph. The connected case like shown igould obtain a graph shown as Fig.5(d). Accordingémma
Fig.5(c) is same as above. 3, adding and eliminating as described above is a typical
We give our conclusion about the condition to build gorocess in constructing a minimally globally rigid grapl, S
globally rigid graph between a globally rigid graph and ave can conclude that the graph as shown in Fig.5(d) is a
non-rigid graph as below. minimally globally rigid graph.
Theorem 3: Given one grapl@; with three pairwise con-  And then we prove the necessity of those three conditions
nected anchors and another graphwith four nodes whose one by one.
connection formed a quadrangle, the merging graph of them For condition 1: For nodes i1, if any one of them has
is globally rigid and there are least connections betweeamot direct connection with nodes iB8,, then the resulted
those graph if and only if the three conditions below argraph would be flipped over the edge between the other
satisfied simultaneously: two nodes. So, each of nodes@, must have at least one



connection withG,. in the following work. For example, if there are some nodes
For condition 2: The nodes i, construct a quadrangle. lying outside the communication range of anchor graph, we
If any one node of the quadrangle has no connection @ith could amplify the communication power of specified nodes
, it could be flipped over the diagonal line of the quadrangleaccording to the conditions given in this paper.
Then the merging graph is definitely un-localizable. Soheac
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