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Abstract— The state estimation problem is studied for the
networked control systems subject to random measurement
delays and the measurements without the time-stamps. With the
random delay bounded by one step only, a new measurement
model is proposed with the out-of-sequence measurements. The
estimator form is given based on the mean of all received
measurements at each time. The estimator gains can be derived
by solving a set of recursive discrete-time Riccati equations.
Furthermore, the estimator can be guaranteed to be optimal.

I. INTRODUCTION

IN the past decade, networked control systems (NCSs)
have gained much attention in communication networks,

control and state estimation [1]. In a NCSs, data typically
travel through the communication networks from sensors to
the controller and from controller to the actuators. As a
direct consequence of the finite bandwidth for data trans-
mission over networks, random communication delays, out-
of-sequence measurements, and packet losses are inevitable
in networked systems where a common medium is used for
data transfers and should be properly handled in order to
achieve satisfactory estimation and control performance [2-
4].

In the networked control system, the sensor measures
the output of the system at every time and transmits the
measurement to a data processing center (the estimator).
The estimation problem for NCSs with random delays or
packet dropouts has received many results during the past
few years [5-9]. As is well known, however, standard Kalman
filtering can not be applied to systems with output delays. So
time stamping is necessary to reorder the packets when the
measurements arrive out of order. Schnato[4] proposed the
estimators subject to simultaneous random packet delay and
packet dropout, and measurements are time-stamped and can
be re-ordered at the estimator site. Zhang and Xie[10] studied
the optimal estimation problem for discrete-time systems
with time-varying delay in the measurement channel, and
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the measurements are time-stamped which can only take one
value at each time instant. Without time-stamps, Sun[11]
investigated the estimation problem for the systems with
bounded random measurement delays and packet dropouts,
which are described by some binary distributed random
variables whose probabilities are only known. But in [11], the
measurement model can receive the same measurement with
multiple times. Since the network transmission has limited
capabilities, one measurement should not be re-received. And
so far, the estimation problems with the out-of-sequence
measurements are seldom reported without using the time-
stamps.

In this paper, a new measurement model is proposed
without time-stamps. Due to the time delay, more than
one measurement may be received at each time instant
in the actual network communication. Then the estimation
measurements are adopted by the mean of all the received
measurements. For technical simplicity but without alerting
the core difficulty, we only consider the case where the
maximum time delay is one time step. This paper is mainly
organized as follows. Problem formulation is given in Section
II; and Section III firstly considers the estimation problem
with received multi-measurements with out-of-sequence; the
whole estimation solution with the random delay is given in
Section IV. Finally, Section V draws some conclusions of
this paper.

II. PROBLEM FORMULATION

Consider the following discrete-time linear stochastic sys-
tem:

xk+1 = Axk + υk (1)
yk = Cxk + ωk (2)

where xk ∈ Rn is the system state, yk ∈ Rm is the
measured output, υk ∈ Rn and ωk ∈ Rm are system
noise and measure noise respectively. A,C are matrices of
the appropriate dimensions. The initial state x0 and υk, ωk

are Gaussian, uncorrelated, white, with mean (x̄0, 0, 0) and
covariance (P0, Qk, Rk) respectively. We also assume that
the pair (A,C) is observable, and R > 0.

In the networked system, the sensor measures the output
of the system at every time and transmits the measurement to
the estimator. The time-delay is unavoidable by the unreliable
network communication. Thus it is impossible to guarantee
that all packets are correctly delivered to the destination. In
[13], Schenato considered that the measurements are time-
stamped, encapsulated into packets, and then transmitted
through a digital communication network (DCN). Since the
packet delay is random, it is possible that between two



consecutive sampling periods no packet or multiple packets
are delivered. This means packets to arrive in burst or
even out of order at the receiver side. Time-stamping of
measurements are necessary to reorder packets at the receiver
side as they can arrive out of order. It guarantees that all
observation packets correctly delivered to the estimator site.

In the paper, we will consider the measurements without
time stamping, so we do not know the correct order of
received measurements because of the random delays. For
simplicity, we only consider the maximum random delay is
N = 1. That is that the random delay is 0 or 1. Assumed that
there is no packet loss and the packets can not be received
repeatedly, we give the state transition diagram for time-
delay :

Fig. 1. the state transition for random time-delay.

where m is the time delay, and r is the number of the
received packets at time k. Thus there are following cases
when the maximum random delay is 1:
Case 1: m = 0 it states there are no delays happen, i.e.,
the measurement yk−1 is received on time at k-1 time, then
from the Fig. 1, there may be the following two cases by the
number of received measurements r:

Case 1.1, when r = 0 there no packet arrive, then time
delay will happen, it is m = 1;

Case 1.2, when r = 1 the packet yk received on time,
and m = 0 at next time.

Case 2: m = 1, i.e. yk−1 is not arrived at k-1 time, it is
that one time-delay happened at k time, then according to
the Fig. 1, there have:

Case 2.1, when r = 1 there must be yk−1 received at k
time, and yk happens time-delay, it is m = 1;

Case 2.2, when r = 2 there are yk, yk−1 received
simultaneously, and there will be m = 0.

Form these four cases, we know that when r = 0 or
1, the received measurement can be precisely deduced. The
estimator can be presented easily in the first three cases.
Under the Case 2.2, it is difficult that we do not know the
correct order of the arrival sequence measurements. In the
next section, we mainly give the state estimator for Case 2.2.

III. ESTIMATOR DESIGN WITH OUT-OF-SEQUENCE
MEASUREMENTS

The problem in Case 2.2 is that: at time k-1,the mea-
surement yk−1 does not arrive, but there are two measured
outputs {yk−1, yk} arriving at time k. Because of absent
time-stamps, we do not know the order of {yk−1, yk} .
Then the arrival sequences have two cases at time k:
case a: the packets received at the correct order

ỹk =

[
yk−1

yk

]
.

case b: the packets received at incorrect order

ỹk =

[
yk

yk−1

]
.

Thus, the observation processes of the measurements re-
ceived by the estimator is modeled as:

ỹk =

[
y
(1)
k

y
(2)
k

]
(3)

with

y
(1)
k = (1−γk)yk−1+γkyk ; y

(2)
k = γkyk−1+(1−γk)yk (4)

where γk is a scalar quantity taking on values 0 and 1 with

p , Pr{γk = 1}; 1−p , Pr{γk = 0}; Eγk = Eγ2
k = p

(5)

and we assume that 0 < p < 1.
Our goal is to obtain the optimal estimator which the form is
chosen to be linear of the received observations as follows:

x̂k+1 = Fkx̂k−1 + [Hk1 Hk2]ỹk (6)

It is useful to define the estimator error and error covariance:

ek+1 , xk+1 − x̂k+1 (7)
P̄k+1 , ExEγk

[(xk+1 − x̂k+1)(xk+1 − x̂k+1)
T ] (8)

where Ex is the expectation with respect to υ, ω and x0; and
Eγk

is expectation with respect to γk.
The estimate x̂k+1 needs to be optimal in the sense that it
minimizes the error covariance, i.e. it is desired to find the
estimator to minimize (8). We demand that the estimator
is unbiased, i.e. ExEγek+1 = 0, and we also want the
estimation error covariance to be uniformly bounded, as
defined below.

Definition 1: the estimation error covariance is called uni-
formly bounded if there exists a constant M > 0 independent
of P0, such that

P̄k ≤ M (9)

for all k = 0, 1, 2, . . ..

The estimator error ek+1 is defined in (7). Substitute (1),
(3) and (6) into it, we get

ek+1 = xk+1 − x̂k+1

= A2xk−1 +Aυk−1 + υk − Fkx̂k−1

− [Hk1 Hk2]

[
(1− γk)C + γkCA
γkC + (1− γk)CA

]
xk−1

− [Hk1 Hk2]

[
(1− γk)ωk−1 + γkCυk−1 + γkωk

γkωk−1 + (1− γk)Cυk−1 + (1− γk)ωk

]
(10)



From the unbiased property ExEγk
ek+1 = 0, with the

property of γk in (5) and the mean of noises is 0, we get

Fk = A2 − [Hk1 Hk2]

[
(1− p)C + pCA
pC + (1− p)CA

]
(11)

Substituting Fk into (10), the error is rewritten as

ek+1 =

[
A2 − [Hk1 Hk2]

[
(1− p)C + pCA
pC + (1− p)CA

]]
ek−1

− [Hk1 Hk2]

[
(p− γk)C + (γk − p)CA
(γk − p)C + (p− γk)CA

]
xk−1

− [Hk1 Hk2]

[
(1− γk)ωk−1 + γkCυk−1 + γkωk

γkωk−1 + (1− γk)Cυk−1 + (1− γk)ωk

]
+Aυk−1 + υk

(12)

Lemma 1 Consider the estimation error dynamic equation
(12), suppose A is unstable, then a necessary condition for
the estimation error to be unbiased and error covariance
to be uniformly bounded is that Hk1 = Hk2 for all k.
Consequently, the optimal estimator has the form

x̂k+1 = Fkx̂k−1 +Hk
1

2
(yk−1 + yk) (13)

Proof: the system matrix A is unstable, then as k → ∞,
xk → ∞. From the Definition 1, the error ek+1 will be
uniformly bounded, then

[Hk1 Hk2]

[
(p− γk)C + (γk − p)CA
(γk − p)C + (p− γk)CA

]
= 0 (14)

must be satisfied.
From (14), it follows
Hk1[(p−γk)C+(γk−p)CA]+Hk2[(γk−p)C+(p−γk)CA]
= (Hk1−Hk2)[(p−γk)C+(γk−p)CA] = 0
since [(p−γk)C+(γk−p)CA] ̸= 0 , it must be Hk1 = Hk2.
We let Hk = 2Hk1 = 2Hk2, substituting it into (6), then the
estimator (6) can be finally equivalent to (13).
Substituting Hk into (11), it follows that

Fk = A2 − [Hk Hk]
1

2

[
(1− p)C + pCA
pC + (1− p)CA

]
= A2 −Hk

1

2
((1− p)C + pCA) +Hk

1

2
(pC + (1− p)CA)

= A2 − 1

2
Hk(C + CA)

(15)

Obviously, in (13), it is used the mean of measurements to
estimate, and the optimal estimation gain Hk is given in the
following theorem.

Theorem 1 For the system (1)-(2), and the estimator form
(13), suppose the estimation error covariance P̄k−1 is given.
Then the estimation gain Hk for

min
Hk

P̄k+1 (16)

is given by

Hk =
1

2
(A2P̄k−1(C + CA)T +AQk−1C

T )M−1
k (17)

where Mk = 1
4 [(C +CA)P̄k−1(C +CA)T +CQk−1C

T +
Rk−1 +Rk].
The corresponding solution for P̄k+1 is given by

P̄k+1 = A2P̄k−1A
2T −HkMkH

T
k +AQk−1A

T +Qk (18)
P0 = Ex0x

T
0 (19)

Proof: from (1), (14), the estimator error is

ek+1 =(A2 − 1

2
Hk(C + CA))ek−1 +Aυk−1 + υk

− 1

2
Hk(ωk−1 + Cυk−1 + ωk)

(20)

It is obvious that the noise of system Aυk−1 + υk and the
measurement noise ωk−1 +Cυk−1 +ωk are correlated, thus
the estimation error covariance is

P̄k+1 = ExEγ [ek+1e
T
k+1]

= (A2 − 1

2
Hk(C + CA))P̄k−1(A

2 − 1

2
Hk(C + CA))T

+AQk−1A
T − 1

2
AQk−1C

THT
k − 1

2
HkCQk−1A

T +Qk

+
1

4
HkCQk−1C

THT
k +

1

4
HkRk−1H

T
k +

1

4
HkRkH

T
k

=(Hk +H∗
k)Mk(Hk +H∗

k)
T −HkMkH

∗T
k −H∗

kMkH
T
k

−H∗
kMkH

∗T
k +A2P̄k−1A

2T +AQk−1A
T +Qk

− 1

2
HkCQk−1A

T − 1

2
AQk−1C

THT
k

− 1

2
Hk(C + CA)P̄k−1A

2T − 1

2
A2P̄k−1(C + CA)THT

k

(21)

where Mk = 1
4 [(C +CA)P̄k−1(C +CA)T +CQk−1C

T +
Rk−1 +Rk].
To minimize (16), the H∗

k should be chosen as

H∗
k = −1

2 (A
2P̄k−1(C + CA)T +AQk−1C

T )M−1
k

and Hk = −H∗
k , then the estimator gain (17) is obtained.

Substituting Hk,H
∗
k back to (21), we get (18), with the initial

condition is P0 = Ex0x
T
0 .

Remark 1: when the system noise and the measurement
noise are uncorrelated, the error covariance equation is
monotone, and the estimation is optimal. How about the
case when the noises are correlated between system and
measurement? In the following we will give the monotonicity
property when the noises are correlated.

From (21), we have

P̄k+1 =(A2 − 1

2
Hk(C + CA))P̄k−1(A

2 − 1

2
Hk(C + CA))T

+AQk−1A
T − 1

2
AQk−1C

THT
k − 1

2
HkCQk−1A

T

+
1

4
HkCQk−1C

THT
k +Qk +

1

4
HkRk−1H

T
k

+
1

4
HkRkH

T
k

(22)

and (17)
Hk = 2(A2P̄k−1(C + CA)T + AQk−1C

T )((C +



CA)P̄k−1(C + CA)T + CQk−1C
T +Rk−1 +Rk)

−1

(23)

Denote the mapping (22), (23) from P̄k−1 to P̄k+1 by F(·)
: Sn

+ → Sn
+, i.e.,

P̄k+1 = F(P̄k−1) (24)

Lemma 2 F(·) is a monotonic function, i.e., if P̄
(1)
k−1 ≥

P̄
(2)
k−1 > 0, then

F(P̄
(1)
k−1) ≥ F(P̄

(2)
k−1) (25)

Proof: denote the mapping (22) from P̄k−1 and Hk to P̄k+1

by G(·, ·) : Sn
+ × Rn → Sn

+, then since the solution Hk in
(23) is obtained by minimizing (22), that it is

Hk = argmin
H̃k

G(P̄k−1, H̃k) (26)

with the suppose P̄
(1)
k−1 ≥ P̄

(2)
k−1, let H(1)

k and H
(2)
k be the

corresponding Hk as obtained in (23) by (26), then

P̄
(2)
k+1 = G(P̄

(2)
k−1,H

(2)
k )

≤ G(P̄
(2)
k−1,H

(1)
k )

≤ G(P̄
(1)
k−1,H

(1)
k )

= P̄
(1)
k+1

(27)

Hence, the lemma holds.
In the above, the two equalities follow from (26). The first
inequality follows from (26) as well. The second inequality
follows from (22), i.e., G(P̄k−1, H̃k) is linear in P̄k−1 when
Hk is fixed.

Remark 2 From lemma 2, we know that the estimator in
Theorem 1 is optimal.

IV. OPTIMAL ESTIMATOR FOR RANDOM DELAYS
BOUNDED N = 1

From Theorem 1, we know that when r = 2 the
measurements adopted by estimator in (13) is the mean of
the sequences yk−1 and yk, Then for the all cases of Case
1 and Case 2, the following model for the measurement
received by the estimator is adopted as:

yk =

{
1
r

∑r
i=1 yk−m+i−1 r = 1 or 2

Φ r = 0 there is no packet.

(28)

where Φ is an empty set.
Theorem 2 Considering the system (1),(2), m is the

random time delay and r is the number of the received
packets at time k, then based on the observation (28) the
optimal estimator is given by:
• when there is no packet received, it is r = 0, there is no

need to update the state estimate, i.e., the most recent state
estimate remains at x̂k−1 and error covariance at P̄k−1.

• when r > 0, the optimal estimator is

x̂k+r−m = Fkx̂k−m +Hkyk (29)

where

Fk = Ar − 1

r
Hk

r−1∑
i=0

CAi (30)

Hk = r(ArP̄k−m(
∑r−1

i=0 CAi)T

+

r−1∑
i=1

i−1∑
j=0

AiQk−m+r−i−1A
jTCT )M−1

k (31)

Mk =
∑r−1

i=0 CAiP̄k−m(
∑r−1

i=0 CAi)T +
∑r−1

i=0 Rk−m+i

+
r−1∑
i=1

i−1∑
j=0

CAjQk−m+i−j−1A
jTCT (32)

with the error covariance equation is
P̄k−m+r = ArP̄k−mArT −HkMkH

T
k

+
r−1∑
i=0

AiQk−m+iA
iT (33)

where m = 0 or 1, and r = 0, 1 or 2, and the initial error
covariance is P̄0 = Ex0x

T
0 .

Proof: From (1) (2) (28), the error is :

ek−m+r = xk−m+r − x̂k−m+r

= Arxk−m +
r−1∑
i=0

Aiυk−m+r−i−1 − Fkx̂k−m

− 1

r
Hk

r−1∑
i=0

CAixk−m − 1

r
Hk

r−1∑
i=1

i−1∑
j=0

CAjυk−m+i−j−1

− 1

r
Hk

r−1∑
i=0

ωk−m+i

(34)

by the estimator’s unbiased property, we get (30). Substitut-
ing (34) into (8), the estimator error covariance becomes

P̄k−m+r = Ex[ek−m+re
T
k−m+r]

= (Ar − 1

r
Hk

r−1∑
i=0

CAi)P̄k−m(Ar − 1

r
Hk

r−1∑
i=0

CAi)T

+
r−1∑
i=0

AiQk−m+r−i−1A
iT +

1

r2
Hk

r−1∑
i=0

Rk−m+iH
T
k

+
1

r2
Hk

r−1∑
i=1

i−1∑
j=0

CAjQk−m+i−j−1A
jTCTHT

k

− 1

r

r−1∑
i=1

i−1∑
j=0

AiQk−m+r−i−1A
jTCTHT

k

− 1

r
Hk

r−1∑
i=1

i−1∑
j=0

CAjQk−m+r−i−1A
iT



(35)

Similar to Theorem 1, with minimizing the (35), (31)-(33)
are obtained, and the similar to Lemma 2, we know that
P̄k−m+r is monotonic in P̄k−m. Hence, the estimator (29)
is the optimal.

V. CONCLUSION

In this paper, for the networked control systems with
bounded random measurement delay of at most one, the
optimal estimator is derived without using time stamps. The
key to our development in the estimation of the networked
control systems is to use the mean of all the received
measurements at each instant time. We have shown that the
state estimator is optimal in the class of linear estimators with
the properties if zero bias and uniformly bounded estimation
error covariance. Further work will be intended for longer
time delays.
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