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State Estimation Subject to Random

Communication Delays
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Abstract: The state estimation problem is studied for networked control systems (NCSs) subject to random communica-
tion delays and the measurements without time stamps. With the random delay bounded by one step only, a new measurement
model is proposed for possible out-of-sequence measurements. For unstable systems, to guarantee linearly unbiased estimator
and uniformly bounded estimation error variance, that the estimator structure is based on the average of all received mea-
surements at each time. The estimator gains can be derived by solving a set of recursive discrete-time Riccati equations. The
estimator is guaranteed to be optimal in the sense that it is unbiased with uniformly bounded estimation error covariance. A
simulation example shows the effectiveness of the proposed algorithm.
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In the past decade or so, networked control systems
(NCSs) have gained a lot of attention in communication net-
works, control and state estimation[1−3]. In an NCS, data
typically travel through a communication network from sen-
sors to controller and from controller to actuators. As a
direct consequence of the finite bandwidth for data trans-
mission over networks, random communication delays, out-
of-sequence measurements, and packet losses are inevitable
in networked systems where a common medium is shared
among different users for data transfers. These problems
should be properly handled in order to achieve satisfactory
estimation and control performance[4−7].

The estimation problem for NCSs with random delays
has gained many results in the past years[8−21]. In the
networked system, the sensor measures the output of the
system at every sampling instant time and transmits the
measurement to the estimator, and time delay is unavoid-
able due to network congestion. The standard Kalman fil-
tering cannot be directly applied to systems with random
output delays. For random time delays, there are two ap-
proaches with, i.e., either using time stamps or not using
time stamps. Time stamps are often used to reorder the
packets when the measurements arrive out of order. In
[17], Schenato considered that the measurements with time
stamps, encapsulated into packets, and then transmitted
through a digital communication network (DCN), thus the
estimator was presented by re-ordering the measurements at
the estimator site. Zhang et al.[8] studied the optimal esti-
mation problem for discrete-time systems with time-varying
delay in the measurement channel, and the measurements
were time-stamped which could only take one value at each
time instant. With using no time stamps, Sun[20] inves-
tigated the estimation problem for systems with bounded
random measurement delays and packet dropouts, which
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were described by some binary distributed random vari-
ables whose probabilities are known. Sun[21] also studied
the optimal estimation with one-step random delays and
packet dropouts.

For the case without time stamps, the commonly used
model does not use time stamps, but assumes that at each
time k, one and only one randomly delayed measurement
is received, i.e., ỹyyk = yyyk−τk

, where ỹyyk is the measurement
of the system at time k, yyyk−τk

is the received measurement
at time k, τk ∈ {0, 1, · · · , N} is the random time delay
with N being the maximum time delay. This model has
been widely used, e.g., [19−22]. But this model does not
represent practical communication systems, because it al-
lows the same measurement to be received multiple times
and can generate too much packet loss. To illustrate this,
we suppose the case where N = 1 and ρ0 = ρ1 = 0.5.
Then ỹyyk = yyyk with probability of 0.5 and ỹyyk+1 = yyyk with
probability of 0.5 as well. Since yyyk can be received only
at k or k + 1, it is clear that the probability that yyyk gets
lost equals the probability that ỹyyk = yyyk−1 and ỹyyk+1 = yyyk,
which equals 0.25. It is not possible for any network proto-
col to be designed to produce such a high inherent packet
loss probability or to allow duplicated reception of the same
measurement.

Since the network transmission has a limited capability,
one measurement should not be re-received. Furthermore,
the packet delay is random, thus it is possible that be-
tween two consecutive sampling periods no packet or mul-
tiple packets are delivered. This means packets will arrive
in burst or even out of order at the receiver side. So far,
estimation problems with such a communication model are
seldom reported without using time stamps.

In this paper, we assume that the sequence of received
measurement at each sampling time does not have any
time stamp. We first provide a time delay model that re-
moves the shortcomings of previous models, i.e., it avoids
re-receiving packets and any packet loss. So the presented
model is more appropriate for the actual communication
protocols. Then, we want that the estimator is unbiased
and the estimation error covariance is uniformly bounded.
For unstable systems, we provide a novel state estimator
using the average of all the received measurements at each
sampling time. The optimal estimator is designed. For
technical simplicity but without altering the core difficulty,



238 Acta Automatica Sinica, 2013, Vol. 39,No. 3

we consider the case where the maximum time delay is one
time step.

This paper is mainly organized as follows. Problem for-
mulation is given in Section 1; Section 2 firstly considers the
estimation problem with received multi-measurements; the
whole estimation solution with the random delay is given
in Section 3. In Section 4, a simulation example is given.
Finally, Section 5 draws some conclusions.

1 Problem formulation

Consider the following discrete-time linear stochastic sys-
tem:

xxxk+1 = Axxxk + υυυk, (1)

yyyk = Cxxxk + ωωωk, (2)

where xxxk ∈ Rn is the system state, yyyk ∈ Rl is the mea-
sured output, υυυk ∈ Rn and ωωωk ∈ Rl are system noise
and measure noise respectively. A, C are matrices of ap-
propriate dimensions. The initial state xxx0 and υυυk,ωωωk are
Gaussian, uncorrelated, white, with mean (x̄xx0, 0, 0) and co-
variance (P0, Qk, Rk), respectively. We also assume that
the pair (A, C) is observable, and R > 0.

In this paper, we will consider the case that there is no
time stamps for the measurement, i.e., we do not know the
correct order of received measurements because of random
delays. We only consider the case where the maximum ran-
dom delay is N = 1, i.e., the random delay is either 0 or
1. Assuming that there is no packet loss and the packets
cannot be received repeatedly, we give the state transition
diagram for time-delay (see Fig. 1):

Fig. 1 The state transition for random time-delay

In Fig. 1, m is the number of delayed measurements at
time k, and r is the number of the received packets at time
k. An arrow indicates the change of m from time k to k+1.
Thus there are the following cases:

1) At time k, m = 0. This means that measurements
yyy0, yyy1, · · · , yyyk−1 all have been received. Then from Fig. 1,
there are the following two cases according to the number
of received measurements r:

Case 1. When r = 0, there is no packet arriving. Then
time delay will happen, and m = 1 at time k+1, as indicated
by an arrow from m = 0 to m = 1.

Case 2. When r = 1, packet yyyk is received on time, and
m = 0 at time k + 1, as indicated by the arrow from m = 0
to m = 0.

2) m = 1. This means that yyyk−1 is missing at k−1 time,
i.e., time-delay has happened at time k. Again, there are
two possible cases according to r:

Case 3. When r = 1, due to the assumption on no
packet loss, yyyk−1 must be received at time k, and we have
m = 1 at time k + 1, because yyyk is not received at time k,
and this is indicated by the arrow from m = 1 to m = 1;

Case 4. When r = 2, the received measurements must
be yyyk and yyyk−1 (but without known order). Subsequently,
m = 0 at time k + 1, as indicated by the arrow from m = 1
to m = 0.

Form these four cases, we know that when r = 0 or 1,
the received measurement can be precisely deduced. The
estimator can be presented easily in the first three cases
(Cases 1∼ 3). But for Case 4 it is difficult because we do
not know the correct order of the arrival sequence. In the
next section, we mainly give the state estimator for Case 4.

2 Estimator design with out-of-
sequence measurements

The problem in Case 4 is as follows: At time k− 1, mea-
surement yyyk−1 does not arrive, but there are two measured
outputs {yyyk−1, yyyk} arriving at time k. Because of the lack
of time stamps, we do not know the order of {yyyk−1, yyyk}.
Then the arrival sequences have two cases at time k:

1) The packets are received in the correct order

ỹyyk =

[
yyyk−1

yyyk

]
.

2) The packets are received in a reversed order

ỹyyk =

[
yyyk

yyyk−1

]
.

Thus, the observation processes of the measurements re-
ceived by the estimator are modeled as:

ỹyyk =

[
yyy

(1)
k

yyy
(2)
k

]
, (3)

with

yyy
(1)
k = (1−γk)yyyk−1+γkyyyk , yyy

(2)
k = γkyyyk−1+(1−γk)yyyk, (4)

where γk is a scalar quantity taking on values 0 and 1 with

p := Pr{γk = 1}, 1− p := Pr{γk = 0}, Eγk = Eγ2
k = p,

(5)
and we assume that 0 < p < 1.

We want to obtain a linear state estimator as follows:

x̂xxk+1 = Fkx̂xxk−1 + [Hk1 Hk2]ỹyyk. (6)

It is useful to define the estimator error and error covari-
ance:

eeek+1 := xxxk+1 − x̂xxk+1, (7)

P̄k+1 := ExEγk [eeek+1eee
T
k+1], (8)

where Ex is the expectation with respect to υυυ,ωωω and xxx0;
and Eγk is the expectation with respect to γk.

The estimate x̂xxk+1 needs to be optimal in the sense that it
minimizes the error covariance, i.e., it is desired to find the
estimator to minimize (8). We demand that the estimator
is unbiased, i.e., ExEγkeeek+1 = 0, and we also want the
estimation error covariance to be uniformly bounded, as
defined below.

Definition 1. The estimation error covariance is called
uniformly bounded if there exists a constant M > 0 inde-
pendent of P0, such that

P̄k ≤ M, (9)
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for all k = 0, 1, 2, · · · .
The estimator error eeek+1 is defined in (7). Substituting

(1), (3) and (6) into it, we get

eeek+1 = xxxk+1 − x̂xxk+1 =

A2xxxk−1 + Aυυυk−1 + υυυk − Fkx̂xxk−1−

[Hk1 Hk2]

[
(1− γk)C + γkCA

γkC + (1− γk)CA

]
xxxk−1−

[Hk1 Hk2]

[
(1− γk)ωωωk−1 + γkCυυυk−1 + γkωωωk

γkωωωk−1 + (1− γk)Cυυυk−1 + (1− γk)ωωωk

]
.

(10)

From the unbiased property ExEγkeeek+1 = 0, with the prop-
erty of γk in (5) and the mean of noises being 0, we get:

Fk = A2 − [Hk1 Hk2]

[
(1− p)C + pCA

pC + (1− p)CA

]
. (11)

Substituting Fk into (10), the error is rewritten as

eeek+1 =

[
A2 − [Hk1 Hk2]

[
(1− p)C + pCA

pC + (1− p)CA

]]
eeek−1−

[Hk1 Hk2]

[
(p− γk)C + (γk − p)CA

(γk − p)C + (p− γk)CA

]
xxxk−1−

[Hk1 Hk2]

[
(1− γk)ωωωk−1 + γkCυυυk−1 + γkωωωk

γkωωωk−1 + (1− γk)Cυυυk−1 + (1− γk)ωωωk

]
+

Aυυυk−1 + υυυk. (12)

Lemma 1. Considering the estimation error dynamic
equation (12), if A is unstable, then a necessary condition
for the estimation error to be unbiased and error covari-
ance to be uniformly bounded is that Hk1 = Hk2 for all k.
Consequently, the optimal estimator has the form

x̂xxk+1 = Fkx̂xxk−1 + Hk
1

2
(yyyk−1 + yyyk), (13)

i.e., the average of yyyk−1 and yyyk needs to be used.
Proof. To ensure that the estimator is unbiased, we get

(11) and (12), as explained before. Since the system matrix
A is assumed to be unstable, E[xxxkxxx

T
k ] → ∞ as k → ∞.

With the assumption of uncorrelation, and from (5), using
Definition 1, the expected estimation error covariance will
be uniformly bounded only if

Eγk [∆(γk)∆T(γk)] = 0, (14)

where

∆(γk) = [Hk1 Hk2]

[
(p− γk)C + (γk − p)CA

(γk − p)C + (p− γk)CA

]
. (15)

Rewriting the above, we have:

∆(γk) = (p− γk)(Hk1 −Hk2)(C − CA). (16)

Hence,

Eγk [∆(γk)∆T(γk)] = Eγk [(p− γk)2(Hk1 −Hk2)×
(C − CA)× (C − CA)T(Hk1 −Hk2)

T]. (17)

Since Eγk [(p− γk)2] 6= 0, we must have:

Hk1(C − CA) = Hk2(C − CA). (18)

Any choice of (Hk1, Hk2) satisfying (16) yields the same
effect on (12) as the choice of Hk1 = Hk2. Hence, Hk1 =
Hk2 is necessary for the estimation error to be unbiased and
uniformly bounded.

We let Hk = 2Hk1 = 2Hk2 and substitute it into (6),
then the estimator (6) is finally equivalent to (13). ¤

Substituting Hk = 2Hk1 = 2Hk2 into (1), we have:

Fk = A2 − [Hk Hk]
1

2

[
(1− p)C + pCA

pC + (1− p)CA

]
=

A2−Hk
1

2
((1− p)C + pCA) + Hk

1

2
(pC + (1− p)CA) =

A2− 1

2
Hk(C + CA). (19)

The optimal estimation gain Hk is given in the following
theorem.

Theorem 1. For system (1) and (2), and the estimator
form (13), if the estimation error covariance P̄k−1 is given,
then the estimation gain Hk for

min
Hk

P̄k+1 (20)

is given by

Hk =
1

2
(A2P̄k−1(C + CA)T + AQk−1C

T)M−1
k , (21)

where

Mk =

1

4
[(C + CA)P̄k−1(C + CA)T + CQk−1C

T + Rk−1 + Rk].

(22)

The corresponding solution for P̄k+1 is given by

P̄k+1 = A2P̄k−1A
2T −HkMkHT

k + AQk−1A
T + Qk, (23)

P0 = Exxx0xxx
T
0 . (24)

Proof. From Lemma 1, the estimator error is

eeek+1 = (A2 − 1

2
Hk(C + CA))eeek−1 + Aυυυk−1 + υυυk−

1

2
Hk(ωωωk−1 + Cυυυk−1 + ωωωk). (25)

Note that the noise of system Aυυυk−1 + υυυk and the mea-
surement noise ωωωk−1 + Cυυυk−1 + ωωωk are correlated. The
estimation error covariance is given by

P̄k+1 = ExEγ [eeek+1eee
T
k+1] =

(A2 − 1

2
Hk(C + CA))P̄k−1(A

2 − 1

2
Hk(C + CA))T+

AQk−1A
T − 1

2
AQk−1C

THT
k − 1

2
HkCQk−1A

T + Qk+

1

4
HkCQk−1C

THT
k +

1

4
HkRk−1H

T
k +

1

4
HkRkHT

k =

(Hk + H∗
k )Mk(Hk + H∗

k )T −HkMkH∗T
k −H∗

kMkHT
k −

H∗
kMkH∗T

k + A2P̄k−1A
2T + AQk−1A

T + Qk−
1

2
HkCQk−1A

T − 1

2
AQk−1C

THT
k −

1

2
Hk(C + CA)P̄k−1A

2T − 1

2
A2P̄k−1(C + CA)THT

k ,

(26)
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where Mk = 1
4
[(C + CA)P̄k−1(C + CA)T + CQk−1C

T +
Rk−1 + Rk].

To minimize P̄k+1, H∗
k should be chosen as

H∗
k = − 1

2
(A2P̄k−1(C + CA)T + AQk−1C

T)M−1
k ,

and Hk = −H∗
k . Then the estimator gain (17) is obtained.

Substituting Hk and H∗
k back to (21), we get (18), with

the initial condition P0 = Exxx0xxx
T
0 . ¤

Remark 1. When the system noise and the measure-
ment noise are uncorrelated, the error covariance equation
(21) is monotonic in P̄k−1, and the estimation is optimal.
This follows from the classical Kalman filter theory[23].
This monotonicity property is vital for recursion because
it means that if we minimize P̄k−1 at time k − 1, and use
the minimized P̄k−1 to minimize P̄k+1, the resulting P̄k+1

is optimal over all P̄k−1.
In the following we will give the monotonicity property

when the noises are correlated.
From (21), we have:

P̄k+1 =

(A2 − 1

2
Hk(C + CA))P̄k−1(A

2 − 1

2
Hk(C + CA))T+

AQk−1A
T − 1

2
AQk−1C

THT
k − 1

2
HkCQk−1A

T+

1

4
HkCQk−1C

THT
k + Qk +

1

4
HkRk−1H

T
k +

1

4
HkRkHT

k . (27)

Denote the mapping (22) with (17) from P̄k−1 to P̄k+1 by
F(·) : Sn

+ → Sn
+, i.e.,

P̄k+1 = F(P̄k−1). (28)

Lemma 2. F(·) is a monotonic function, i.e., if P̄
(1)
k−1 ≥

P̄
(2)
k−1 > 0, then

F(P̄
(1)
k−1) ≥ F(P̄

(2)
k−1). (29)

Proof. Denote the mapping (22) from P̄k−1 and Hk to
P̄k+1 by G(·, ·) : Sn

+ ×Rn → Sn
+: Then since the solution

Hk in (17) is obtained by minimizing (22), that it is

Hk = arg min
H̃k

G(P̄k−1, H̃k), (30)

with the suppose P̄
(1)
k−1 ≥ P̄

(2)
k−1, let H

(1)
k and H

(2)
k be the

corresponding Hk as obtained in (17) by (26), then

P̄
(2)
k+1 = G(P̄

(2)
k−1, H

(2)
k ) ≤

G(P̄
(2)
k−1, H

(1)
k ) ≤

G(P̄
(1)
k−1, H

(1)
k ) = P̄

(1)
k+1. (31)

Hence, the lemma holds.
In the above, the two equalities follow from (26). The

first inequality follows from (26) as well. The second in-
equality follows from (22), i.e., G(P̄k−1, H̃k) is linear in
P̄k−1 when Hk is fixed. ¤

Remark 2. From Lemma 2, we know that the estimator
in Theorem 1 is optimal.

3 Optimal estimator for random delays
bounded by N = 1N = 1N = 1

From Theorem 1, we know that when the number of the
received measurements rk = 2, the measurement adopted
by the estimator in (13) is the average of yyyk−1 and yyyk. Then
for Cases 1 and 2, the following model for the measurement
received by the estimator is adopted:

ỹyyk =





1
rk

rk∑
i=1

yyyk−mk+i−1, rk = 1 or 2,

∅, rk = 0, there is no packet.

(32)

Theorem 2. Consider system (1) ∼ (2). Denote by mk

the random time delay and by rk the number of the received
packets at time k. Then the optimal estimator is given as
follows:

1) When there is no packet received, i.e., rk = 0, the
most recent state estimate remains at x̂xxk−mk and the error
covariance at P̄k−mk . The estimator is

x̂xxk+1 = Amk+1x̂xxk−mk , (33)

with mk+1 = mk + 1, and the error covariance recursive
equation is

P̄k+1 = Amk+1 P̄k−mkAmk+1T +

mk+1−1∑
i=0

AiQk−mk+iA
iT.

(34)
2) When rk > 0, the estimator is

x̂xxk+1−mk+1 = F̄kx̂xxk−mk + H̄kỹyyk, (35)

and

x̂xxk+1 = Amk+1x̂xxk+1−mk+1 , (36)

with

mk+1 = mk − rk + 1, (37)

F̄k = Ark − 1

rk
H̄k

rk−1∑
i=0

CAi, (38)

and

H̄k =
1

rk
(Ark P̄k−mk (

rk−1∑
i=0

CAi)T+

rk−1∑
i=1

i−1∑
j=0

AiQk−mk+rk−i−1A
jTCT)M−1

k , (39)

where

Mk =
1

r2
k

((

rk−1∑
i=0

CAi)P̄k−mk (

rk−1∑
i=0

CAi)T+

rk−1∑
i=0

Rk−mk+i+

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+i−j−1A
jTCT), (40)

and the error covariance update is given by

P̄k+1−mk+1 = Ark P̄k−mkArkT − H̄kMkH̄T
k +

rk−1∑
i=0

AiQk−mk+iA
iT. (41)
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The initial error covariance is P̄0 = Exxx0xxx
T
0 .

Proof. From (1), (2) and (28), the state estimation error
is

eeek+1−mk+1 = xxxk+1−mk+1 − x̂xxk+1−mk+1 =

Arkxxxk−mk +

rk−1∑
i=0

Aiυυυk−mk+rk−i−1 − F̄kx̂xxk−mk−

1

rk
H̄k

rk−1∑
i=0

CAixxxk−mk −
1

rk
H̄k

rk−1∑
i=1

×

i−1∑
j=0

CAjυυυk−mk+i−j−1 − 1

rk
H̄k

rk−1∑
i=0

ωωωk−mk+i. (42)

Using the estimator′s unbiased property, we get (30). Sub-
stituting (34) into (8), we have the estimator error covari-
ance as follows:

P̄k+1−mk+1 = Ex[eeek+1−mk+1eee
T
k+1−mk+1 ] =

(Ark − 1

rk
H̄k

rk−1∑
i=0

CAi)P̄k−mk (Ark − 1

rk
H̄k

rk−1∑
i=0

CAi)T+

rk−1∑
i=0

AiQk−mk+rk−i−1A
iT +

1

r2
k

H̄k

rk−1∑
i=0

Rk−mk+iH̄
T
k +

1

r2
k

H̄k

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+i−j−1A
jTCTH̄T

k −

1

rk

rk−1∑
i=1

i−1∑
j=0

AiQk−mk+rk−i−1A
jTCTH̄T

k −

1

rk
H̄k

rk−1∑
i=1

i−1∑
j=0

CAjQk−mk+rk−i−1A
iT. (43)

Similar to Theorem 1, by minimizing (35), (31) ∼ (33) are
obtained. When there are no measurements, the estimator
just updates as (17), and the covariance equation (29) can
be obtained. Similar to Lemma 2, we know that P̄k+1−mk+1

is monotonic in P̄k−mk . Hence, the estimator (17), (29) and
(30) are optimal. ¤

4 Simulation example

In this section, we present a numerical example to illus-
trate the previous theoretical results.

Consider a system described in (1) and (2) with the fol-
lowing specifications:

A =

[
1.1 −0.1

0.5 0.9

]
, C = [1 2],

and R = 0.1, Q = 0.25I2, P0 = 0.25I2, where I2 is the
identity matrix.

We know that rk is obtained according to the transition
diagram in Fig. 1, and we suppose the transition probabili-
ties are as follows:

p00 = P (m(k + 1) = 0|m(k) = 0) = 0.85,

p01 = P (m(k + 1) = 1|m(k) = 0) = 0.15,

p10 = P (m(k + 1) = 0|m(k) = 1) = 0.75,

p11 = P (m(k + 1) = 1|m(k) = 1) = 0.25.

Fig. 2 shows the comparison of the traces of the error
covariance for three scenarios:

Method 1. The proposed method in this paper.
Method 2. The standard Kalman filtering, assuming

that there is no time delay;
Method 3. When receiving two measurements, the es-

timator just uses the newest measurement.
It can be seen from the simulation results that the pro-

posed estimator in the paper has a better performance than
Method 3. We also show the curves of the true state values
and estimated values using the proposed method. The sim-
ulation results are obtained as shown in Figs. 3 and 4. It
can be seen from the simulation results that the proposed
linear estimator tracks the real state value very well.

Fig. 2 Comparison of the traces of error covariance

Fig. 3 The first state component of xk and its estimate

Fig. 4 The second state component of xk and its estimate
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5 Conclusion

In this paper, for the networked control systems with
bounded random measurement delay of at most one step,
the optimal estimator is proposed without using time
stamps. The key to our development in the estimation
of the networked control systems is to use the average of
all the received measurements at each instant time. We
have shown that the state estimator is optimal in the class
of linear estimators with the properties of zero bias and
uniformly bounded estimation error covariance. Further-
more, the proposed optimal filter is reduced to the standard
Kalman filter when there are no random measurement de-
lays.
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