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Abract. In Bartlett, Holot and Lin [2], a fun-
dantal result is established on the zero locations
of a family of polynomials. It is shown that the
zeros of a polytope P of n-th order real polynomi-
als is contained in a simply connected region D if
and only if the zeros of all polynomial along the
exposed edges ofP are contained in D. This paper
is motivated by the fact that the requirement of
simple connectedness of D may be too restrictive
in applications such as dominant pole assignment
and filter design where the separation of zeros is
required. In this paper, we extend the 'edge crite-
non' in [2] to handle any region D whose comple-
ment D' has the following property: Every point
d E DC lies on some continuous path which re-
mains within Dc and is unbounded. This require-
ment is typically verified by inspection and allows
for a large class of disconnected regions. We also
allow for polynomials with complex coefficients.

1 Introduction

In this paper we address a special case of the fol-
lowing problem: Given a family of n-th order poly-
nomials P (real or complex) and a region D in the
complex plane, determine whether all polynomials
p(s) in P have all their zeros interior to D. When
this is the case, P is said to be D-utable. A first
seminal result on this problem is given in a pa-
per by Kharitonov [11 for the special case when
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P corresponds to a family of real interval polyno-
ls and D is the left half plane. More precisely,

bounding intervals [ais, fi] are specified a priori and
polynomials p(.) ( P ar of the form

P(8) = 8
n + al8^ 1 + * - - + an-la + a.

with at E lat,fli] for i = 1, 2, * *- n. Subsequently,
Kharitonov's Theorem indicates that D-stability
of only four extreme polynomial (generated us-
ing the ai and 8i) are sufficient to guarantee the
D-stabflity of P.
From a system theoretical point of view, there

are two fundamental limitations of Kharitonav's
Theorem: The first fundamental limitation stems
from the assumption that D is the left half plane.
Hence, the result does not apply to discrete-
time systems or problems where specifications on
pole locations must be satisfied. For example,
for so-called dominant pole location problem, it
is desirable to have two closed loop poles within
some prescribed e-neighborhoods of a given target
a ± jfl (a c 0) with the remaining poles having
real part less than-some specified o -C a. A sec-
ond example is the Butterworth filtering problem
where the set of ideal poles should be uniformly
distributed on the circle with radius w where w is
the cutoff frequency of the filter. In view of the
fact that variations in the filter parameters may
lead to perturbations im the pole locations, the
following robustness problem is of interest: Given
a prescribed c > 0 and a range of variations for
the filter parameters, determine if the poles of the
perturbed filter stay within the e-neighborhoods
of their ideal locations.
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The second fundamental limi-
tation of Kharitonov's result stems from the as-
suwption that coefficients vary withini presenbed
intervals la1, Al. This assumption is tatamount
to "independence" between coefficient variations
and is rarely met in practice. For example, in a
mechanical system, perturbaiions in a coefficient
of friction typically enter into more than one coef-
ficient in the transfer funietion of the system.
Au importaIt result aimed at overcoming the

limitations of Kharitonov's Theorem is given in
Bartlett, bloot and Linl [2J. These authors take
D to be simply connected and allow for linear!v
dependent coefficient perturbations by taking P to
be a polytope of real n-th order moinic polynomi-
aIs. That is, they consider a polytope of monic
n-th order polynomials P generated by polynomi-
als pd(s)Ipz(s) I p,(s). Hence, P is described
by

m ~m

P=(p(e)=YEripi(e):Zr, =1; r1.V0iJK
iti 1=1

(1)
Subsequently, it is shown that P is D-stable if
and only if a exposed edges of P are D-stable.
Hence, to determine if P is D-stable, it is suffices
to show that rpi(s) + (1 -r)pj(s) is D-stable for
all ii jE(1,2,r ,m} and al rE[ 1, 11. This re-
sult is further refined (see, for example, [31 and
(41) where it is shown that the r-sweep associated
with the D-stability test above can be replaced by
a "one-shot" test if D is the open left half plane.
The main motivation for this short paper is de-

rived from the fact that the assumption of sim-
ple connectedness of D might be too restrictive in
many applications. Recalling the motivating ex-
amples (dominant pole specification and Butter-
worth filter design) given above, notice that al-
though D violates the simple connectedness re-

quirement in 121, its complement DC satisfies the
follownig condition: Through every point D,
there is an unbounded continuous path which re-
ms within D. More precisely, we say that D is
pathwiue connected on tIec Ricmnann sphere. This
will be the fundamenl property of D which we

exploit in the derivation of our main result In-
deed, we extend the "edge criterion" in 121 to ac-
commodate this class of D-regions. For examples
of practical interest, it is not hard to see that
simple connectedness of D Implies, pathwise con-
nectedness of D' on the Riemann sphere; i.e., this
thieory not only handles disconnected regions but
also those considered inI 121. Other (perhaps less
important) differences between this paper and 121

are that we do not require the generating polyno-
mials pi(e) for P to be monic and that we allouw
for polynomials with complex coefficients.

2 Preliminary Notation

A complex n-th polynomial p(s) is described by

P() = s" +a,at +-- + an aoA (2)

witha=ajj+ fj^; a,, fpi t for all i. We denote
the coefficient vector of p(s) by

p = I Gjo a u,fA .* a. Pif,. (3)

Given a polytope of n-th order polynomials P
(not necessarily moniu, with n 2 1) generated by
p I (s),p* (s) ,- * - Pin(e), we denote the set of coeffi-
cients by

m m

P={Zripi :Er=l; r.O0V }
i=l i=1

(4)

where pi is the coefficient vector for p$(>). Note
that if P is a polytope of real polynodmis, then P
is n-th order if and oly if all the generating poly-
nomials pi (a) are n-th order with the satsign of
their highest order coefficients. In general, a poly-
tope of polynomials P is n-th order if and only if
the highest order coefficients of all the generating
polynomials pi(e) sty within any half plane which
does not include the origin. We denote the affine
hullaofP by aff(P). Wecallsis azero of P ifs is
a zero of some polynoial p(w) E P. Equivalently,
there exists some p E P such that

K(s)p =0
where

Re(s%)
-im(e)
Re(sn")

-Im(s)
I
0

Im(e )
Re(?)

Im(tA-1)
Re(r-L)

Imfr3
Re(&)

0
I

T

c fgt2xf3+t).

(5)

3 MaiM Result

Theorem 3.1 Consider a polytope of n-th or-

der(real or complex) poiynorial P and a refion
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V in the complex plane such that D' is pathwsze
connected on the liemnann sphere. Thent, P i.
D-stable if and only if the exposed edges of P are
D-stable.

Proof: Tlhroughout the proof we use E(O) to
denote the exposed edges of a polytope 0.

(Necessity) Suppose P is D-stable. Then it fob
lows trivially that E(P) is D-stable because E1(P)
is a subset of P.

(Suffcienlcy) We assume that E1(P) is D-stable
and must show that P is D-stable. First, we dis-
pose with the tnrvial case wheni dim aff(P) - 1
because 1E(P) = P in this situiation. Henice, we
assume dim aff(P) . 2 and proceed by contra-
dliction. IIndeed, asstine that P is Iot D-stable.
Then, there exists some p E P anid some a EDE
such that

K(a)p = 0. (6)
To obtain the desired contradiction, we need to
show that there exits some q E E(P) and some
# E DC such that

K(Q)q = 0. (7)
To this end, we consider two cases. In case 1, we
assume dim aff(P) = 2. Subsequentiy, for Case 2
when dim aff(P) > 2, we argue that the problem
can be reduced to Case 1.

Case 1: dim aff(P) = 2. First we express aff(P)
as

aff(P) = {p+Ax: xCE W)
for some appropriate 2(n+ 1) x 2 dimensional ma-
trix A. We now consider-two subcases.

Subease 1A: rank(K(a)A) < 1. Notice that the
set of coefficients of polynomials associated with
aff(P) having a as a zero is

PO = {p+Ax:K(a)(p+Ax)=O;xEW?}
= {p+Ax:K(a)Ar=O;xEWt'}.

Furthermore, P. is contained in aff1(P) and since
P0 has dimension 1 or 2, it follows that P. inter-
sects E(P). Choosing q E P. nl 1(P), we obtain
the desired contradiction with (3= a.

Subcase iB: rank(K(a)A) = 2. Now, since
DC is pathwise connected on the Riemain sphere,
there exists some unbounided ContiUOus path in
DV passing througl a. Furthermore, by compact-
ness of P, there must exists some y E r which
is not a zero of any polynomial in P. Now let
f () : [0, 1] --* rbe a continous function associ-
ated with the segment of r between a and 7, i.e.,
f(0) = a and f(1)=. Furthermore, we define

A'sap{A E 0 11] rank(K (f())A) = 2 C10,E )).

By definition of A', the equation

K(f(A))(p + Ax) =0

has a unique solution

x.X = -IK(f(A))AP'K(f(A))p

for all A E [0,A'). This solution generates a con-
tinuous path in aff(P) described by

px =p+AxA;AE 10,A).
There are two possbilities: The first possibility is
that p, does not belong to P for some ¢ E (O, A).
In this situationi, there must exist some 6 E 10t0
such that p' Cf 1(P).-Hence, we obtain the desired
contradiction with q = pi and 3 =1f(6).
The second possibility is that px E P for all

A E 10, A'). By compactness of P and continuity of
PA, there must exist some sequence {A.} inu[,A')
converging to A' and some p E P such that

P n limx PA..

Furthermore, we have

K(f(A*))p =0 (8)
because

K(f(, ))P = n lim K(f(A.D))pA.
and

K(f(Al))p = 0
for each n. Since p' $ 0 (note that the highest
order coefficient is nonzero), from (8), it follows
that

rank(K(f(A*))A) < 1.

Now, by repeating the analysis used in Subcase
lA (with p = p and a = f(A')), we obtain some
qEE(P) and ED' s-uch that K(f)q =0.

Case 2: dim aff(P) = r > 2. In view of Case
1, it suffices to prove the following: There exists
an (r - I)-dimensional exposed face F of P, some
f E F and some y E D' such that

K(1)=o
Once F and f are found, it is apparent that thlis
argument can be repeated(note F is a polytope)
until we obtain a 2-dimensional exposed face of
P containing the coefficient vector for a polyno-
mnial which is not D-stable. Then Oase 1 applies.
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Indeed, let P denote any 2-dimensional afline set
passing through P and notice that

P' Pnp

is a subpolytope of P of dimension 2 containing
p. Hesice, from Case 1, it follows that there ex-
ists some f E 13(P') and some-y E Dt such that
K('y)f = 0. The proof is completed by noting that
E(P') is contained in some (r- 1)-dimensional ex-
posed face PF of P. o

13I S. Bialas, 'A Necessary and Sufficient Condi-
tioi for the Stability of Conv Combinations
of Stable Polynomials and Matrices,' Blletin
of Polish Academy of Sciences, Technueat Sci-
encee, Vol. 33, no. 9-10, pp. 473-480, 1985.

141 M. F and B. R. Barmish, "Stability of Con-
vex and Linear Combinations of Polynomi-
als and Matrices Arsing in Robustness Prob-
lems,' Proceedings of Conference on Informn-
tion Science and Sjstem., John Hopkin Uni-
versity, Baltimore, 1987.

4 Conclusion

The next step in this line of research is to devlop
stability criteria for more general family of poly-
nomials. The polytopic assumption on P clearly
restricts the class of physical perturbations which
can be hded. Another important point to note
is that -the edge criterion given here does not easily
degenerate into Kharitonoav's Theorem for the ape-
cial case when the polytope corresponds to a fam
ily of real interval polynomials; i.e., in this special
case, it is not obvious (from the theory given here)
why it is suffices to test four polynomials in lieu
of all the edges. This leavs open the possibility
that for polytopes of polynomials, there is somc
alternative to the edge criterion which specializes
to Kharitonov's Theorem in the "correct manner.'
Besides having aesthetic appeal, such analterna-
tive would be desirable for two reasons. First, as
the ntmber of extreme points of P increases, one
might be able to avoid the 'combinatoric explo-
Sion' in computation asociated with checking star
bility of all convex cominations of extreme points
taken two at a time. Secodly, such an altrnative
for the polytop ease ght s est approaches
to stabifity analys for more general families of
polynomials.

References

IJ V. L. Karitonov, "Asymptotic Stabli of
an Equilbnrm Position of a Family of Sys-
tems of Linear Differential Equations,' Dif-
ferentsial, UTnwsen, vol. 14, no. 11, pp. 2086-
2088, 1978.

12J A. 0. Bartlett, C. V. RoBot and II. Lin, 'Root
Locations of an Entire Polytope of Polynomi-
als: It suffices to Check the Edges,' Proced-
ings of American Control Conference, Mi-
neapolis, M;inesota, 1987; also in press for
Mathematics of Control Sigtns ad Systems.

2464


