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Abstract. In this paper the Kharitonov's Theo-
rems [1,2] are generalized to the problem of so-called
Kharitonov regions for robust stability of linear uncer-
tain systems. Given a polytope of (characteristic) poly-
nomials P and a stability region D in the complex plane,
P is called D-stable if the zeros of every polynomial in
P are interior to D. It is of interest to know whether D
is a Kharitonov region, that is, whether the D-stability
of the vertices of P implies the D-stability of P. A sim-
ple approach is developed which unifies and generalizes
many known results on this problem.

Ime imaginary part of a complex number ¢

Notation

C = the complex plane

C_ = the open left plane

D = am open set in C

8D = boundary of D

Df = {d € C:d ¢& D}, the complement of D

pls) = apolynomial with real or complex coefficients

P = afamily of polynomials

Vp = the set of vertex polynomials of P

po(s) = nominal polynomial

pi(s) = perturbation polynomials, i =1,2,:--,m

P = polynomial vector (po(s),p1(s), -, Pm(s))

g = real or complex “perturbation parameters”,
i=12,---,m

Q; = rectangle in C or intervalin B
which ¢; belongs to, { =1,2,---,m

Qix = vertex of Q;,k=1,2,8,4

deg p(s) = degree of the polynomial p(s)

argc = amgle of a complex number ¢

Rec = real part of a complex number ¢

[=]

1 Introduction

Consider a family of characteristic polynormials P asso-
ciated with a Enear dynamic system containing param-
eter perturbations:

Pé{p(-,q)=i:a.'(4)"'=q€Q} (1)
i=0
where
q = [qlvqiv"'vqm]T (2)

integer part of a non-negative real number z
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is the vector of perturbalion parameters with each g;
varying in the bounding rectangle

Q={ti+jvu:t; <t; <t w;<w; <9} cC, (3)

Q=Q1xQsx - X Qm (4)
is the bounding set of g, and g;(g) is the i-th coefficient
of p(s,g). It is assumed that a,(g) are affine fanctions
of ¢ and that each Q; contains zero. Under these as-
sumptions, we can rewrite p(s,¢) in (1) as

)

where py () is the nominal polynomial which is obtained
from p(s,q) by setting ¢ = 0, and p;(#) are the pertur-
bation polynomials, obtained from p(s,g) - py(s) by set-
ting ¢; = 1 and ¢ = 0,k 3 i. Accordingly, the family
of polynomials P in (1) can be rewritien as

p(s,9) = po(s) + iwm(')
i=1

m
P={po(s) + > qiri(s) : 0: € Qi,i =1,2,---,m}. (6)
=1
For engineering motivation of this type of polynomials,
the reader is referred to, among numerous papers and
books, [3,4,5] and the references thereof.
For convenience, we denote

P = (po(s),21(8),- -, o (#)).
The set of vertex polynomials of P is given by

™

Ve = {p(s,9) : 9i € {gi1,9i3:9issQia},$ = 1,2,--- ’m(} )
8
where g;1,8i3, i3, and g;4 are the vertices of Q;. Note
that if the perturbation parameter g; is purely real, then
Q; becornes an interval and the number of its vertices
is dropped to two.

Given the family of (characteristic) polynomials as
in (1) and a stability region D in C, it is of interest
to determine whether the zeros of every polynomial in
P are interior to D. The stability regions are usunally
subsets of C_ for continuous-time systems, and subsets
of the open unit disk for discrete-time systems.

We now give the definitions of D-stability, anti-D-
stability and Kharitonov regions.

Definition 1.1 [3,8] Given an open set D C C, a poly-
nomsal p(s) is called D-stable (resp. anti-D-stable) if
cvery zero of pls) s interior to D (resp. D, includ-
ing 8D). A family of polynomials P is called D-stable
(resp. anti-D-stable) sf every polynomial in P iz D-
stable (resp. anti-D-stable).



where ¢ and r are the center and the radius of I), respec-
tively. Let z; and 23 be any zeros of f(s) and p;(v), re-
spectively; see Fig. 5. We claim that arg (s~ 23)/(s- 21)
is monotonously descreasing. To see this, we divide 8D
into Ly and L3 according to the tangent points A and B
in Fig. 5. When ¢ traverses on Ly, arg (s~ 23)/(s - 2;)
is obviously decreasing becaunse arg (s - z;) is increas-
ing and arg (s - 23) is decreasing. Now suppose  tra-
verses on La and ¢ is increased by df. Note that hoth
arg (# - 2;) and arg {s - 23) is increased. Therefore,
we need to prove that the increment d¢; of arg (s- z;)
is greater than the increment d¢y of arg (s - z3). This
is not difficult to see from Fig. 5 because d¢; > dds,
dgs < déy, and déy = d¢, = df/2. Consequently,
arg (¢ - z3)/(» - 3;) is monotonously decreasing on
Ls. Hence, our claim holds. Finally, we conclude that
arg p;(e)/f(#) is monotonously descreasing on 3D be-
cause number of zeros of p;(s) is less than or equal to
that of f(s). O

Corollary 3.8 [9] Any open circular region of the
Jorm shown in Fig. 6 with o > r is a Kharitonov region
with respect to p = (po(s), 1,8, -, 6") for any py(s) of
n-th order.

Theorem 8.3 Any open region of the form shown
in Fig. T and any hyperbolic region in Fig. 8
are Kharitonov regions with respect to p(s) =
(Po(#),1,0,-+,8*) for any po(s) of n-th order.

Proof: The proof is very similar to that of Theorem 3.1
and therefore amitted. O

Theorem 3.4 [11] Any region D of the form shown in
Fig. 9 is a Kharitonov region with respect to p(s) =
(po(s),1,8,---,8") for any po(s) of n-th order provided
that the paramelers g;yi = 1,2,---,n end the cocffi-
cients of po(s) are real.

Proof: Let L, L3, L3 and L4 be the four line segments
of 3D (see Fig. 10) and f(s) be any n-th order D-stable
polynomial with zeros given by 2,1}, 23,23, -, where
z; denotes the complex conjugate of z;. From The-
orem 2.1, it is sufficient to show that arg ¢/f(s) is
monotonously descreasing when s traverses on 8D for
any 0 < § < n. We first observe that arg # is fixed on
each L;. Therefore, we only need to show that arg /{s)
is monotonously increasing on each L;. Note that this
holds trivially on I; and L. On Lj, this holds becanse
arg (z - z;) increases faster than arg (z - 2}) decreases
following from the fact that df; > d¢; in Fig. 10. Sim-
ilar argument applies to Ly too. Therefore, arg s'/f(s)
is monotonously descreasing on 3D. O

Theorem 3.5 Every open conves region D C C 1
a Kharitonov region with respect to (po(s),1) for any
pols).

Proof: Let f(s) be any D-stable polynomial. It is ob-

vious that arg 1//(s) is monotonously descreasing on
8D. Therefore, it follows from Theorem 2.1 that D is

a Kharitonov region with respect to (po(s),1). O

Corollary 8.4 Let D C C be an open convez region
holding the following property: For any d € D, d is
nonzero and d™ € D. Then, I} is a Kharitonov region
with respect to (po{s),s") for any n-th order po(s). An
ezample of such a D region i¢ given in Fig. 11.

Proof: Using the property of D, it follows that, for any
g € C, po{s)+gs" is D-stable if and only if £ po(1/s}+¢
is [)-stable. Therefore, D is a Kharitonov region with
respect to {pp(s),s") if and only if D is a Kharitonov
region with respect to (s"pp(1/s),1). The latter holds
from Theorem 3.5 because 1) is convex. O

Theorem 8.6 [7] Let p be given in (7) salisfying the
Jollowing condstion: For each$=1,2,--.,m, either Re
pi(jw) = 0 or Im p;{jw) = 0. Then C_. is a Kharitonov
region with respect to p.

Proof: Let f(s) be an arbitrary n-th order C_-stable
polynomial. From Theorem 2.1, it is sufficient to show
that arg p; (jw)//(jw) is monotenously descreasing ex-
cept at pi(jw) = 0 when w increases, § = 1,2,---,m.
This is obvious because arg f(jw) is monotonously in-
creasing and p;(jw) is either purely real or purely imag-
inary. O

4 XKharitonov Regions for Discrete-time
Systems

Corollary 4.1 Any open circular region D of the
Jorm shown in Fig. 12 with 0 2 r and 0 +r £
1 is a Kharitonov region with respect to p(s) =
(Po(2), 1,3, - ,3*) Jor eny po(3) of n-th order. In par-
ticular, o and r can be set 10 1/2.

Proof: This is a direct consequence of Theorem 3.2. O

Corollary 4.3 The open unit disk or any open circular
region D inside of it is & Kharitonos region with respect
to (po(3),p1(2)s -~ 10m(s)) f pi(s),é = 1,2,---,m are
anis-D-stable.

Proaf: Also a direct consequence of Theorem 3.2. O

Theorem 4.1 {13] The open unit disk is & Kharitonov
region wilh respect to

p = (pols),143s"1- s"34+2""s- s,
o gl gain/al Ina) _ pa=in/a)

Jor any po(s) of n-th order.

Proof: Let D be the open unit disk and f(s) be any
n-th order D-stable polynomial. Note that

8D = {exp(j0) : 0 < 8 < 27},
By applying Theorem 2.1, it is sufficient to show that

arg (f(s),#' £ z1*!) is monotononsly descreasing for
any i < [n/2] when z traverses on 3D. Let 2,k =



Definitlon 1.3 Let p be given sn (7). A set D C C
s called a Kharitonov region with respect to p sf the
Jollowing condition holds: For an arbitrary bounding set
Q of the form (4) and (3), P in (6) is D-stabdle i and
only if Vp in (8) is D-stable.

The objective of this paper is as follows: Given the
family of polynomials P in (6) and an open set D C
C, determine whether D is a Kharitonov region, i.e.,
whether the D-stability of Vp implies the D-stability of
P. The first important results related to this problem
were given by Kharitonov [1,2]. In his seminal work,
Kharitonov comsidered a special case where D = C_
and P is a so-called inierval polynomial, i.e.,

p(s,9) =po(s) + 2.: o, )

or equivalently, pi(s) = o~1,i = 1,2,---,n. He
showed that for this special case P is C_-stable if and
only if Vp is C_-stable, and furthermore, if and only
if eight special vertex polynomials in Vp are L-stable
or four special ones when the coefficients of the interval
polynomials are purely real. Following his work, a num-
ber of interesting results have emerged. In Bialas and
Garloff [7], it was shown that the convex combinations
of two complex polynomials f;(¢) and fy(s) are C_-
stable if either Re f;{jw) = Re f3(jw) or Im f,(jw) =
Im f3(jw). In Bartlett, Hollot and Lin [3], it was discov-
ered that for any simply connected region D, a polytope
of real polynomials is D-stable if and only if every edge
of P is D-stable. This result is referred to as the “Edge
Theorem”, and is extended by Fu and Barmish [4] to in-
clude disconnected stability regions and complex poly-
nomials and by Fu, Olbrot and Polis [8] to delay sys-
tems.

The most pertinent results to this paper are those by
Petersen [9), Soh and Berger [10], and Soh [11]. In these
papers, the problem of Kharitonov regions for interval
polynomials was studied. In [9], the regions in O which
can be mapped onto C_ by the so-called strongly admss-
sible rational functions [12,9] were considered. A num-
ber of interesting regions {e.g., Figs. 2,3,7) are found
to be Kharitonov regions. In [10,11}], it was shewn by
using a different approach that any sector of the form
shown in Fig. 3witha=b=c=0orin Fig. 10is a
Kharitonov region provided that the polynomial coeffi-
cients are real.

In this paper, a new approach to the problem of
Kharitonov regions is developed using the concept of
decreasing phase property defined below:

Definitlon 1.8 Given a stability region D C C and the
polynomial vector p in (7), P 18 called to hold the de-
screasing phase property if, for an arbilrary n-th order
D-stable polynomial f(s) and 1 < ¢ < m, argpi(s)/f(s)
is monotonously descreasing (escept al p;(s) = 0) when
s traverses on D in the counter-clockwise direction (or,
Jor short, monotonously descreasing on 8D ).
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Our key theorem (Theorem 2.1) shows that a given
open set 1) is a Kharitonov region with respect to p in
(7) if p holds the descreasing phase property above. Us.
ing this key theorem, many known results on the prob-
lem of Kharitonov regions are unified and generalized.

2 Key Theorem

Theorem 2.1 (see Appendix for proof) Let an open
set D C C and p = (py(s),p1(9), - ,pni(8)) be given.
Then D ds a Kharitonov regson with reapect top if p
holds the descreasing phase properiy.

3 Kharitonov Regions for Continuous-time
Systems

In this section, Theorem 2.1 is used o derive a numn-
ber of useful Kharitonov regions. 'These Kharitonov re-
gions are mainly for continuous-ilime systems, but some
of them will be used in the next section to develop
Kharitonov regions for discrete-titue systeins.

Theorem 8.1 Any open half plane of the form shown
in Fig. 1 i3 a Kharitonov region wilh respect top in (7)
for any po(s) if pi(s),s = 1,2,---,m are anti-D-stable.

Proof: Suppose pi(s),i = 1,2,---,m are anti-D-
stable. . Let f{s) be an arbitrary n-th order D-
stable polynomial. It is straightforward to see that
arg pi(s)/f(s) is monotonously decreasing on @D be-
cause arg p;(s) (resp. arg f(s)) are monotonously non-
increasing (resp. increasing). ‘Therefore, it follows from
Theorein 2.1 that D is a Kharitonov region with respect
top. O

Corollary 8.1 [9] Any open half planc of the form
shown in Fig. 2 with a € 0 ir a Kharitonov region with
respect to p = (po(s),1,8,:--,8") for any po(s) of n-th
order. In particular, C_ s a Kharitonov region with
respect to the p above [1].

Corollary 3.3 [9,10] Any open region of the form
shown in Fig. 3 with a,b,c € 0 is a Kharitonov region
with reapect to p = (po(s), 1,8, ,8*) for any po(s) of
n-th order.

Proof: The proof is very similar to that of Theorem 8.1
and therefore omitted. O

Theorem 8.2 Any open cireslar region D of the form
shown in Fig. 4 is a Kharitonov region with reepect to
P in (7) for any po(e) if pi(s), § = 1,2,---,m are anii-
D-stable.

Proof: Let f(s) be any n-th order D-stable polyno-
mial. From Theorem 2.1, it is sufficient to show that
arg ¢'(s)//(s), 1 < i < m, is monotonously descreasing
when D traverses on

8D = {c+ rexp(jf) : 0 < 8 < 2x)



1,2, ,n be the zeros of f(2), 5 = ezp(j#) and suppose
g is increased by df, as shown in Fig. 12. Note that

exp(j6) & exp(j(n - )6)
= exp(i30) (exp(i6 - 30+ empilG - 0))
{ 2¢00((i - §)6) expli30) or
2ysia((i- $)0)exp(i3)

and its phase is either n8/2 or (- x + #6)/2. It follows
that arg & 21*~ is increased by 8d8/2. On the other
hand, arg f(s) is increased by at least ndf/2 because

diy > dép =d8]2;

see Fig. 13. Consequently, arg (¢ * s*~1)/f(z) is
monotonously descreasing on D, O

Theorem 4.2 [14] The unit disk is ¢ Kharitonov region
with respect 1o p = (po(s), 1, 3,--+,5*/%) for any p(s)
of n-th order.

Proof: The proof of this Theorem is exactly the same
as that of Theorem 4.1 except »* = 2/*— is replaced by
s' and we need to use the fact that arg s' is increased
by only idé when ¢ is increased by df. For brevity, the
detail is omitted. O

5 Summary

In this paper, a number of Kharitonov regions for ro-
bust stability of Inear uncertain systems are given
based on a new approach which unifies and generalizes
many results in [1,2,9,10,11,13,7,14). To surmmarise, the
Kharitonov regions given in Sections 3-4 are tabulated
in Tables 1 and 2. It should be noted, however, that
these tables are not complete because more Kharitonov
regions can be constructed by 1) applying Thearem 3.1
on other special uncertain polynomials (e.g., low order
polynomials), 2) using the fact that the intersection of
Kharitonov regions is a Kharitonov region (9], and 3)
relaxing the requirement of the descreasing phase prop-
erty in Theorem 2.1.

Appendix: Proof of Theorem 3.1

The following lemma is essential in the proof of Theo-
rem 2.1.

Lemma 1 Given a stability region D C C and n-th
order D-stable polynomials fo(s) and fo(s) + f1(s) with
positive leading coeflicients. Suppose arg fi(s)/fo(s) is
monotonously descreasing on 8D. Then, the polynomial
below

J{s,a) = fo(s) + afa(s)
i3 D-stable for all0 < a < 1.

Proof: Let I' C C denote the trajectory of f1(s)/o(s)
as # traverses on 4D ..,

T={fi(s)/Jo(s) :0€ 3D} .

Since fo(s) is D-stable and deg fy(s) < deg fo(s), I is
a bounded and closed curve. Therefore, arg f1(s)/fo(s)
being monotonously descreasing implies that I' encloses
the origin. On the other hand, the point - 1 is not
encircled by I' because fo(s) + f1(s) is D-stable (Prin-
ciple of Argament). Consequently, using the facts that
arg f1(s)/fo(s) is monotonously descreasing again and
that T encloses the origin, the interval (- co,- 1] is not
enclosed by I'. In particular, the point - 1/ is not
enclosed by I'. Therefore, fo(s) + afi(s) is D-stable
(Principle of Argument). O

Proof of Theorem 2.1: Suppose Vp is D-stable.
Define, for { = 1,2,---,m,
0i-1(8) = (- L)pilo)
g3(s) = J(@i- wipi(e)

L T Ay
oy = {74-'-!.- L#L

0 f,=§‘
Wi~ W
ay = {U—%:—E wi#g‘
Wi =w;

Jo(s) = po(s) + i(!: + jw;)pi(s)
i=1

and, for any a = (o, 03, -+ ,a3,)7 and 1 < £ £ 2m,

[4
Je(s,a) = fo(e) + E axge(s) .
=1

Note that

fl(.’a) = fo ('10) + cyge(e)
and that any polynomial in P can be expressed by
Jam(s,a) for some o with all 0 € ap € 1,k =
1,2,---,2m. From the decreasing phase property of
P, we know that, for any n-th order D-stable polyno-
mial /(s), arg gy(s)/7(s) is monotonously descreasing
on 8D,k =1,2,-+-,m.

Given an arbitrary polynomial fym(s,a) € P, we
need to prove that f3,,(s,a) is D-stable by reductio
ad absurdum. That is, we assume fam(s,a) is anti-
D-stable and show that there exists some vertex poly-
nomial of P which is also anti-D-stable. Indeed, ac-
cording to Lernma 1, fan(#,a) being anti- D-stable im-
plies that either fa,,_1(9,0) or fam—1(9,0) + gam(s) is
anti-D-stable.. Without loss of generality, we may as-
sume that f3,,1 (s, a) is anti- D-stable. Using Lemma 1
again, we further obtain that either fym-3(s,a) or
Jam—1(e, a)+a,.._lg,.._1 (O) is anti-D-stable. Continu-
ing with this process repeatedly, we will eventually have
either fo(s) or another vertex polynomial of P to be
anti-D-stable. This conclusion contradicis the assump-
tion that Vp is D-stable. Therefore, s (s,2) must be
D-stable. Since f3n(s,a) is an arbitrary polynomial in
P, D must be a Kharitonov region with respect top. O
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P Kharitonov region D condition |
{s),p1(s),--- yPm(s)) | Fign. 1, 4 pi(s) is anti-D-stable
c Re pijw) = 0 or
- Imp;(jw) =0,1Li<m
(po(s),1,0,---,¢%) Figs. 2,3,6,7,8 no
Fig. 9 real parameters and coeflicients
(po(s),1) any open convex set | no
3y Open Convex set
such that f d €
(pols),#*) D then d # 0 mo
and 4! € D (eg,
Fig. 11}
Table 1: Kharitonov regions for continuous-time systems
[ P Kharitonov region D | condition |
the open unit disk or
(po(2),P1(2),-**15m (9)) any open circular re- | p;(z) is anti-D-stable
ion inside of it
(po(z),l,s,'--,z‘) Fig. 12 no
(z),1,3,--: ,;F‘m) the open unit disk no
(po(s),1 £ 5*,---,3*/3 £ s*~I/3) | the open unit disk | no Figure 1

Table 2: Kharitonov regions for discrete-time systems
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