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A CLASS OF KHARITONOV REGIONS FOR ROBUST STABILITY OF LINEAR UNCEItTAIN SYSTEMS
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Abstract. In this paper the Kharitonov's Theo.
rem 11,21 are generalized to the probkm of soccaled
Kharitonov regios for robust stability of linear uncer-
tan system. Given a polytope of (characteristic) poly-
nomias P and a stabilit regionD in the complx plane,
P i called D-table if the zeros of every polynomial in
P we interior to D. It is of interest to know whether D
is a Kharitonov regin, that is, whether the D-stabillty
of the vertices of P implies the D-stabitfy of P. A sim-
ple approach is developed which unifies and generalizes
may known reslts on this problem.

Notation

C = the complex plane
C_ = the openkft plane
D = anopen set in C
3D = bounday of D
DC = {d E C: d D) the complent of D
p(s) = a polynomial with real or complx coefficients
P = a family Of plyomials
Vp = the set of vertex polynomials of P
po(u) = nominal polynomi
p1(a) = perturbationpolynomials,i=112 ,n
p = polynomial vector fpo (it),Pi (i), ,* *Pm (0))
q1 = real or complex "perturbation paramters",

i= It% .. 9,m
Qi = rectangle in C or interval in I

which 11 belong to, i=s 21 ,m
qik = vertex of Qi, h= 1, 2, 3, 4
deg pNs) = degree of the polynomial p(F)
arg c = angle of a complex number c

Re c = real part of a complex number c
Im c = iTmginary part of a complex number c

H=1 integer part of a non-negative real number x

1 Introduction

Consider a family of characteristic polynomials P aso-
ciated with a inear dynamic system containing param-
eter perturbations:

P - {p(,q) = ai(q)a' : q E Q)
;=O

where

(1)

(2)

Is the vector of perturbation parameters with each qi
varying in the bounding rectange

Qi-(ti+jwi:-t<ti <ha;S4 WC Sti< cC, (3)
Q-k* QIXQSx ^"xQm (4)

is the boundi set of q, and a4q() is the i-th coefficient
of p(a,q). It iassumed that a,(q) are alne functons
of q and that each 4Qi contains zero. Under these as-
sumptions, we can rewrite p(e,q) in (1) as

n

p(as q) = po(a) + Z, gip()
i1=

(5)

where po4() is the nominal polynomial which is obtained
from p(s,q) by setting q = 0, and pi(#) are the pertur-
botion polnomial, obtained from p(s, q) - po(e) by set-
ting =j 1 and qi =O,k # i. Accordingly, the family
of polynonias Pi (1) can be rewriten as

in

p = (Po (j) + Eqipi(r) : qi E Qili =1121 ' ** m). (6)
i=1

For engineering motivation of this type of polynanials,
the reader is referred to, amog mnerou papers and
books, 13,4,51 and the references thereof.

For convenience, we denote

P (Po(i),Pd()P , Pn (9)). (7)
The set of vertex polynomials of P is given by

Vp {p(tsq): qi E {qjg,qjs,qjs,j4),i-q1,2,1 - -,m
(8)

where q,j,qjs,qjs, and qi4 are the vertices of Qi. Note
that if the perturbation parameter qi s purely real, then
Q;becomes an interval and the number of its vertices
is dropped to two.
Given the family of (characteristic) polynomials as

in (1) and a stablity region D l C, it Is of Interest
to determine whether the zeros of every polynomial in
P are interior to D. The stability regions are usually
subsets of C_ for continuous-time systems, and sbsets
of the open unit disk for discrete-time systems.
We now give the definitions of D-stability, anti-D.

stability and Kharitonov regions.

DefintIon 1.1 [3,61 Given an open act D C C, a poly-
nomial p(u) is called D-atablC (reap. anti-D-stable) if
every zero of p(a) is interior to D (reap. D0, includ-
ing OD). A family of polynomials P is called D-utable
(reap. anti-D-stable) if every polynonial in P is D-
stable (reap. anti-D-atablcJ.
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whlere c and r are the center and the rad}ins of 1, respec-
tively. Let zl and z2 be any zeros of f(s) and p,(J), re-
spectively; see Fig. 5. We cla that arg (- zS)/(#- XI)
is monotonously descreasing. To see this, we divide 3D
into Ll and LI according to the tangent points A and B
in Fig. 5. When s traverses on LI, arg (a - z,)/(s - xi)
is obviously decreasing because arg (a - i) -is increas-
ing and arg (a - z2) is decreasing. Now suppose a tra-
verses on L, and U is increased by dO. Note that botlh
arg (a - :1) and arg (s- z2) is-increased. Therefore,
we need to prove that the increment d4l of arg (a - xz)
is greater than the increment dO$ of arg (a - z,) 'his
is not difficult to see from Fig. 5 because dti > dO,,
d4S S d$4, and d4,= dh4 = d/2. Consequently,
arg (a - Z2)/(s - -S1) is monotonously decreasing on
L2. ilence, our caim holds. Finally, we conclude that
am p(s)/f (a) is monotonously desreasing on 9D be-
cause number of zeros of pi(#) is less than or equal to
that off(s). 2

Carollary 3.3 191 Any open circular region of the
form shown ini Fig. 6 with a > isatf Khariotoov regiot
with respect to p = (po(4,) I, -s** s) for any po(s) of
n-tA order.

Theorem 3.3 Any open region of the form shown
in Fig. 7 and any hyprbolic rgon in Fig. 8
are Kharitonov reons wit retpect to p($s)
(po(s),1,s,-*, is) for any po(s) of s-tA order.

Profo The proof is very similar to that of Theorem 3.1
and therefore omitted. 3

Theoren 3.4 [11 Any region D of ths form shown in
Fig. 9 is a Kharitonov rgion with rpct to p(s) =
(Po(s),ls ..,si) for any pc(s) of s-A order provid
that the parameters qi,i = 1,2, -., and th coeffil-
cients of po(s) are real

Proof: Let LI,L,,La and L4 be the four line segments
of 39D (see Fig. 10) and f (s) be any n-th order D-stable
polynomial with zeros given by xi, ,5s14,s * -, where
z denotes the complex conjugate of sx. From The-
orem 2.1, it is sufficient to show that arg s'/f(a) is
monotonously dscreasing when a travers on 3D for
any o i < s. We first observe that arg si is fixed on

each Lt. Therefore, we only need to show that arg f(s)
is monotonousy increasing on each L,t. Note that this
holds trivially on Li and L4. On L,, thi holds becaue
arg (z - sf) increases faster than arg (z - 4t) decreases
following from the fact that dOk 2 dk in Fig. 10. Sim-
ilar argument applies to Lg too. Therefore, Mrg ii/f()
is monotonousb descreasing on 3D. E3

Theorem 3.5 Every open conves region D c C is
a Kharitonov region with respect to (pO(s),l) for any
PO (s) .

Proof: Let f(s) be ay D-stable polynomial. It is ob.
vious that arg I/f(t) is monotonously deseaing on
3D. Therefore, it follows from Theorem 2.1 that D is
a Kharitonov region with respect to (po(s),1) 3

Corllary ; Let cD C bc sn open convex- region
holding the followin property: For any d 6-D, d is
nonscro andt1C e D. Ihen, P is a Kharitonov region
with respect to- (p4s),s") for any n-tA order-p(s). An
example of such a D region is given in Fig. 11.

Proof: Using the property of D, it folowws that for any
q e C, po(s)+qs3 is D-stable if and onl if s"po(1/s)+q
is 1-stable. Thierefore, D is a Kharitonmov regioi with
respect to (po(e),O") if and only if 1) is a Kharitonov
region with respect to (smpo(l/#),l). rhe latter hols
from'rheorem 3.5 because V is convex. 0

Theorem 3.6 [71 Let p be given in (7) satisfying the
following condition: For each i = 1 ,Im, either Re
p$(jw) 0 or Irn pf(jw) CL Thecn C_ is a Khuzritonov
region with respect to p.

Proof: Let f(s) be an arbitrary n-tIl order C--stable
polynomial. From TIheorem 2.1, it is sufficient to show
that arg pi(jw)/f(jw) is mnotonolusly descreasing ex-
cept at p(w). = 0) wrhen w increases, i =-112,- ,m.
This is obvious because arg f&(w) is monotonously un-
creasing aid p(jw) is eitlher purely real or purely imag-
ay. 0

4 Kharitonov Regions for Discrete-time
Systems

Corollary 4.1 Any open circular region D of the
form shon in Fig. 12 witA u . r and a + r S
I I ai Khritonow region wit rtpct to p(s) -

(PO(Z) ,1-1x *-Is) yP(z{)of .-th order. In pzr-
titulor, at and r can be st to 1/2.

Proof: This is a dirct conequence of Theorem 32. 0

Corolla 4 The open unit dish or any open circular
regionD inside of it is a Kharitonow rion with rfepect
to (po(s),pn(z), p,pm(z)) if pis),i - 1,2,9*-,m are
ant-D-stable.

Prod: Also a direct conequence of Theorem 3.2. 1

Theorm Sa1 [131 The opn unit dish is a Kharitonov
reion with repect to

P = ((z)1+t,1 r,:+rl,, ?',

. ., Ia/2I + xs-Im/21,,19s/21 -XX/t)

for any po(s) of n-tA order.

Prod: Let D be the open unit disk and f(s) be ny
n-th order D-stable polynomial. Note that

DD= (exp(jD) :10 <05 2r).

By applying Theorem 2.1, it is sufficient to show that
ug (f(s),si t Via-fl) is monotonowly descreauing for
any i c [n/21 when z traverses on 3D. Let xi,,k =
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Defnltlo Let pbe given in (7). A set D C C
is called a Kharitono. region with respt to p if the
follown coditi hold: For an arbitrary bounding set
Q of thc form (4) and (3) P in (6) isP-stab& if and
only if Vp in (8) i D-stablc

The objective of this paper is as foRlows: Given the
family of polynomials P in (6) and an open set P c
C, determine whether D is a Kharitonov region, i.e.,
whether the D-stability of Vp implies the D-stability of
P. The frt important resut related to this problem
were given by Kharitono 11,21. In his seminal work,
Kharitonov cosidered a special cae where P = C-
and Pu a -called interfal polynomis4 ie.,

a

p(s,q) = Pa(s) + qi4
i=0

(9)

or equivalent, pj(s) = *V-1),i = 1,2,- ,ns LHe
showed that for thi special case P is C_stable if and
only if Vp is C_-stable, ad furthermore, if and only
if eight speil vertex polynomials in Vp are P-stable
or four speci ones when the coefficients of the interval
polynomial we purely real. Folowing his work, a num-
ber of intereting results have emerged. In Bia and
Garioff 17), it was shown tha the convex combinations
of two complex polynomiab f(s) and fe(s) are C_-
stable if either Re f,iUw) Re fs(kw) or Im fd(jw) _
Im fg(jw). In Bartektt, Hollot and Lin [3], it was discov-
ered that for any simply connected region D, a polytope
of real polynomial is D-stable if and only if every edge
ofP is D-stable Thisresult isreferred to as the "Edge
Theorem", and is extended by Fu and Bannisll 141 to in-
clude disconnected stability regions and complex poly-
nomials and by Pu, Olbrot and Polio 181 to delay sys-
tenm.
The most pertinent reslts to this paper are those by

Petersen [9), Scb and Berr [10), and Sob [111. In these
papers, the problem of Kharitonov regions for interval
polynomiasb wadied. In 19], the regions in Cawhich
can be mapped onto C- by the so-called strongly admis-
sible rational fnctions 112,9) were consided. A anui-.
ber of interestng regions (e.g., FPip. 2,3,7) are fond
to be Khaitosov regions. In 110,111, it was shown by
using a different approach that any sector of the form
shown in Fg. 3 with -a = b = c = 0 or in Fig. i0 is a

TKharitonov region provided that the polynomial coeffi-
dients are real.

In this paper, a new approach to the problem of
Kharitonov regions is developed using the concept of
decreasng phase property defined below:

Definltion 1.3 Given a stability region D c C and th
polynomial vcct p in (7), p is caled to hol the de-
screasing phase property if, for an arbitrary n-th order
D-stable polynomialf(s) and 5 itS m, arg p(s)/f (a)
is monotonously descreasing (except at pi(s) = 0) when
a traverses on OD in the eountcr-clockwise direction (or,
for short, monotonously descreasing on 8D).

Our key theorem (Theorem 2.1) shows that a give;:
open set D is a Kharitonov region withl respect to p in
(7) if p holds the descreasing phase property above. Us-
lug this key tleorem, many known results on the prob-
lem of Kharitonov regions are unified and generalized.

2 Key Theorem

Theorem 2.1 (see Appendix for proof) Let an open
set P C C and p = (pD(s),pi (s),- v* (ps).(*) be givet.
Then D is a kharitonov regioni with respect to p if p
hold. the detereasing phase property.

3 Kharitonov Regions for Continuous-time
Systems

In this section, Theorem 2.1 is used to derive a wnt-
ber of useful Kharitoiov regions. These Ktaritonov re-
gions are minl for continuous-time systems, but some
of them will be used in tie niext section to devell)o
Kharitonov regions for discrete-time systeira.

Theorem 3.1 Any open hlf plane of the form shown
in Fig. I is a Kharitonov region with respect to p in (7)
for any po(s) if pi(*),i=1 29 - -,ttn are anti-D-stable.

Proof: Suppose p(s),1 = 1,2,-. ,nm are anti-D-
stable. Let f(s) be an arbitrary n-ih order D-
stable polynomial. It is straightforward to see that
arg Pi(#)ff(s) is monotonousdy decreasing oni OD be-
cause arg pi(a) (resp arg f(s)) are monwotonously non-
increming (resp. increasing). Therefore, it folows fromn
Theoremn 2.1 thlat D is a Jhaitoniov regionk wii respect
top. 0

Corollary 3.1 [9] Any open hlf plane of the form
shown in Fig- 2 with a C 0 is a Kharitonorv ion with
respect to p = (po(s), 1, s,--*,t) for any po(s) of n-th
order. In particular, C_ is a Kharitonov reon with
respect to the p above [1J.

Corollay 3.2 19,10] Any open reion of the form
shkown in Fig. 3 with a,b,c S 0 is a Kharitonoav reion
with respect to p = (po(s), 1 s ... 9 s) for any po(s) of
n-th order.

Proof: Theproofisvery smlato that of Theorem 3.1
and thierefore omitted. D

Theorem 3.2 Any open eirtclar region D of the form
shown in Fig. 4 is a Kharitonow reion wit resct to
p in (7) for any po(s) ifp,i(j), 1, 2,p.. ,m are anti-.
D-stable.

Proof: L,et f(s) be any n-th order D-stabkl polyno-
mial. From Theorem 2.1, it Is sufficient to show that
arg p (s)/f(s), 1 5 i 5 m, is monotonously descreaing
when D traverses on

tD= {c+rexp(jG) :0 <5 B 2r)
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1,2,*-,n be the seros off(z), z = ezp(iJ) andsuppose
O is Increased by dO, as shown in Fig 12. Note that

exp(jO) k exp(j(n - i)O)

exp(j ) (exp(j(i - O)*).exp(i(j- i)O))

J 2cos((i- j)G)exp(j'O) o

s12 m(i- 1)O)exp(jaO)
and its phase Is either nU/2 or (- r + u#)/2. It follows
that arg sl"- isineaed bys9/2. Onthe other
hand, ag f(s) is increased by at kat sd0/2 becue

dOs> dtk = dU/2;

se Fig. 13. Consequently, arg (si sl"-ul)lf(s) is
moniotonously desreasg on GD. O

Theorem 2[141 Th unit dishsiaKsritonov region
Wilk repeCt gop = (po(S),1, X,. ...Ia/2I) for anyp(s)
o/ n-4 ordr.

Prooft The proof of this Theorem i exactly the sum
as that of Theorem 4.1 exceptsi +&_t is replaced by
i aid we need to us the fact that ag ais increased
by only id9whent is nrased by dO. For brevin, the
detail is omIat .

5 Summary

In thi paper, a nmber of Kharkoao regions for ro-
bmut abit of hmear ucertain system are given
baed on a new approach which naMes and geraise
many reslts in [1,2,9410,11,13,7,14]. To suamnsel the
Kharitonov regans given in Sections 3-4 are tabulated
in Tables 1 and 2. It should be noted, however, that
these tables are not complete because nme Kharitonov
regions can be constrcted by 1) applying Therem 2.1
on other special uncertain polynomials (e.g., lw order
polynomiab), 2) usin the fact that the intersection of
Kharitono0 regios is a Kharitonmov regon (91, and 3)
relaxing the requirement of the descasng phae prop-
erty in Theorem 2.1.

Appendix: Proof of Theorem 2.1

The following lemma is esential in the proof of Theo-
rem 2.1.

Lemma 1 Given a stability region D C C and n-tA
order D-stable polynomials to(s) and to(s) + ti(s) with
positive leading coefficients. Suppose arg tj(s)1/fo(#) is
monotonously desereasing on OD. Then, the polynoml
6clow

t(sIa) = fo(s) + etlf(s)
is D-stable for allO < a < 1.

Proof: Let I' c C denote the trajetor of f(s)fto(s)
as s traenes on D;Die.,

r= ti(s)to(s) :s GaD)-
Since to(s) is D-sable and deg ti(s) < deg to(s), r is
a bonded and closed curve. Therefore, ag ftx(s)/fo(s)
being monotonously descreaing in es that r encloes
the org. On the other hand, the point - I is not
encircled by r because t(s) +t(s) is D-stable (Prin-
ciple of Argument). Consquently, using the facts that
arg tj()/to(s) Is monotonously descreauig again and
th-at r enclos the origi, the intervl (- oo,-- 11 is not
enclosed by r. In particular, the point 1/a is not
enclosed by r. Therefore, Jo(s) + aoh(s) Is D-stable
(Principle of Argument). 0

Proof of Theorem 21: Suppose Vp is D-stablt
Define, for i = 1,2,*- *,

9ni-is) - (,u- 4j)iP(s)
usia) = f(Q1- i-i)Ms)

Zs fif
'i-t

O Wj= {4i
urn

o(s) =- (e) + (i +hA4i (i)
ia=i

and, for any a= (a1, a2,. , aj)T and 1 5 t< 2m,
t

fd"a) fto(s) +Z (8)
Note that

tds,a) = te-ds,a) + aege(s)
and that any polynomial in P can be expressed by
f2.(4,a) for some a with all 0 S a _ 1, k
1,2,, ,2m. From the decreasing phae property of
p, we know that, for n u-th order D-stable polyno-
mial f(s), wg u&(s)/f(s) is mnotonously descreasig
on GD,k = 1,2,-,m.
Given an arbitramy poynomial fgm(s,a) E P, we

need to prove that tg4s,a) is D-able by redctio
ad ahsrdum. That is, we ams f.4(#,a) is anti.
Datable and show that ther exist some vertex poly-
nontal of P which is also anti-D-stable. Indeed, ac-
cording to Lena 1, 4(es,a) being anti-D-sabLe In.
plies that either f2,n ,(s,a ) or f.- I(, a) +t,. (s) Is
aati-D-stable. Without loss of generalit, we mq as-
same that ,2-I(4s,a) is anti-Datable. Using lenuna 1
agai, we further obtain that either t-z(s,a) or
12-2(9 a)+ aum-hn_g2, (s) is anDi-stable. Continu-
igwith this proces repeatedly, we will eventually have
either to(s) or another vertex polynomial of P to be
antiD-stable. This conchuion contrdicts the assurap-
tion that Vp is D-sable. Therefore, f,2(u,a) nut be
D-stable. Since t2s(,a) is an arbitrary polynomial in
P,D mst be a Kharitonov region with respct to p.
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________ Kharltonov region V J condition
5,pi, Pm- iS--.-l,4 p() isuhi.D-table

Re pw) m or

(PO(s,,,--s) Figs.2, 3,6,7,8 no
ig.9 real paratm and coefficients

(po())any open convex set no
an open convex set
such that if d 6i

(POo(s) t) D then d ,' 0 no
and d' E D (eg.,

--- ----- ,- Fit. ill _________ _11_. -- --

Table 1: Kharn regon for continuouts-Urnsys te

j Kharitono rego V] condition
the open unit dislk or

(Po(z),pi s),, P. 5)) any open circular re- p () i antiD-stable
______________________ gion isde of it

(POW(41,zt- 5za') Fig. 12 no

(Po (s), 1, S, . ,SIR/21) the open unit disk no

(Po ( l)tI4 - tz'I? -in/-1) the openunit k noI no

Table 2: Klaritonov regons for discrete-time systems
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