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ROBUST STABILITY UNDER A CLASS OF NONLINEAR PARAMETRIC

PERTURBATIONS
Miyuc Fu*, Soura Dasgupta**, Vinent Bknlel*

Abstract
This paper conids the Hurwitz invariance of LTI systm
under a class of nonlinear parametric perturbations. The
setting is one of determning the closed loop stability of
systems whose open loop transfer functions consist of
powers, products and ratios of polytopes of polynomials.
We give several results on the constrcon of value sets and
Hurwitz invariance checking, for this geneal seting and
important special cases.

1. INTRODUCTION
The following problem is of interest in the verification

of robust stability of linear time-invariant systems.
Determine as simply as possible if all members of a family
of transfer functions, paraneterized by a real vector y, have
roots contained entely in the open left half plane (i.e., the
family is Hurwitz invariant), when y takes values from a
given set Such a family, H(T), can be described by

H(W):=(h(s,y): ye r) (1.1)
where r1is a connected set in RN, and for each ye r,
h(s,y) is a transfer function. Genelly, the wansfer function
coefficients depend noninearly on y.

One approach to this problem is to treat it in its
broadest generality, as is done in [1]. Altematively, one can
consider particular parametrizations reflecting specific forms
of strucral informaon supplied by the modelling process.
This allows formulation of stability verification schemes
which are computationally less demanding. Examples of this
approach include [2], which considers a family of
polynomials admitting independent variations in the
coefficients; [3-5], which account for affinely dependent
variations; and [6-8], which consider multilinear dependence
(see [9,10] for surveys). Each of [2-8] exploits the
underlying structural information and demonstrates
consequent simplifications.

This paper adopts the second approach by focussing
on a special class of nonlinear parametric dependence. To
keep the presentation simple, only Hurwitz invariance is
investigated, though the results do in fact genralize to more
general stability regions.

In (1.1), assumer to be a hyperrectangle (axis parallel
box) and partition the parameter vector y as

'Y = ('YTI T ...Y T)T (1.2)

where y i e ri, i=1,2,...,n; with each ri an axis parallel
box in R . Then the function h(s, y ), y e 1, under
consideration is given as

n
h(s, y) = gl(s) + g2(s) 11(pio(s) + y iT pi(s))ki, (1.3)

i=1
where gi(s) and g2(s) are real rational functions in s,
pio(s) are real scalar polynomials, Pi(s) are real vector
polynomials with dimension Ni, and ki are fixed nonzero
integers allowed to be positive and negative. The quantities
gj(s), pio(s), Pi(s), n, Ni, ki and IF are assumed known. The
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j-th element of y i (resp. Pi(s)) is denoted by y ij (resp.
Pij(s)). Since r is an axis parlel box, each y ij varies
independ y of the othrs within an inteval

T~ ij S Tj (1.4)

Thus, each factor (pjo(s) + Y iT Pi(s)) forms a polytope of
polynomials as y i varies in r . Notice, in the case where
the exponents ki are restricted to be +1 and/or -1, the
stability verification of (1.3) is equivalent to that of a
subclass of the muliinear problekm

One motivation for considering the function (1.3) is
that in many cases a plant consists of a cascade of
subsystems. Separate information may be available for each
and their physical independence may lead to independent
parameter variations. Further, one may wish to verify if
each member of a family of controllers, parameterized in a
manner similar to the component subsystems, stabilizes the
entire set of plants. It is clear that suh a stability verification
reduces to the problem we consider.

To further illustrate the scope of (1.3), two more
examples are considered. The first example is of a plant
with independent real zero, pole and gain variations and is as
follows:

h(s) = d ho(s) (s+1)(s+XL2) (1.5)

Hee ho(s) is a fixed rational function and d and Xi vary
independently within given bounds. The objective is to
verify if a given compensator c(s) stabilizes the plant for all
possible parameter variations. Then, the characteristic
function of the closed loop system fits the function in (1.3).
To allow for complex zero and pole vaiations, one may
include factors of the form (s2+ais+biiki, with ai and bX also
varying independently in intervals. With some abuse of
terminology, the version of (1.3) given in (1.6) below will
be referred to as the complex zero-pole-gain variation
problem

It n-i
h(s, y) = I + d c(s) J(s+xi)kl i (s2+ajs+bj)kj (1.6)

1=1 j e--F]
with Sy := (X1 X2 ..Xrat+.zb+1... anI bn- d)T. In this
paper, the following assumptions are made.
Asumption 1.1 The function h(s, y ) has no unstable
zer-polecfor anywr.
Assumption 12 Continuous variations of y result in
continuous changes in the roots of h(s,;).
Assumption 1.3: The function h(s,y) has no purely

imaginaiypolesfoanyyCr. VVV
The need for these assumptions is explained in section 1.1
below.
1.1 Approach and Main Results: As in [7,8,11,12],
we follow a powerful approach to robust stability analysis -
the so-called valu set approach. For the family of rational
functions (1.1), the value set, H(oo, ), at a frequency w is
defined as

H(w, ):=(h(jw, y): y E r1). (1.8)
This method exploits the Zero Exclusion Principle [8],
which under assumptions (1.1,1.2), states that the following
conditions are necessary and sufficient for the Hurwitz
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invariance of H(I): (i) at least one member of H(f) is
Hurwitz; and (ii) 0 E H(4 I-), for all co e R. Assumption
(1.3) ensures that at all finite frequencies H(w, In) is a
bounded set. In fact further refinements to (ii) are
possibleAs h(s,y) is a real functon, a slight variation of an
argument in [13] shows that (ii) above can be simplified to
be(ii-a) 0 E a(H(w, I)), V o e R, where a denotes the
boundary.

Besides aiding robust stability analysis, value sets
can be regarded as a generalized Nyquist plot [14].
Consequently, they can be effectively employed in designing
controllers which meet performance considerations that go
beyond mere closed loop stabilization. Accordingly, in this
paper we consider both the determination of value sets for
(1.3) as well as its Hurwitz invariance. Throughout, to
avoid trivialities, we will always assume that at least one
member of H(W) is Hurwitz. In particular, the following
rsults are derived.

(1) We show that for the geneal family (1.3), at each
fixed frequency w, each member of aH(co,) has preimages
in ceain line segments in the parameter set r. These critical
line segments are simply rcterized. Sone of them are the
edges of r and the rest, frequency dependent intenal lines.
The mathematical descriptions of these line segments are
independent of the exponents ki (see (1.3)) although certain
combinations of kj help to drastically reduce their number.

(2) The ability to link the value set boundary to (one
dimensional) line segments considerably simplifies the
verification of Hurwitz invarance. In particular, every line
segmnt can be repesented in ten of a single real variable.
This fact is exploited to show tha Hurwitz invariance (1.3)
is equivalent to checking a finite number of continuous and
piecewise differentiable scalar functions in co for avoidance
of the negative real axis. Generally, each such function can
be linked to one particular value set boundary defining
fequency dependent line segment mentioned in (1).

(3) For the special case of real zero-pole-gain
varatons, we show that the critical segments arefrequency
independent, and are in fact the edges of IT plus certain
simply constructable 450 line segments in the paramet
space. Consequently, the Hurwitz invariance of H(1) is
guaranteed by that of these frequency independent lines
segments (including the edges). We also show via an
example that such 450 line segments are in fact necessay for
determining Hurwitz invariance, in that despite the
Hurwitzness of the edges some of these 450 segments may
have non-Hurwitz members.

(4) For the complex zero-pole-gain variation case the
critical lines detenining the value set boundaries are eidw
frequency independent or as frequency varies, vary on
certain (2-dimensional) planes and certain (3-dimensional)
boxes in r. To check for robust Hurwitzness it
then suffices to check these frequency independent lines,
planes and boxes.

With respect to (1)-(4), we argue that, often many of
the critical lines, planes and boxes may not pass through the
parameter set r. For example, in (3), this occurs when the
real poles and zeros vary in non-overlapping intervals. In
such cases only the edges of I need be considered. Section
2 presents preliminaries; (3) and (4) are considered in
sections 3 and 4 respectively. Section 5 addresses (1) and
(2) for the general family (.3). Detailed proofs are in [15].

2. PRELIMINARIES
In this section, we present two preliminary Lemmas

which help prove the main results of this paper. Each of
these concerns the extraction of a critical subset of the
parameter box whose image forms the boundary of the value
set.

In Lemma 2.1 we consider the hyperrectangle

Q:=( q=(q q2... qm)T: qj < qi.qi, i=1,2,...m) (2.1)

in Rm and a complex function f(Q): Q -e C:
m

f(q) =Al +A&2 fl(qi cai )ki
i=1

(2.2)

Here, the Aj are complex constants and aoi are real constants.
Inlthe sequel the set f(Q) willdenote f(Q) := f(q): qe Q
The followingampon is requird.
Assumption 2.1 If Pi = 0 and ki <O for some i, then

the associated interval [qj+ aX, q++ adi does not contain

zer; i.e. f(Q) is a bounded set VVV
It is our objective to extract a subset of Q which

determines the boundary of f(Q). It turns out that the
following affine line in Rm plays acrxial role in this task:
Lr= I (q 1 .qm)T=pP[|.pmA]T-[a19.am]T:

-oo<pcoo) (2.3)
In the Lemma the term open projection, defined below, is
used. Consider a k-dimensional boundary QC of Q. Note
that there are (r-k) elements of q fixed at extreme values on
this boundary. Modify Lf by fixing these (m-k) parameters
in (ql q2 ..qm)T to the extreme values as they assume in
Qk. Then the intersection of the interior of Qk and this
modified affine line is called the open projection of Lf on
Qk. Forexample, ifm=3, Q= [0,2] x [0,4] x [0,5] and
Lfr= ((ql, q2, q3)T=p[l, 1, l]T - [0, 1, 1]T: - 00 < p < o),
then the projection of Lf on Q is I (ql, q2, q3)T=p[l, 1, 1]T
- [0, 1, lIT: 1 < p < 2). Equally, the projection on the face
defied by ql = 2 is {(qj, q2, q3)T=p[0, 1, 1jT - [-2, 1, 1T:
1< p< 5).

In the sequel we will use certain short hand
expressions whose meanig we now make clear. We say
that "(f(Q)) is mapped from a subset Q* of Q" if every
point on a(f(Q)) has at least one preimage in Q*. Such a
set Q* will be called critical. We have the following
Lemma.
Lemma 2.1: Consider the hyperrectangle Q in Rm given
in (2.1) and the complex function fO): Q -* C in (2.2).
Then under Assumption 2. 1, there exists a collection of line
segments in Q from which d(f(Q)) is mapped. These line
segments consist of (a) all the edges ofQ and (b) the open
projections of the affme line Lf in (2.3) on all k-
dimensional boundaries Qk of Q, 25 k < m, except those for
which the following condition holds: let T be the subset of
( 1,2,..,m) associated with Qk such that qc, is set at an
extreme value for all q=(ql, q29... qm)TE Qk, ca 'P. Then,
eidter

(i) Oi =0, for sonx if ; or

(ii) I ki = 0. (2.4)
ie P

Remark 2.1: in order to illustrate this Lemma, especially
conditions (b-i) and (b-ui), we consider the following
example:
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f(= (gj1 +Itj)
(q2 + 2 +3j)(q3 + 4)

Then projections on the interior of Q and the facs ql = q;
or q, and the faces q2 = q2 or qj are excluded by the

restriction (i) above; likewise the projections on the faces at
which q3 takes extrme values are excluded by (ii). Thus
for this example the edges i e cntical set
Remark 23: The exponents ki do not affect the equatios
of the internal segments. Certain combinations of ki,
however, may reduce the number of segments which are
critia ((b-i)).
Remark 2.4: It can be shown that, for each 15 k S m,
thc are Ck 2m-k k-dimensional boundaries. Thefom
the total number of crifical seg ts- which detemine the

m
boundary of f(Q) is at most £ Ck-2m.nk=3m - 2m. From

k=1
Remark 2.1, many of these are unnecessary.

To understand the significance of Lemma 2.1 to the
problem at hand, note that our objective is to extat a set
9*(fo) r, such that at a giv te, boundary of the
value set of (1.3) H(co,Ij), is mappd frm r*(co). In this
context, the folowing Lemma is shown in [I15].
Lemma 2.2: At any frequency, the r*(w) defined above,
lies in the union of certain n-dimensional boundaries of r.
On each of these boundaries all but one element of each y;
(see (1.3)), are fixed at emireme values. VVV

These boundaries will be denoted B1,js (I.1,..,v),
whee v, the ta number of these boundaries is

n
v = 2Nfnl Ni

i=l
To fid r*(co), one simply needs to find critical

subsets of each Bj, such that the boundary of the image of
Bj in the value set spae is mapped m dese subsets.
Together, these subes then define 1r*(w). Using Lemma
2.1 we will ident the critic subseu of Bj, with certain
line segmn which in t are te ion of some affine
ln on the boundaries of B.

3. REAL ZERO-POLE-GAIN-VARIATIONS
Consider,
h(s,y) = 1+ d hO(s)((s+Xi)>k(s+X2)k2...(s+X. i)k.1i)

(3.1)
wher

'Y :=(OIX2...Xn.Id)T, (3.2)
ho(s) is a fixed radonal function, kj 0 are fixed integers
which can be either positive or negative, and d and Xi
vary independendy within given bounds, i.e.,

d < d d+ ; XS Xi < X+, i=1,2,...n-i (3.3)

and I= [X,XI]x...x[An _X1A]x[d, di]. Assumption 1.3

implies that if a given ki is negative, the corresponding
interval ofX cannot include zero. At each fixed fiquency to,
the function hOco, y) has the same form as the function f(q)
in (2.2) with obvious identifications with the Ai, ai and %j.
Thus, Lemma 2.1 applies. The critical line Lf given in (2.3)
becomes

Lfa X=p.icoo...coOT:ooc o<p< ). (3.4)
For 0o', enamig p to be pe, we havec

Lf= RX=p[1 ...1 oJT: -c<poo). (3.5)
This line must be projected to certain boundaries of r.
Observe Pn=0. Thus from (b-i) of Lemma 2.1, these
boundaries are such that on each of them the gain d must
take extreme values. Consider any such boundary, in the
interior of which Xi, i e IF, take extreme values. From
Lemma 2.1, the projection of Lj on this boundary is critical
only if (2.4) does not hold Under this condition, the critkal
pojectin obeys

Xi=Xj, Vi jeW. (3.6)

with d and the other X1 fixed at extreme values. At w=O, all
f3j=O. Tlhen, Lemma 2.1 ensures that aH(O,) is mapped
f the edges. Thus we have the following Tbharem
Theorem 3.1: Consider theparamet box r in Rngiven
in (3.4) and the family (3.1). Then, at each co the aH(c,I')
can be mapped frn certain line segmen in r, namely the
edgesor md the o os - in (3.6). Fue ,

the family offwks H() is Hurwit invaiant iffhs,) is
Hrwitz invariant these in segmensNVV

A case with special intme is when all the Xt vary in
inmrvals that do not ovalap. Then the p ns are empty.
Thus, Corollary 3.1, below, follows.
Corollary 3.1 (An Edge Theorem): Consider the
parameter box r in (3.4) and the family of function H(I-) in
the form of (3.1). Suppose (Xi, Xt)f(jX:, Xt) are empty for

a S i j <n. Ienthe ary of the value set H(col at

any fiequency co is mapped from the edges of r. Thus,
H(r) is Hurwitz invariant iff all the edges of H(r) are
Hurwitz invariant VVV

For non-overlapping intervals of Xi, however, the 450
line segments are indeed necessary. To show this, we
prvide the following simple example. For XI, X2s [-30, 0]

h(sA,X2=1+0.1(O.8s2+0.8s+4.4)(s+X1l(s+X2)h(s,Xl,X2)=l+ s4+10s3+11.8s2+11.8s+0.2
In this example, there are four edges with the associated
transfr functions given by: h(sOX2)XX2e [-30, 0];h(s,-30,
X2), X25 [-30, 0]; h(s, XI, 0), Xls [-30,0]; and h(s,Xj,-30),
Xis [-30, 0]. There is only one 450 line segment given by
h(s, X,X), X [-30, 0]. It is straightforward to verify that
the transfer functions on all the edges are Hurwitz but some
on the 450 line segment are not For example at X=-15,
h(s,XAX) has the unstable roots 0.2424 ± 1.8914 j.

4. COMPLEX ZERO-POLE-GAIN VARIATIONS
In this section (1.6) is treated. Assume first that ao).

It becomes clear from Lemma 2.2 that at any to, aH(co,Ir)
comes from boundaries of r on which one and only one
parameter from each factor of (1.6) does not take an extme
value. Consider the interior of any such boundary B: on it
certain aj,ie Va and bi, is Vb take extreme values. Then,
with y on this boundary, for some (60),
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hOco,0-f)l+Nw)f(X+iG))ki
1=l

fltI(bj-o9+jcoai)kj) (17J(ai++@ $bkl )) (d+jO)
iNa

As ai,ie Va and bi, ise fb take fixed extreme values on B,
we have precisely the situation of Lemma 2.1, with the
following definitions in vogue: Q=B,

(qi, ai, pi) = (i, 0, co); V is (1. ) (4.1)
(qi, axi, -) =(bh,-2()wajvis Va (4.2)

(qi, cxi, Pi) = (aj, 0, ,2-bi); V in 'b (4.3)
co

(qn,cXnj3n)= (d,O,0). (4.4)
Notice in (4.14.4), all the ai ,pi are fixed real numbers for
a fixed co. Thus Lemma 2.1, states that the critical subset of
B consists of its edges (which comprise some of the edges
of n) and the projection of the affine line in (2.3) on all the
boundaries of B, subject to (b-i and ii)in the Lemma.

Thus, a typical critical segment is the intersection of
the following line with r

4 = -a(w)+ pj(o); - <p<c, (4.5)
where the elements of I are certin Xi, ai and bi; all
paameters not in ' are fixed at exteme values; the respective
elements of cx(Xo) and P(w) are corresponding ai,i in
(4.14.3); d can never be an element of , neither can ai if ti
is an element or if bi = o ((i) ofLemma 2.1 holds) nor bjif
ai is an element or if ai = 0. Further ifT is the set indexing
the qi of (4.14.3) not in 1 then (2.4) does not hold. Then
the following Theorem follows.
Theorem 4.1: For, the (1.6), EkH(cow)) at o) is mapped
frm the edges of F and the internal segments characteized
above. At oH), d(H(co,r)) is mapped from the edges of r
alone. VVV

The segments on which only Xi vary and all ai and bh
are fixed at extreme values are frequency invariant and are in
fact 450 lines of section 3. The set ofall such segments will
be called LI. Segments on which some of the ai or hi vary
are, however, frequency dependent but happen to be
contained entmly in certin 2-dimensional planes and 3-
dimensional boxes which are frequency independent. To
explain this we will consider thre types of frequency
dependent segments.
Type 1: No ai is a variable. Consider a representative
segment of this type obeying (4.5). We will show that for all
frequencies (4.5) reduces to

V = pICI + P2C2 ; V [Pv,P2] e R2 (4.6)
with the Cifrequency independent. Equation (4.6) is a plane
and its intersection with r describes the critical set which
contains the relevant segment at all frequencies. For, as on
this segment all ai are fixed at extreme values, and not
elements of t, the variable X1, bi obey

X = 0 + pco (4.7)
bi = -2 +p(oai (4.8)

TIhen with Cl and C2 obviously defined (4.5) reduces to
4 = o2Ci + PCOC2 (4.9)

whence the description in (4.6) with P1= o2 and p2=pcO.

Type 2: No bi is a variable. All bi are fixed and the
varable X and ai obey (4.7) and

1a.= O + pe)(1- -) (4.10)
T0v

Then with the vectors C1 obviously defined, (4.5) becomes

(4.11)I =PaiCl +P-C2
0)

whence (4.6) obtains with Pj=p)o and p2=p/co.
Type 3: For some i, ai is a variable for some
others bi is a variable. In this case for the elements in I
corresponding to the variables Xi, bi and ai obey (4.8,4.9,
4.11) respectively. Note in the latter two, the ai or bi
appearing in the right hand side are fixed for the segment in
question. Then with the C1 obviously defined, (4.5)
reduces to

4 =-2Ci +pcC2z+ P C3-c3 (4.12)

Notice, now this segment is confined at all frequencies on
the intersection of the following three dimensional box
with r.
t = PICi + P2C2 + p3C3, V [P1,P2.P3] E R3. (4.13)
The sets ofplanes and boxes characterized above will be
called L2 and L3 respectively. The zero exclusion principle
dten i eiate yields the following Thorm
Theorem 4.1: With L1,L2 and L3 defined as above, the
family (1.6) is Hurwitz invariant iff all the edges, the
intemal segments in LI, the planes in L2 and the boxes in
L3 are Hurwitz invarant VVV

As in section 3 many of these segments, planes and
boxes will be empty.

5. THE GENERAL CASE
In Sections 5.1we show that for the general family

(1.3), the boundary of the value set can be mapped from
certain critical line segments in r, though these vary with
frequency and are not necessarily confined to 2 and 3-
dimensional spaces. In section 5.2 we show that (1.3) is
Hurwitz invariant iff certain scalar functions in one variable
avoid the negative real axis.
5.1 Value Set Boundaries: From Lemma 2.2 and
subsequent discussion, we must show that the critical
subsets of Bj are certain line segments denoted Lij(co). The
use of Lemma 2.1 becomes possible because on each Bj
oly one member of each mi varies. To elaborate, consider

h6w,y)=[(oo2-2)yj I+(jl+1)YI2J[(-(2+1+j@)tl+jfY22](5 1)
Consider, the boundary B1 given by y12--'S(-,12)=1 and

2222=l. At any fixed o, o2*2, Vy B1, h(jco,y) equals

(Xs2-2){1-co2+jo$)[y1j+ + ___ 21+ (l-co2)
(wZ2-2) (o92-2) (1-o9)2+c24-

(1@o9)2+m2
and has the form demanded byLemma 2.1 with yl I andy2x
identified with ql and q2; h(jo,y) with f(q) and B1 with Q.
Thus for this choice of B1 the intemal segmnts for B1 are
the prjections of the following line
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[-ylj,-r2]T =o[-I >-1 T

+§p [ X).T
(02) ((1-2)

on all the boundaries of B1 of dimension 2 orme Of
course in this case there is only one such boundary namely
B1itself. Further, at w=O or 1, 12r0 and the segment is not
critical. At w2=2, h(joy) is independent of ylI- At this
frequency one can thus assign an exteme value to Yi I
withu altering hjo,y). The resulting yis on an edge of B1.
Thus, at 02-2, the number of critical segements is reduced
Thes fl are formalized im the fblowing Theorm and the
precise deaiption of critcal segments that follows the

Theorem 5.1: The subset 1"*(w) obeys
Y 4 Jn*o) (5.2)

j=1 i=1
where vj(0) S 3n - 21 and L1-j(co) ae the edges of r and

open intemal line segmentsVVV
The lines LiI(): Consd a typical B on which for each

onlyoney. isnotfixedatan ext=r valueandisthus

a variabk. Express

p>$jw) + # PicOO) = Yi'' fiI(w) + fi2(0) (5.3)

with obvious definons of fii(w) and fd(o). Consier the
folowing two cases.

Case I: fil(c)*O, Vie{1,...,. We apply Lemma
2.1. To make the notation consistent, define q =

q11.,q11]T= 01.....,vb ]T. Observe, with

n
(A2(O),al(O$,P(w)) ='g2t9)1 (fil(COA

Re[fi2(a$fAl*(0o] Im[fi2(o)fil* (-)]
lfil(0#2 lfuI(w)P

hw,y) hasprecisely the form of f(q) inLemma 2.1 for all y
e B . It follows that the critical segments comprise the
edges of B and the open projections of the line Lf of Lenma
2.1 on certain boundaries of B. Consider a boundary of B
and ' such that in the interior of this boundary, only 'iri
Vie IF, are not fixed at extreme values. Then the projection
of Lfon this boumdry is critical only if (2.4) and (5.4)
below hold.

In[fg2(A)fi*(w)] * 0, Vii T (5.4)
Under these conditions, for each (j, i* IF define
(ui((),vi((@)) :=(Relfi2(c ))fil*(co)]jm[fi2((@)fil*((@)] );(5.5)
U(co) as the vector of ui(o), ViiT; V(w) similly, and the
matrix F(w) = diag(1fif(f)12, Vig 'P}. Then a typical LI$co)
is the open segment
F(w)Y=-U(O) + p V(w), 91(0) < p <J22(w) (5.6)
where the ti(o) are given as follows. Consider the
quantities

Ifil(o)12 Itj+ Relfi2(O)fil*(Q)1

W fi2(O)fil*(co)l
Ifil(C)N2 l], + Re[fi2(w>)fil*(co)]

(5.7)

(5.8)
Im[fi2(o$fil*(w)I

For each iW'? call the smalle of these to be xi(w) and the
larger yi(co) . Then
(91(00,9l2(0)} = ( SMPiz [iNOW] . infi* [Yi(°O)l ).(5.9)
If fI(w) ./Z4() the open segmer is empty.
Case HT: fil(&)=O, Vie S where S is a subset of

{1,...,n). In this case the value-set is independent of T(I
, Vie S. Thus these pa ters can be assigned extreme
values without affecidng the value set A slight vartion of
the preceding argument shows that a typical inzeral cridcal

segment is as above with the added rsdction that LI

nota varitdVk fil(O) = .

S.2 Hurwitz invariance:
Consider the segment of (5.4-5.9). At certain

fqueni itmy m exist or may no longer be
critical. Such siutoswill be calleddeeeais 'lbne
a four types of fr cies at which this es ree of
dtese have alreay been coved Le. (a) for some 4
fii(w) =0 (b) whe WJf()fiI*(o)]g) or (c) whe .t(e)
. j2(Co). For the foth si n coid

h(jw,y) = gl(jw) +G2(o) fi (o(s) +i Pi(s))i, (5.10)
it IF

(all the factors of (1.3),devoid of variables for the segment
being considered are subsum in the fixed function G2(o)).
Suppose, G(2(r)=O. At such a frequency h(jo,) = gl(jo),
irrespectiveof the dwicm of zVi In;pin r
of these vector could all take ex values without
altering the value of h(jo). Thus the value se of the tire
segment is coved by the image of a corner and at these
fequencies, this segment is not critical. So the fourth
degeneracy repesents fequencies at which G2(0)=0. The
set of f e representng degeneraieswi be called LI

Then one can assoiat with each LLj(co) a scalar
continuous, piecewise differentiable function tij(w) having
the propertes: (i) for the Q associad with agiven Lw,
jj(wO)=0, Vw Q; (ii) at al oe theimage ofLjjq)in

the value set space is zero exclusive, iff tij(w) i (-°°,0).
With the IW(O) so defined the folowing obtains
Theorem 5.2: The set HI) is Hurwitz invariant if (i) all
the edges of this set are Hurwitz invariant, and (ii) V
je (1 l..,v), ie l.v ,real c andEij(w) as above

ti(Cwe (-0o,0). VV

Though these functions are easy to construct their
formal characterization is notationally involved and can be
found in [15]. Here, we outline the essentials of their
construction.

Consider a segment Lqj(o) with just two variables, yjj
and 121 (i.e. T does not include I and 2). Using (5.10) and
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(5.3), for any amQl and yeLij(co)
hO®,y)=gjOw)+

2 Ifi0fw)I2 Y -ii fil(w)fn*(w) )ki, (5.11)

i=1 fi*(W)

whence, from (5.5), (5.6), for pe (gi(co),g2(w))

hGco,y) =gjoco) +G2()I)AIm[fI2(o$fil*(W)]
i=1 fui*(w0)

Thus, how,y)*O for al we Q and y on this segment 4 the
following function avoids ( PL1(w), R2(w))

(~I(JW) 2 fii*(w) )ki)-
G2(0)) i=-l Im ffi2(0))fil*(CO)]

(5.12)

where M = kl + k2. Notice that criticality of this segment
ensures that Mg) (see (5.5)).

Observe the foUowing easily estblshed fact. For rals
X,6102

26¢ (Oi&z2) (x-Oz)(9oz-8) E2 (-s).

Calling the function in the left side of (5.12) ,(w), we thus
have,that h(o).O for all WD iff

(l(W)- P.1(W)) (P2(W) - P.1(W)) e (-. 0) (5.13)
This function is continuous,piecwise differentiable in ow Q.
However for w ) it is undefinediTo obtain the final jj(w)
with the required properties, a further set of
transformations,described in [15] are availed of. Note for
each ti%(w) one should carry M functions, one for each Mti
derivative.

6. CONCLUSIONS
In this paper, we have considered both the verification

of Hurwitz invariance and the construction of value sets for
(1.3). The value set boundary of the characteristic funcdn at
each fixed frequency is shown to be determined by the odges
and some fiquency dependent intenal line segmntsof r. A
contnus frequency sweeping function is given such that
Hurwitz invariance of (1.3) is equivalent to this function's
avoidance of the negative real axis. For the special case of
real zero-pole-gain varations, the critical line segments a all
frequency independent, whence the determination of the
robust stability is even simpler. For the case of complex
zero-pole-gain variations, the critical intemal lines are either
frequency independent or vary in certain (2-dimensional)
planes or (3-dimensional) boxes.
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