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ROBUST STABILITY UNDER A CLASS OF NONLINEAR PARAMETRIC
PERTURBATIONS

Minyue Fu*, Soura Dasgupta**, Vincent Blondel*

Abstract
This paper considers the Hurwitz invariance of LTI systems
under a class of nonlinear parametric perturbations. The
setting is one of determining the closed loop stability of
systems whose open loop transfer functions consist of
powers, products and ratios of polytopes of polynomials.
We give several results on the construction of value sets and
Hurwitz invariance checking, for this general setting and
important special cases.
1. INTRODUCTION

The following problem is of interest in the verification
of robust stability of linear time-invariant systems.
Determine as simply as possible if all members of a family
of transfer functions, parameterized by a real vector v, have
roots contained entirely in the open left half plane (i.e., the
family is Hurwitz invariant), when ¥ takes values from a
given set. Such a family, H(T'), can be described by

H@):=(h(s,y): Ye I} (1.1
where T is a connected set in RN, and for each ye T,
h(s,y) is a transfer function. Generally, the transfer function

coefficients depend nonlinearly on 7.

One approach to this problem is to treat it in its
broadest generality, as is done in {1]. Alternatively, one can
consider particular izations reflecting specific forms
of structural information supplied by the modelling process.
This allows formulation of stability verification schemes
which are computationally less demanding. Examples of this
approach include [2], which considers a family of
polynomials admitting independent variations in the
coefficients; [3-5], which account for affinely dependent
variations; and [6-8], which consider multilinear dependence
(see [9,10] for surveys). Each of [2-8) exploits the
underlying structural information and demonstrates
consequent simplifications.

This paper adopts the second approach by focussing
on a special class of nonlinear parametric dependence. To
keep the presentation simple, only Hurwitz invariance is
investigated, though the results do in fact generalize to more
general stability regions.

In (1.1), assume I' to be a hyperrectangle (axis parallel
box) and partition the parameter vector ¥ as

Y=(0] 13T (1.2)

where v;e T, i=1,2,...,n; with each I'j an axis parallel
box in RNi. Then the function h(s, ¥ ),y € T, under
consideration is given as
n
(s, ¥) = £1(5) + £205) TI(pios) + ¥ iT Pi(s))k;, (1.3)

where gi(s) and ga(s) are real rational functions in s,
pio(s) are real scalar polynomials, Pj(s) are real vector
polynomials with dimension Nj, and k; are fixed nonzero
integers allowed to be positive and negative. The quantities

£i(s), pio(s), Pi(s), n, Nj, kj and I' are assumed known. The
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j-th element of 7y (resp. Pj(s)) is denoted by 7 jj (resp.

Pjj(s)). Since T is an axis parallel box, each ¥ ; varies
independently of the others within an interval

- +

Thus, each factor (pio(s) + v ;T Pi(s)) forms a polytope of
polynomials as y; varies in I'j . Notice, in the case where
the exponents k; are restricted to be +1 and/or -1, the
stability verification of (1.3) is equivalent to that of a
subclass of the multilinear probiem.

One motivation for considering the function (1.3) is
that in many cases a plant consists of a cascade of
subsystems. Separate information may be available for each
and their physical independence may lead to independent
parameter variations. Further, one may wish to verify if
each member of a family of controllers, parameterized in a
manner similar to the component subsystems, stabilizes the
entire set of plants. It is clear that such a stability verification
reduces to the problem we consider.

To further illustrate the scope of (1.3), two more
examples are considered. The first example is of a plant
with independent real zero, pole and gain variations and is as

follows:
h(s) = d ho(s) (s+A1)%(s+A2)
(s+A3)(s+Aa)(s+As5)3

Here ho(s) is a fixed rational function and d and A; vary
independently within given bounds. The objective is to
verify if a given compensator c(s) stabilizes the plant for all
possible parameter variations. Then, the characteristic
function of the closed loop system fits the function in (1.3).
To allow for complex zero and pole variations, one may
include factors of the form (s2+a;s+b;)k;, with a; and b; also
varying independently in intervals. With some abuse of
terminology, the version of (1.3) given in (1.6) below will
be referred to as the complex zero-pole-gain variation

problem;

T n-1

h(s,7)=1+dc(s) [Ts+aki ] (s2+ajs+by¥; (1.6)

1= j=r+l
with 7 := (A1 A2 ..Ag ag41 Bryy ... 3p-) bp.y d)T. In this
paper, the following assumptions are made.
Assumption 1.1 The function h(s, Y ) has no unstable
zero-pole cancellation for any yeT.
Assumption 1.2 Continuous variations of y result in
continuous changes in the roots of h(s,y).
Assumption 1.3: The function h(s,y) has no purely
imaginary poles for any yeI'. \A'A"
21: :eed for these assumptions is explained in section 1.1
1.1 Approach and Main Results: As in [7,8,11,12],

we follow a powerful approach 1o robust stability analysis --
the so-called value set approach. For the family of rational
functions (1.1), the value set, H(w, ), at a frequency o is
defined as

H(w, I := {h(jo, v): Y€ T}. (1.8)
This method exploits the Zero Exclusion Principle (8],

which under assumptions (1.1,1.2), states that the following
conditions are necessary and sufficient for the Hurwitz

(1.5)



invariance of H(I'"): (i) at least one member of H(I') is
Hurwitz; and (ii) 0 ¢ H(w, I'), for all o € R. Assumption

(1.3) ensures that at all finite frequencies H(w, I') is a
bounded set. In fact further refinements to (ii) are

possible.As h(s,y) is a real function, a slight variation of an
argument in [13] shows that (ii) above can be simplified to
be(ii-a) 0 ¢ o(H(w, I)), V ® € R, where d denotes the
boundary.

Besides aiding robust stability analysis, value sets
can be regarded as a generalized Nyquist plot [14].
Consequently, they can be effectively employed in designing
controllers which meet performance considerations that go
beyond mere closed loop stabilization. Accordingly, in this
paper we consider both the determination of value sets for
(1.3) as well as its Hurwitz invariance. Throughout, to
avoid trivialities, we will always assume that at least one

member of H(I") is Hurwitz. In particular, the following

results are derived.

(1) We show that for the general family (1.3), at each
fixed frequency ©, each member of dH(w,I) has preimages
in certain line segments in the parameter set I'. These critical
line segments are simply characterized. Some of them are the
edges of I and the rest, frequency dependent intenal lines.
The mathematical descriptions of these line segments are
independent of the exponents k; (see (1.3)) although certain
combinations of k; help to drastically reduce their number.

(2) The ability to link the value set boundary to (one
dimensional) line segments considerably simplifies the
verification of Hurwitz invariance. In particular, every line
segment can be represented in terms of a single real variable.
This fact is exploited to show that Hurwitz invariance (1.3)
is equivalent to checking a finite number of continuous and
piecewise differentiable scalar functions in @ for avoidance
of the negative real axis. Generally, each such function can
be linked to one particular value set boundary defining
frequency dependent line segment mentioned in (1).

(3) For the special case of real zero-pole-gain
varations, we show that the critical segments are frequency

independent, and are in fact the edges of I" plus certain
simply constructable 45° line segments in the parameter

space. Consequently, the Hurwitz invariance of H(T') is
guaranteed by that of these frequency independent lines
segments (including the edges). We also show via an

example that such 45° line segments are in fact necessary for
determining Hurwitz invariance, in that despite the
Hurwitzness of the edges some of these 450 segments may
have non-Hurwitz members.

(4) For the complex zero-pole-gain variation case the
critical lines determining the value set boundaries are either
frequency independent or as frequency varies, vary on
certain (2-dimensional) planes and certain (3-dimensional)
boxes in I'. To check for robust Hurwitzness it

then suffices to check these frequency independent lines,
planes and boxes.

With respect to (1)-(4), we argue that, often many of
the critical lines, planes and boxes may not pass through the
parameter set I". For example, in (3), this occurs when the
real poles and zeros vary in non-overlapping intervals. In
such cases only the edges of I' need be considered. Section
2 presents preliminaries; (3) and (4) are considered in
sections 3 and 4 respectively. Section 5 addresses (1) and
(2) for the general family (1.3). Detailed proofs are in [15].

2. PRELIMINARIES
In this section, we present two preliminary Lemmas
which help prove the main results of this paper. Each of
these concerns the extraction of a critical subset of the
parameter box whose image forms the boundary of the value
set.
In Lemma 2.1 we consider the hyperrectangle

Q:=(9=(q1 92 ..qm)T: q; € gi<q], i=1,2,..m} 2.1)
in RM and a complex function f(:): Q — C:

m
f(q) =A; + Ay igl (qi +o )K; 2.2)

Here, the A; are complex constants and ¢ are real constants.
In the sequel the set f{(Q) will denote f(Q) := { f(q) : ge Q}
The following assumption is required.

Assumption 2.1 If B; =0 and k; <0 for some i, then
the associated interval [q;+ ; , q; + @] does not contain

zero; i.e. f(Q) is a bounded set. \A'A"/
It is our objective to extract a subset of Q which

determines the boundary of f(Q). It turns out that the

following affine line in RM plays a crucial role in this task:

Le={@1-qm)T=p[B1..Bm]T-[a1..0m]T:
-eo<p<oo})  (2.3)

In the Lemma the term open projection, defined below, is
used. Consider a k-dimensional boundary Qg of Q. Note
that there are (m-k) elements of q fixed at extreme values on
this boundary. Modify L by fixing these (m-k) parameters
in (q1 q2...qm)Tto the extreme values as they assume in

. Then the intersection of the interior of Qg and this
modified affine line is called the open projection of L on
Q. Forexample, ifm=3, Q={0,2]x[0,4]x[0,5]and
Le= {(q1,92,99)T=p(L, 1, 1]T- [0, 1, 1JT: - 0 < p < 00},
then the projection of Lron Qs {(q1, q2,q3)T=p(1, 1, T
-0, 1, 11T: 1 < p < 2}. Equally, the projection on the face
deﬁned by ql = 2 is {(Ql» CI2: q3)T=p[0a 1’ I]T - ['2’ 1: I]T:
l<p <5}

In the sequel we will use certain short hand
expressions whose meaning we now make clear. We say
that "(f(Q)) is mapped from a subset Q* of Q" if every
point on 9(f(Q)) has at least one preimage in Q*. Sucha
set Q* will be called critical. We have the following
Lemma.

Lemma 2.1: Consider the hyperrectangle Q in R™ given
in (2.1) and the complex function f(-): Q = C in (2.2).
Then under Assumption 2.1, there exists a collection of line
segments in Q from which 0(f(Q)) is mapped. These line
segments consist of (a) all the edges of Q and (b) the open
projections of the affine line Lf in (2.3) on all k-
dimensional boundaries Qx of Q, 2< k < m, except those for
which the following condition holds: let ¥ be the subset of
{1,2,...,m} associated with Qx such that qg is set at an
extreme value for all g=(q1, q2...., qm)T€ Qx, 6€'¥. Then,
either

(i) Bi =0, for some ie ¥; or

@ X ki=0

ie¥

Remark 2.1: in order to illustrate this Lemma, especially
conditions (b-i) and (b-ii), we consider the following
example:

2.4)



- gi+1+j)
=@+ 2p@+ -

Then projections on the interior of Q and the faces q1=q'1

or q) and the faces qz = q;, or q; are excluded by the

restriction (i) above; likewise the projections on the faces at
which q3 takes extreme values are excluded by (ii). Thus
for this example the edges comprise the critical set.

Remark 2.3: The exponents k; do not affect the equations
of the internal segments. Certain combinations of ki,
however, may reduce the number of segments which are
critical ((b-ii)).

Remark 2.4: It can be shown that, for each 1< k < m,
there are C:kn 2m-k k_dimensional boundaries. Therefore,

the total number of critical segements which determine the
m
boundary of (Q) is at most k):lc'tjlzm-k=3m - 2m. From

Remark 2.1, many of these are unnecessary.
To understand the significance of Lemma 2.1 to the
problem at hand, note that our objective is to extract a set

I'*(w) from I', such that at a given @, the boundary of the
value set of (1.3) H(o,I), is mapped from I'*(w). In this
context, the following Lemma is shown in [15].
Lemma 2.2: At any frequency, the I'*(w) defined above,
lies in the union of certain n-dimensional boundaries of I" .
On each of these boundaries all but one element of each 14
(see (1.3)), are fixed at their extreme values. vvv
These boundaries will be denoted Bj, je {1....,v},
where v, the total number of these boundaries is

n
v=2Na 1 N;,
i=1

To find I'*(w), one simply needs to find critical
subsets of each Bj, such that the boundary of the image of
B; in the value set space is mapped from these subsets.
Together, these subsets then define I'*(w). Using Lemma
2.1 we will identify these critical subsets of Bj, with certain
line segments which in turn are the projection of some affine
lines on the boundaries of B;.

3. REAL ZERO-POLE-GAIN-VARIATIONS

Consider,

h(s,y) = 1+ d ho()(s+AK1 (s+A2)Ks. . (s+hn-1)Kn-1)

3.1)
where
Y =R}z . Ap DT, (3.2)
ho(s) is a fixed rational function, k; # O are fixed integers
which can be either positive or negative, and d and A;
vary independently within given bounds, i.e.,
d<sds<d ;A srsAf, i=12,.n-1 (3.3

and T =[A}, A]]x..x[A;

oo1» A Jxld’, d¥]. Assumption 1.3
implies that if a given kj is negative, the corresponding
interval of A cannot include zero. At each fixed frequency o,
the function h(j, ¥) has the same form as the function f(q)
in (2.2) with obvious identifications with the Aj, a; and B;.
Thus, Lemma 2.1 applies. The critical line L¢ given in (2.3)

2544

Li={A=plo®..w0T: -0 <p <o), (3.4)
For @0, renaming p to be pa, we have
Li={A=p[11..10JT: o<p<eo}. (3.5

This line must be projected to certain boundaries of I".

Observe B=0. Thus from (b-i) of Lemma 2.1, these
boundaries are such that on each of them the gain d must
take extreme values. Consider any such boundary, in the

interior of which Aj,i e ¥, take extreme values. From
Lemma 2.1, the projection of Lt on this boundary is critical
only if .(2.4) does not hold. Under this condition, the critical
projection obeys

Ai=kj, Vije V. (3.6)
with d and the other A; fixed at extreme values. At ©=0, all

Bi=0. Then, Lemma 2.1 ensures that dH(0,I) is mapped
from the edges. Thus we have the following Theorem.

Theorem 3.1: Consider the parameter box I'in R? given
in (3.4) and the family (3.1). Then, at each ® the dH(®w,I")
can be mapped from certain line segments in I’, namely the
edges of I and the projections given in (3.6). Furthermore,
the family of functions H(I') is Hurwitz invariant iff h(s,y) is
Hurwitz invariant on these line segmeats. VVV

A case with special interest is when all the A; vary in
intervals that do not overlap. Then the projections are empty.

Thus, Corollary 3.1, below, follows.
Corollary 3.1 (An Edge Theorem): Consider the

parameter box I in (3.4) and the family of function H(T') in
the form of (3.1). Suppose (l;, l'i")n(lg, l;') are empty for

all 1S i <j < n. Then the boundary of the value set H(w,I') at
any frequency o is mapped from the edges of I'. Thus,
H(I') is Hurwitz invariant iff all the edges of H(T') are
Hurwitz invariant. \A'A"/
For non-overlapping intervals of Aj, however, the 45°
line segments arc indeed necessary. To show this, we
provide the foliowing simple example. For A1, A2e [-30, 0]
h(sApA2)= 11__0.l(0.8s2-+-0.8s+4.4)(s+11)(s+12)'

s4+10s3+11.852+11.85+0.2
In this example, there are four edges with the associated

transfer functions given by: h(s,0,A2),A2€ [-30, 0);h(s,-30,
A2), A2e [-30, 01 ; h(s, Aj, 0), A1€{-30,0]; and h(s,A1,-30),
A1€[-30, 0). There is only one 45° line segment given by
h(s, A, &), Ae[-30, 0]. It is straightforward to verify that
the transfer functions on all the edges are Hurwitz but some
on the 45° line segment are not. For example at A=-15,
h(s,A,A) has the unstable roots 0.2424 + 1.8914 j.

4, COMPLEX ZERO-POLE-GAIN VARIATIONS
In this section (1.6) is treated. Assume first that 0.
It becomes clear from Lemma 2.2 that at any ®, dH(w,I")

comes from boundaries of I" on which one and only one
parameter from each factor of (1.6) does not take an extreme
value. Consider the interior of any such boundary B: on it

certain aj,ie WY, and bj, ie yp take extreme values. Then,
with y on this boundary, for some &(j®),




T
haw,v)=1+60m)nlm+o+jm>ki
1=

. @2-b; .
( TIoo-w2oaki ) l I (00K, )) @40
€Va ieyy
As aj,ie ¥, and bj, i€ yp take fixed extreme values on B,
we have precisely the situation of Lemma 2.1, with the
following definitions in vogue: Q=B,

(@i, @i, B = A4, 0, @); V ie {1,....7) 4.1
(qi, @, Bi) = (bi, - @2, way); V i€ ya 4.2)
(ai, @i, Bi) = (a3, 0, “’—%); Vie yb @3)
(Qn,an’ﬁn)= (d,0,0). (44)

Notice in (4.1-4.4), all the a; ,B; are fixed real numbers for
a fixed . Thus Lemma 2.1, states that the critical subset of
B consists of its edges (which comprise some of the edges
of I) and the projection of the affine line in (2.3) on all the
boundaries of B, subject to (b-i and ii) in the Lemma.

Thus, a typical critical segment is the intersection of
the following line with "

4 =- () + pB(@); -0 <p <o, @.5)

where the clements of 9 are certain Aj, a; and b;; all
parameters not in 4§ are fixed at extreme values; the respective
elements of a(w) and B(w) are corresponding «; ,Bi in
(4.1-4.3); d can never be an element of §, neither can aj if b;
is an element or if b; = 2 ((i) of Lemma 2.1 holds) nor b; if
ajis an element or if a; = 0. Further if V' is the set indexing
the q; of (4.1-4.3) not in 4, then (2.4) does not hold. Then
the following Theorem follows.
Theorem 4.1: For, the (1.6), o(H(w,I')) at w0 is mapped
from the edges of I and the internal segments characterized
above. At 0=0, d(H(w,[)) is mapped from the edges of I'
alone. vvyv

The segments on which only A; vary and all a; and b;
are fixed at extreme values are frequency invariant and are in
fact 450 lines of section 3. The set of all such segments will
be called L;. Segments on which some of the a; or bj vary
are, however, frequency dependent but happen to be
contained entirely in certain 2-dimensional planes and 3-
dimensional boxes which are frequency independen:. To
explain this we will consider three types of frequency

dependent segments.
Type 1: No a; is a variable. Consider a representative

segment of this type obeying (4.5). We will show that for all
frequencies (4.5) reduces to

9= p1C1 +p2Ca: Vipp2le R2 (4.6)
with the C; frequency independent. Equation (4.6) is a plane
and its intersection with I" describes the critical set which
contains the relevant segment at all frequencies. For, as on
this segment all a; are fixed at extreme values, and not

elements of 9, the variable A;, bj obey
Ai=0+pa 4.7
b = -2 + pooa; “4.8)
Then with Cy and C3 obviously defined (4.5) reduces to
¥ =w2Cy +paCs (4.9)
whence the description in (4.6) with pj= 02 and p;=p®.

2545

Type 2: No bj is a variable. All b; are fixed and the
variable A; and aj obey (4.7) and

2 = 0+ pax1— %). (4.10)
Then with the vectors C; obviously defined, (4.5) becomes

4 =paCt + £, (4.11)
o

whence (4.6) obtains with p1=p® and p=p/@®.

Type 3: For somei, a; is a variable for some

others bj is a variable. In this case for the elements in 4

corresponding to the variables A;, b; and a; obey (4.8,4.9,
4.11) respectively. Note in the latter two, the a; or bj
appearing in the right hand side are fixed for the segment in
question. Then with the C; obviously defined, (4.5)
reduces to

4 = -02C1 + paCy + %C3

Notice, now this segment is confined at all frequencies on
the intersection of the following three dimensional box
with T".
4 =p1C1 +p2C2+p3Ca, V [p1.p2,p3] € RS, (4.13)
The sets of planes and boxes characterized above will be
called L3 and L3 respectively. The zero exclusion principle
then i i yields the following Theorem.
Theorem 4.1: With L;,L7 and L3 defined as above, the
family (1.6) is Hurwitz invariant iff all the edges, the
internal segments in L, the planes in L2 and the boxes in
L3 are Hurwitz invariant. \"AAY
As in section 3 many of these segments, planes and
boxes will be empty.

5. THE GENERAL CASE

In Sections 5.1we show that for the general family
(1.3), the boundary of the value set can be mapped from
certain critical line segments in I', though these vary with
frequency and are not necessarily confined to 2 and 3-
dimensional spaces. In section 5.2 we show that (1.3) is
Hurwitz invariant iff certain scalar functions in one variable
avoid the negative real axis.
5.1 Value Set Boundaries: From Lemma 2.2 and
subsequent discussion, we must show that the critical
subsets of Bj are certain line segments denoted Lij(w). The
use of Lemma 2.1 becomes possible because on each B;

only one member of each ¥; varies. To elaborate, consider
he)=[(@?-2y11+(o+ Dyi2)[(-0?+ 1+jo)y Hors)(5.1)
Consider, the boundary B given by ¥;9=%\S(-,12)=1 and

¥22=Yy7=1. At any fixed @, @%#2, Ve By, h(j,y) equals

(4.12)

22 Lo2es 1 jo ja1-w?)
(0*-2){ -0)2+J‘D}[‘{11+(m2_2)+(m2_2)][721+(1_ NI
w? J
(1-02)2+@?2

and has the form demanded by Lemma 2.1 with y;; and 1

identified w‘rith q1 and q2; h(jo,y) with f(q) and B; with Q.
Thus ft_)r thxs choice of B the internal segments for B are
the projections of the following line



1 w?
Myt =[- ) 1T
@2-2) (1-022+a?
ool @ o(1-0?) o
@22) ' (1-02240?

on all the boundaries of B of dimension 2 or more. Of
course in this case there is only one such boundary namely
B) itself. Further, at ©=0 or 1, B2=0 and the segment is not
critical. At @2=2, h(jw,y) is independent of y;1. At this
frequency one can thus assign an extreme value to 7)1
without altering h(je,y). The resulting v is on an edge of B;.
Thus, at @?=2, the number of critical segements is reduced.
These facts are formalized in the following Theorem and the
precise description of critical segments that follows the
theorem statement.

Theorem 5.1: The subset I'*(w) obeys

v vj(w)
[u U L@l T*w)
Fl #=1

where vj(®) < 32 - 27 and Ljj(®) are the edges of I and
some open internal line segments. VVV

The lines Ljj(w): Consider a typical B on which for each

i,onlyoneyio_ is not fixed at an extreme value and is thus
1
a variable. Express

Piole) + R Pij0) = 1. fir(®) + fiz(e)

5.2)

5.3)

with obvious definitions of fj1(®) and fi2(®). Consider the
following two cases.

Case I: f;1(@)#0, Vie {1,.....n}. We apply Lemma
2.1. To make the notation consistent, define q =

n
(8a(e),0:@).Bi@)) =(8260) 1 (£;y(@),

Reffp(0)fi1*(@)] Im{fia(w)fi1*(w)]
Ifi1 ()2 i1 ()2
h(jw,y) has precisely the form of f(q) in Lemma 2.1 for all Y

€ B . It follows that the critical segments comprise the

es of B and the open projections of the line L¢ of Lemma
;.dlgon certain boundaries of B. Consider a boundary of B

and ¥ such that in the interior of this boundary, only Yioi

Vig P, are not fixed at extreme values. Then the projection
of Lgon this boumdary is critical only if (2.4) and (5.4)
below hold.

Im[fip(w)f;1*(w)] 20, Vie'V
Under these conditions, for each G;, ie ¥ define
{ui(w),vi(w) }:={Re{fiz(@)fi1 *(@)],Im{fip(w)fi1*(@)] };(5.5)
U(w) as the vector of uj(w), Vie '¥; V(o) similarly; and the
matrix F(w) = diag(ifi) (w)12, Vie \P}. Then a typical Lifw)
is the open segment
Fl@=-U@) +p V@), Hi@)<p<{2(0) (5.6)
where the ULi(w) are given as follows. Consider the
quantities

(5.4)

2546

Ifi1 ()2 4+ Relfi(0)fir*(w)]

é.D
Imffiz2(w)fi1*(0)]
Ifia ()2 4] + Relfi(@)fir*(w)]
(5.8)
Im{fia(w)fij1 *(w)]
For each ie ¥ call the smaller of these to be xj(0) and the
larger yi(®) . Then

{H1(w),u2(w)} ={ supiew [xi(w)] , infie ¥ [yi(®)] }.(5.9)
If pi(®) 2 XA w)the open segment is empty .
Case II: fij1(0)=0, Vie S where S is a subset of

{1,....,n}. In this case the valoe set is independent of ¥ %

, Vie §. Thus thesc parameters can be assigned extreme
values without affecting the value set. A slight variation of
the preceding argument shows that a typical internal critical

segment is as above with the added restriction that XGi is

not a varigble if fij(®) =0.
5.2 Hurwitz invariance:

Consider the segment of (5.4-5.9). At certain
frequencies it may either cease w exist or may no longer be
critical. Such situations will be called degeneracies. There
are four types of frequencies at which this happens. Three of
these have already been covered; i.e. (a) when for some i,

fi1(w) =0; (b) when Im{fix(@)fi1*()]=0 or (c) when p1(®)
2 H2(w). For the fourth situation consider

hGoit = 1600 4G2@) 11 (R + YPenk, (5.10)
ie

(all the factors of (1.3),devoid of variables for the segment
being considered are subsumed in the fixed function G()).
Suppose, G2(@)=0. At such a frequency h(jw,Y) = g1(jw),
irrespective of the choice of % Vie '¥; in particular clements
of these vectors could all take extreme values without
altering the value of h(j,y). Thus the value set of the entire

segment is covered by the image of a corner and at these
frequencies, this segment is not critical. So the fourth

degeneracy represents frequencies at which G2(w)=0. The
set of frequencies representing degeneracies will be called Q.
Then one can associate with each Lijj(w) a scalar
continuous, piecewise differentiable function &;(w) having
the properties: (i) for the Q associated with a given Lic),
Eij(w)=0, Voe Q; (i) at all other @ the image of Lij(w) in
the value set space is zero exclusive, iff §;j(w) & (=0,0).
With the &;;(w) so defined the following obtains.
Theorem 5.2: The set HI) is Hurwitz invariant iff (i) all
the edges of this set are Hurwitz invariant , and (ii) V
je {L....,v} i€ {l,...vj}, real ® and §;j(w) as above
Eij(w) & (—~00,0). vyvyv
Though these functions are easy to construct their
formal characterization is notationally involved and can be

found in [15). Here, we outline the essentials of their
construction.

Consider a segment L;;(0) with just two variables, ¥11
and 2 (i.e. ¥ does not include 1 and 2). Using (5.10) and



(5.3), for any @e Q and e Ljj(w)
h(iwd)=g1(jco);
L 2 ., A
Gal) -n1 (!fu(m)l Y1+ fi(@)fir * (w)
1=

fi1*(w)

)ki, 5.11)

whence, from (5.5), (5.6), for pe (L1(w),12(®))

2 Im{fip(w)fir *@)] (p+i)

- — ) ki
hGw,y) =g1G@) +Gz(m)i£ll( f11*(@)

)
Thus, h(jo,y)#0 for all we Q and v on this segment ¢»> the
following function avoids ( jL(®) , H2(®))

(a2 fi ")
Go(wy i=1 Im [fiz()fi1*(w)]

M - j o (5.12)

where M = k; + ky. Notice that criticality of this segment

ensures that M0 (see (5.5)).
Observe the following easily established fact. For reals

7,01.02

(r-61)

Calling the function in the left side of (5.12) n(w), we thus
have,that h(jo,y)0 for all we Q iff
(M(e)- u2(w))

(M(w)- P1{w))
This function is continuous,piecwise differentiable in we Q.

However for we Q it is undefined.To obtain the final &)
with the required properties, a further set of
transformations,described in {15] are availed of. Note for

each Eij(m) one should carry M functions, one for each Mth

derivative.
6. CONCLUSIONS

In this paper, we have considered both the verification
of Hurwitz invariance and the construction of value sets for
(1.3). The value set boundary of the characteristic function at
each fixed frequency is shown to be determined by the edges
and some frequency dependent internal line segmentsof ™. A
continous frequency sweeping function is given such that
Hurwitz invariance of (1.3) is equivalent to this function's
avoidance of the negative real axis. For the special case of
real zero-pole-gain varations, the critical line segments are all
frequency independent, whence the determination of the
robust stability is even simpler. For the case of complex
zero-pole-gain variations, the critical internal lines are either
frequency independent or vary in certain (2-dimensional)
planes or (3-dimensional) boxes.
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