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Dynamic Decoupling of MIMO Systems: Linear Case

Peter W. Gibbens, Carla Schwartz and Minyue Fu

Abstract. The decoupling problem has received much attention in
past years. For systems which do not have a diagonal iteiractor, a
bicausa prm aio or staLic state feedback is insuScient for
decoupling. In this paper we characterise coditions under which a

systm can be made decouplable by a diagona dynamic precompen.
satio. More ificaly, we determine e ay ad sufficient con-
dition under which diagonal dynami precom tn sts which
achves a diagonal interactor.

1 Introduction

The has been much effort applied in solving the problem
of decoupling of multivariable systekm. Decoupling is usually
achieved by applying a precompensator to the plant, or by ap-
plyin a state feedback when the full state of the system is
available, see for example [1]-{6].

It is known that the decoupling of a multivariable linear sys-
tem is clonely related to the s-caled intractor matrix [7] (or
interactor for short) of the system, which srves a the generali-
sation of relative degree. For systems with a diagonal interactor,
decoupling can be achieved by using a icausal precompensator,
or by a sitaic state feedback [1]. For systems with a nondiago-
nal interactor, a nonbicausal prcompar or a dynamic state
feedback is required. Some previous works formulate dynamic
compensation using algebraic formulation, polynomial matriLx
factorizations, and noncausl differtial shme. These have
the disadvantage of being invlved and difficult to implement
and may not achieve decoupling with stability; see [6] for a
survey.
An alternative approach to decoupling is to study the fol-

lowing decouplability problem: given a general multivariable
linear system in input-output form, sarch for a 'minimal? di-
agonal precompensator D(1/s) of the form diag{s4 }, dj > 0,
such that tihe resulting system will have a diagonal interactor.
Once this precompensation is found, the resulting system can
be decoupled by using a bicausal precompensator or by a static
state feedback, as already mentioned. The advantage of using
diagonal precompensation is clear: a diagonal precompensator
consists only of a specified number of integrators attached to
each input to the system, and the compensation is independent
of the syslem parameter variations.
This paper is concerned with the decouplability problem

above, and provides a necemary and sufficient condition for the
extence of diagonal preompensation which achiev a diago-
nal interactor. More specifically, it is shown that the existence
of the diagonal compensation is characterised by the type of
singularity of certain constant matrices related to the system
transfer matrix. This result is simlar to that of [8]. However,
here we provide a clear derivation and a simple algorithm for
finding the diagonal precompensation.
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2 Preliminaries

We begin by giving some prlimiry definitin for a general
square rational transfer matrix T(s) : r -_ R; $6 C.
Definition 2.1 The relative degree of a row of a trmsfer ma-
tri i the maxmum of the difference betwen the degrees of the
desominator and numerator polynomials of each entry of that
row.
Definition 2.2 A transfer matrix T(s) is called bicausal if
T(s) is nonsingular (i.e., its determinant is nonzer for almost
all finite complex numbers s) and both T(s) and r1(s) are
proper (i.e., all entries of the matrices are proper).
The following definitions describe the concepts of generic and

nongeneric singularities of transfer matrices. These concepts are
also mentioned, but not precisey defined in [8].
Definition 2.3 A set of linearly dependent mw/column sectors
are called generically linearly dependent ifte linear dependenc
is independent of the specific values of the nxnzero elements of
the veciors. Otherwise, the vectors are called nongenerically
linerly dependent.
Remark 2.1: It iS easy to see from the definition above that
the linear dependence o aset of nongenerically linear dependent
vecto can be invalidated by slighty perturbing te values of
the nonzero elements in the vectors. The nwzter of vector
must exceed one in order to have nongeneric linear dependence.
Furthermore, a set of row (rap. column) vectors are generically
linearly dependent if and ony if either of the following cases
happens:

(i) there is a zero row (reap. colunm);

(i) there exists a subset of vectors such that by grouping
them as a matrix, the nurnber of nonzero columns (resp. rows)
in the matrix form a wr (rap. wide") submatrix.
Definition 2.4 A singular constani matrix is called nongener-
ically (rap. gencrically) singular if the ansguarity depends on
(rap. is independent of) the particular vIlne of thc nonzero cl-
ements, i.e., its rows/columns are nongenerically (resp. gener-
icully) linearly dependent.

As an illustration of these ideas, consider the following two
sinlar matrices.

I Qo

100o,
I1 I

11]1 (1)

The first mtrix is generically singular because the first two rows
are generically linearly dependent, whilst the second matrix is
nongenerically sigular because the second and third rows are

n ecay linearly dependent.
Definition 2527 Let T(s) beanmx m proper, sonsingular,
riiol trasfer matrix. Suppose there exists a diagonal matrix
4T(s) = diags), o0,1I< < m such at

B(s) = 4T(s)T(s) (2)

1195



i a bicausal matrix,then &(s) is called the digona er
(which must be unique) of T(s).

IL is shown in [1] that a system which ha a no-iagonal
intrctor cannot be decoupled by a bicaualp,
and consequently a dynamic compenstion is firs required to
achieve a diagonal interactor.

3 Main Results

Given a m x m nu r ransfe matrix T(s), we wh to
defie conditions under which te ei dia d

D(lfs)=diag(s-}, dia0, lSi<in (3)

which encs that T(s)D(I/s) ha diaof the

(s) = diau{s'j, I 20, 1:< i5 m (4)
I.e.

K(s) := V(s)T(s)D(1/s) (6)
is a bicual matrix.
Theorem 3.1 Gives a transfer matrix Ts), se
of ae foeowing two cases must occr and the amr m dly

(iQ Ter exists *g pir D(l/s) nd Jls) of th fOrns (3)ad
(4) respectvly such that

Ko = lrn {f(s,)T(s)D(1/s)) (6)

is n esgenricallv singur. In th cos thn does ne eid
any ether n pcolpester of the fjer (3) WAi wil
achieve a digenal interator.

(i) Th eist a D(1/s) nd l(s) of the ferm (3)
ad (4) r ctivy c tha Ko in (5) is l In is
case, the compensated system T(s)D(l/s) ha da l inta
terDs).
To aid this theOrem, the flwng alorithm is rquird,

which determnine (s) = diag{s") and D(1/s) = diag(C"}
such that KO is onsgular.
Algorithm 3.2 Initialize D(lf) = I, Le., d = 0, 1 C1i < m.

Step 1. Find fl(s) such tht every row of K(s) =
D(s)T(s)D(1/s) has zeo relative degree, and take Ko =
Uimrn,. K(s). The are thre pobiliti

1. Ko is nongenerically singular: No diagal COmpensatr
exists which will give a diagonal interactor.

2. Ko is nonsingular: D(1/s) is a diagonal precnpA
for T(s), and f(s) is the amocated dinal iteract.

3. Ko is generically singular: Proceed to Step 2. (Note tat
fl(s) guarante that Ko ha no zero rov).

Step 2. Extract the maxinum set i of row for which th
nonzero column form a tall matrix. Denote the aet oftbA
nonsero columns by j, and the set of remainng columns by jt
for which all elemets in the rows in st i are zero. Then deter-
mine 'y, the mininwm relative degree of any elment coataimd
int e set i of rows and the t jlo clumm ofK(s). Than
or all IE j, increment di by y. Return to step 1.
The algorithm is complete when either cm 1 or 2 is achied.

Proot No provided in the Proceings.
Example To illurate the algorithm, we consider

T(s)= 4fit (7)

Initialy kl D(I/s) = I, i.e., di = d4 = d3 =0.
Iteratira: Toensr that every rowatK(s) haszero relative
degre, Step I gives 4 = 1, 42 = 2,432 and

F. ~~1 9
A 1 0 °1

K(s) = I1 1 1I with K =[1 1 1ii. (8)

Note that K is gnerically singular. Applying Stp 2 to K(s),
we find the set i = (1,3), that is row lad 3ofKa are linearly
dependet. We also find j = (1) and accordingly jL = (2,3).
The mininmm relative degree of any eemet of K(s) whih
beonag to both ets i ad jl isy7= 2. For all ej we chooe
di d+z, the di =2d2=0 and 43=0.
Iteration 2: We now return to Step 1 and forml a new
K(s) wi our new D(1/s) by c o 21 = 3,i4 = 2 and
d3 = 4:-

K(s) 1] with Ko=[0 I 1 (9)
[1;9 ] [ 1 1 °

K o sin the new ft(s) is the diagona i actor
for the precmnpensated system T(s)D(1/s).
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