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Dynamic Decoupling of MIMO Systems: Linear Case

Peter W. Gibbens,

Abstract. The decoupling problem has received much attention in
past years. For systems which do not have a diagonal interactor, a
bicausal precompensation or static state feedback is insufficieat for
decoupling. In this paper we characterise conditions under which a
system can be made decouplable by a diagonal dynamic precompen-
sation. More specifically, we determine necessary aad sufficient con-
ditions under which diagonal dynamic precompensation exists which
achieves a diagonal interactor.

1 Introduction

There has been much effort applied in solving the problem
of decoupling of multivariable systems. Decoupling is usually
achieved by applying a precompensator to the plant, or by ap-
plying a state feedback when the full state of the system is
available, see for example [1]-{6).

It is known that the decoupling of a multivariable linear sys-
tem is closely related to the so-called interactor matrix [7] (or
interactor for short) of the system, which serves as the generali-
sation ol relative degree. For systems with a diagonal interactor,
decoupling can be achieved by using a bicausal precompensator,
or by a stalic state feedback [1]. For systems with a nondiago-
nal interactor, a nonbicausal precompensator or a dynamic state
feedback is required. Some previous works formulate dynamic
compensation using algebraic formulations, polynomial matrix
factorizations, and noncausal differential schemes. These have
the disadvantage of being involved and difficult to implement
and may not achieve decoupling with stability; see [6] for a
survey.

An alternative approach to decoupling is to study the fol-
lowing decouplability problem: given a general multivariable
linear system in input-output form, search for a “minimal” di-
agonal precompensator D(1/s) of the form diag{s~%}, d; > 0,
such that the resulting system will have a diagonal interactor.
Once this precompensation is found, the resulting system can
be decoupled by using a bicausal precompensator or by a static
state feedback, as already mentioned. The advantage of using
diagonal precompensation is clear: a diagonal precompensator
consists only of a specified number of integrators attached to
each input to the system, and the compensation is independent
of the system parameter variations.

This paper is concerned with the decouplability problem
above, and provides a necessary and sufficient condition for the
existence of diagonal precompensation which achieves a diago-
nal interactor. More specifically, it is shown that the existence
of the diagonal compensation is characterised by the type of
singularity of certain constant matrices related to the system
transfer matrix. This result is similar to that of [8]. However,
here we provide a clear derivation and a simple algorithm for
finding the diagonal precompensation.

*The first and third authors are with the Depart t of Electrical and
Computer Engineering, University of Newcastle, NS.W., Australia, and
the second author is with the Department of Electrical and Computer
Engineering, University of Vermont, Vermont, U.S.A. The authors wish to
thank Professor G. C. Goodwin for his inspiration and support.

Carla Schwartz and Minyue Fu *®

2 Preliminaries

We begin by giving some preliminary definitions for a general
square rational transfer matrix T'(s) : R™ — R™;s€C.
Definition 2.1 Thke relative degree of a row of a trensfer ma-
triz is the mazimam of the difference beiween the degrees of the
denominalor and numerator polynomials of each entry of that
row.

Definition 2.2 A transfer mairiz T(s) is cslled bicausal if
T(s) is nonsingular (i.e., its delerminant is nonzero for almost
ell finite complezr numbers s) and both T(s) and T~'(s) are
proper (i.c., all entries of the mairices are proper).

The following definitions describe the concepts of generic and
nongeneric singularities of transfer matrices. These concepts are
also mentioned, but not precisely defined in [8].

Definition 2.3 A set of linearly dependent row/columan vectors
are called generically linearly dependent if the linear dependency
is independent of the specific values of the nonzero elements of
the wectors. Otherwise, the vectors are called nongemerically
linearly dependent.

Remark 2.1: It is easy to see from the definition above that
the linear dependence of a set of nongenerically linear dependent
vectors can be invalidated by slightly perturbing the values of
the nonzero elements in the vectors. The number of vectors
must exceed one in order to have nongeneric linear dependence.
Furthermore, a set of row (resp. column) vectors are generically
linearly dependent if end only if either of the following cases
happens:

(i) there is a zero row (resp. column);

(ii) there exists a subset of vectors such that by grouping
them as a matrix, the number of nonzero columns (resp. rows)
in the matrix form a *tall® (resp. “wide”) submatrix.
Definition 2.4 A singuler constant malriz is called nongener-
ically (resp. generically) singular if the singularity depends on
(resp. is independent of ) the particular valucs of the nonzero el-
ements, i.c., ils rows/columns are nongenerically (resp. gener-
ically) linearly dependent.

As an illustration of these ideas, consider the following two

singular matrices.
100
111 n
111

100

1001],

111
The first matrix is generically singular because the first two rows
are generically linearly dependent, whilst the second matrix is
nongenerically singular because the second and third rows are
nongenerically linearly dependent.
Definition 2.5 [7] Let T(s) be an m x m proper, nonsingular,
retional transfer metriz. Suppose there exists o diagonal mairiz
&r(s) = diag{s%},d; 2 0,1 < i < m such that

B(s) & &r(s)T(s) ()
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is & bicausal matriz, then £r(s) is called the diagonal interacior
(which must be unigue) of T(s).

It is shown in [1] that a system which has a non-diagonal
interactor cannot be decoupled by a bicausal precompensation,
and consequently a dynamic compensation is first required to
achieve a diagonal interactor.

3 Main Results

Given anm x m tnufetmunxT(c),wew-hto
deﬁnewndxhomundewhchthae“-adugmal

precompensator
D(1/s) = diag{s~%}, d;i20, O]

which ensures that T(s)D(1/s) has diagonal interactor of the
form

1<i<m

D(s) = diag{s%}, & 20, 1<i<m (4)
ie.
K(s) := D(s)T(s)D(1/s) ®)
is a bicausal matrix.

Theorem 3.1 Given & nonsingular transfer matriz T(s), one
of the following two cases musi occur end they sre mutuslly
exclusive: _

(i) There exists & pair D(1/s) and D(s) of the forms (3) end
(4) respectively such that

Ko = ‘lixg {D(s)T(s)D(1/3)} )
is nongenerically singular. In this case, there does neot esist
any other disgonel precompensator of the form (3) whick will
schieve ¢ disgonal interactior.

(i) There esists a pair D(1/s) end D(s) of the forms (3)
and (f) respectively such that Ko in (6) is nonsinguler. In this
case, the compensaied system T(s)D(1/s) has diagonal intersc-
tor D(s).

To aid this theorem, the following algorithm is required,
which determines D(s) = diag{s®} and D(1/s) = diag{s~%}
such that K, is nonsingular.

Algorithm 3.2 Initialise D(1/s) = I, i.e.,di =0, 1<li<m.

Step 1. Find D(s) such that every row of K(s)

D(s)T(s)D(l/:) has zero relative degree, and take Kjp
K(s). There are three possibilities

1. Ko is nongenerically singular: No diagonal compensator
exists which will give a diagonal interactor.

2. Ko is nonsingular: D(1/s) is a diagonal precompensator
for T(s), and D(s) is the associated diagonal interactor.

3. K, is generically singular: Proceed to Step 2. (Note that
D(s) guarantees that K has no zero rows).

Step 2. Extract the maximum set i of rows for which the
nonzero columns form a tall matrix. Denote the set of these
nonsero columns by j, and the set of remaining columns by j4,
for which all elements in the rows in set i are zero. Then deter-
mine 7, the minimum relative degree of any element contaimed
in the set i of rows and the set j1 of columns of K(s). Then
for all I € j, increment d; by 7. Return to step 1.

The algorithm is complete when either case 1 or 2 is achieved.

Proof. Not provided in the Proceedings.

Example To illustrate the algorithm, we consider
3 4

P33

1
T(s) = [

I T ¢

Initially, let D(1/s) =1, ie.,dy =dy=d;=0.
Iteration 1: 'IbemurethateveryrowofK(n)has:aorelmve
degree.Steplgvesd;-l d2=2,d3=2and
]- @®

l-'s-,&] _ [100
1], with Kg=
*

K@®=]1 1 111

1 4 100
Note that Ko is generically singular. Applying Step 2 to K(s),
weﬁndtbeoeh—{l3},thaturowsland3ollfomhmﬂy
dependent. We also find j = {1} and accordingly j* = {2,3}.
The minimum relative degree of any element of K(s) which
belongs to both sets i and jL is v = 2. For all | € j we choose
di2d 4+, thend, =2,dy=0andds =0.
Iteration 2: We now return to Step 1 and formulate a new
K(s) with our new D(1/s) by choosing dy = 3,d, = 2 and

ds=4:
1 2 1

K(a)=[‘% 1 l], with K¢=[ ] 9
11 &

Since K, is nonsingulaz, the new D(s) is the diagonal interactor
for the precompensated system T'(s)D(1/s).
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