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Abs t rac t  

This :>aper studies a number of control problems for lin- 
ear systems using quantized feedback. First, we revisit 
the work by Elia and Mitter on quadratic stabilization 
of linear systems using quantized state feedback and 
show that their result on coarscst quantization density 
can be simply obtained from known quadratic stabi- 
lization theory by treating the quantizatioii error as 
sector-bounded uncertainty. This reinterpretation al- 
lows us t o  generalize their work to quantized output 
feedback and multi-input-multi-output systems. 

1 Introduct ion 

Control using quantized feedback has been an impor- 
tant research area for a long time. Even as early as in 
1956, Kahnan [l] studied the effect of quantization in 
a sampled data system and pointed out that if a sta- 
bilizing controller is quantized using a finite-alphabet 
quantizer, the feedback system would exhibit limit cy- 
cles and chaotic behavior. Most of the work on quan- 
tized feedback control concentrates on understanding 
and niitigationof quantization effects; see, e.g., [Z, 3, 41. 

A sin-iple classical approach to analysis and mitigation 
of quantization effects is to treat the quantization error 
as uncertainty and bound it using a sector bound. By 
doing so, robustness analysis tools, such as absolute 
stability theory (see [5, G I ) ,  can be. applied to study the 
quantization effect. Further, control parameters can be 
optimized to minimize the quantization effect. We will 
call this the sector bound method. 

There is a new line of rcsearch on quaiitized feedback 
control where an quantizer is regarded as an informa- 
tion coder. The fundamental question of interest is how 
much information needs to  be communicated by the 
quantizer in order to achieve a certain control objec- 
tive. Noticeabie works include [7, 8, 9, 10, 111. In 1111, 
the problem of quadratic stabilization of discrete-time 
single-input-single-output (SISO) linear time-invariant 
(LTI) systems using quantized feedback is studied. The 
quant.izer is assumed to be static arid time-invariant 
(i.e. inemoryless and with fixed quantization levels). 
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It is proved in [11] that for a quadratically stabilizable 
system, the quantizer is the so-called logarithmic (i.e., 
the quantization levels are linear in logarithmic scale). 
Further, the coarsest quantization density is given ex- 
plicitly in terms of the system's unstable poles. The 
work of [ l l ]  is also generalized to some extent to guar- 
anteed performance control [12], stabilization of two- 
input systems [13], and muk-input systems [14]. 

Note that the required quantizer in the works above 
has an infinite number of quantization levels because 
of its time-invariance nature. When the quantizer is 
allowcd to be dynamic and time-varying, it is known 
that only a finite number of quantization levels [9, 101. 

The most pertinent work to this paper is [ l l ] .  In fact, 
this paper stems from the following motivations. First, 
the results in [ll] (also those in [IO]) are for SISO sys- 
tems and for stabilization only. We want to general- 
ize their results to  multi-input-multi-output (MIMO) 
systems and to including performances. Secondly, the 
technique used in [ll], although bcing novel, does not 
secin to havc a simple interpretation. This is perhaps 
what makes the their results difficult to generalize. 

In this paper, we first review the key result in [ll] which 
is on quadratic stabilization of SISO linear systems us- 
ing quantized state feedback. We show that coarsest 
quantization density for logarithmic quantizers can be 
siinply obtained using the sector bound method. This 
not only gives a simpler interpretation of the result, 
but also provides the basis for generalization of the 
result. Secondly, we study the output feedback sta- 
bilization of SISO systcms. Two cases are considered: 
observer-based quantized state feedback and dynamic 
feedback using quantized output. We show that the 
coarsest quantization density in thc former case is the 
samc as in quantized state feedback, whereas the latter 
case is related to a different H, optimization prob- 
lem and in general requires a finer quantization den- 
sity. Thirdly, we generalize the quadratic stabilization 
problem to  MIMO systems and show that quadratic 
stabilization with a set of logarithmic quantizers is the 
same as quadratic stabilization with a set of sector- 
bounded uncertainties. Because the latter problem has 
been well studied, the technical difficulty for the first 
problem is clearly revealed. A sufficient condition is 
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then given, in terms of an H ,  optimization problem, 
for the quantizers to  render a quadratic stabilizer. Both 
state feedback and output feedback are considered. 

2 Stabi l izat ion using Quan t i zed  State Feedback 

In this section, we revisit the work of Elia and Mitter 
Ill] on stabilization using quantized state feedback and 
show how to  reinterpret their result. The simplest and 
most fundamental case considered in [ll] is the problem 
of quadratic stabilization for the following system: 

. z(k + 1) = Az(k) + Bu(k)  (1) 

where A E R"'", B E Rnx', z is the state and u is a 
quantized state feedback in the following form: 

U @ )  = f (U@)) (2) 

U ( k )  = K z ( k )  (3) 
In the above, K E RIxn is the feedback gain, and f( .)  
is a quantizer which is assumed to be symmetric, i.e., 
f ( - v )  = -f(u). Note that  the quantizer is static and 
time-invariant. 

The set of quantized levels is denoted by 

U =  { ~ u * , i = 0 , ~ 1 , ~ 2 , . . . } U { 0 }  (4) 
Denote by #g[t] the number of quantization levels in 
[e ,  l/e]. The quantizer density is defined as follows: 

#gkI rlf = lim sup - 
s - ~  - In e (5) 

Throughout this paper, we consider the so-called loga- 

(6) 

rithmic quantizer below: 

U = {&Cl : U ( % )  = p'u(o), i = 51, +&. . .} 
U{fdO)} U { O } ,  0 < p < l,U(O) > 0 

For the quadratic stabilization problem, a quadratic 
Lyapunov function V(z) = zTPz,  P = PT > 0, is used 
to assess the stability of the feedback system, i.e., the 
quantizer must satisfy 

VV(z) = V(Az + B f ( K z ) )  - V(z)  < 0, Vz # 0 (7) 

The coarsest quantizer is the one which minimizes v f  
subject to (7). 

The density of the quantizer depends on V(z)  (or P )  
and K .  This raises the key question: What is the coars- 
est density among all possible P and K? In [ll], the 
answer is given for 

B ~ P A  K = Kco = -~ 
BTPB 

However, it turns out that  the result remains the same 
even when K is allowed to be a free variable. The result 
is summarized below, but rephrased with K being free. 

Theorem 1 Consider the linear system in ( 1 ) .  
coarsest quantization density is given by 

The 

1 - 6  p =  ~ 

l + 6  (9) 

where A: are the unstable eigenvalues of A. U 

We prove the result above using an alternative method, 
i.e., the sector bound method. 

Proof. Define the quantization error by 

e = u - u =  f ( u ) - u  (11) 

Let the quantization levels be given by (6) for any 0 5 
p < 1. It is straightforward to  check that  e is bounded 
by the following sector: 

e = A(u)u, llA(~)lI 5 6 (12) 

where 6 is obtained from (9). Therefore, we can model 
the quantized feedback system as follows: 

z(k + 1) = A z ( k )  + B(1+ A ( K z ) ) K z ( k )  

The quadratic stabilization condition becomes 

VV(z) = V((A+B(l+A(Kz))K)z)-V(z) < 0,Vz # 0 

Let P and K be fixed for the moment. I t  is trivial to 
see that  the above holds if the following holds: 

VP(A) = ( A  + B(I + A ) K ) ~ P ( A  + B(I + A)K) - P 

< 0, VIA1 5 6  (15) 

where A is independent of the state. Next, we show 
below that the converse is also true, i.e., (14) implies 
(15). Indeed, suppose (14) holds but (15) is violated 
for some lAol 5 6. Let 20 he the eigenvector of 
VP(A0) corresponding to  a non-negative eigenvalue, 
i.e., zTVP(A0)zo 2 0. Note that Kzo # 0 because of 
(14). Now choose any z1 = azo for some scalar a # 0 
such that  A ( K z l )  = Ao, which is possible because A(.) 
swings between -6 and 6. We have 

(13) 

(14) 

VV(z1) = zTVP(A(Kz i ) ) z i  2 0 (16) 

This contradicts the assumption that  (14) holds. 
Hence, the converse is proved. 

The result above means that  the problem of coarsest 
quantization is equivalent to finding the maximum 6 
for the following system 

z(k + 1) = A z ( k )  + B( l  + A)u(k), IAl 5 6 (17) 
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to  be quadratically stabilizable. It is well-known [15] 
that this  is equivalent to minimizing the H,-norm of 
the transfer function 

G,(z) = K ( d -  A - BK)- 'B (18) 

More :specifically, 

Hence, it remains to  show that t,he solution to (19) 
leads to (10). To this end, we take ( A , B )  to be a 
controllable canonical form, which yields 

where a(.) = a0 + a l a  t.. . +a,_lz"-l + zn = 121- AI 
and ki:z) = ko + k l z  i- . . . + k,-lzn-' is the control 
polynomial. The optimal control gain K must be such 
that  it yields a stable G,(z) which is either all-pass 
or arbitrarily close to  it. If a(.) is strictly anti-stable, 
then solution to  k ( z )  is given by 

which gives ~ ~ G c ( z ) ~ ~ ,  = la01 = n, IXr l .  Indeed, (21) 
comes from solving the all-pass requirement for G,(z): 

(22) .(a) - k ( z )  = aznk(z - ' )  

a(.-') - k ( t - ' )  = az-"k(z )  

for some a. Replacing z by z- ' ,  (22) becomes 

(23) 

Combining (22)-(23) yields 

(24) 
a(.) - azna( z - l )  

1 - 012 
k ( z )  = 

Setting the nth order coefficient of k ( z )  to zero results 
in a =: l/ao. It is straightforward to verify that (24) 
is the same as (21). Further, we claim k(z) is strictly 
anti-stable. This is because (24) can be rewritten as 

Because a(.) is antistable, la/ < 1 and 
izna(z-')/a(z)i 5 1 for any / z /  5 1, k ( z )  # 0 
for an.y 121 5 1 .  Hence, k(z) is strictly anti-stable, 
which implies GJz) is stable. 

If a(.) has a stable factor, we can write a(.) = 
a.(z)a.(z), where a.(.) and aU(z) are the stable and 
unstable factors. Then, we should have k ( z )  = 
a,(z)k~(z), which yields 

and we can proceed as before. If a,(.) is strictly anti- 
stable, we still have ~ ~ G c ( z ) ~ ~ w  = ni 1X;l. If a"(.) has 
marginally stable roots, then kl(t) can be chosen so 
that IIG,(z)ll, is arbitrarily close to n, I l X l l .  Hence, 
we have verified (10). U 

Remark 1 It is shown in [Ill that the coarsest quanti- 
zation density is related to the solution to the so-called 
"expensive" control linear quadratic problem: 

minK CL, 1b(k)12 
subject to closed-loop stability with (25) 

~ ( k )  = K z ( k )  

More specifically, the optimal p can be solved using 
the solution to the Riccati equation for the "expen- 
sive" control problem. However, the optimal control 
gain K for the quantization problem is different from 
the optimal control gain for the "expensive" control 
problem (This is also pointed out in [Ill).  From the 
proof above, we see that it is better to  interpret the 
coarsest quantization problem as an H ,  problem (19). 

3 Stabilization using Quantized O u t p u t  
Feedback 

We now generalize the technique above to quantized 
output feedback. Consider the following system: 

where A and B are the same as before and C E RIXn 

It turns out that there are two possible configurations 
for quantized output feedback, each leading to a differ- 
ent coarsest quantization density. These configurations 
correspond to: 

Configuration I: The control signal is quantized but 
the measurement is not; 

Configuration 11: The measurement is quantized but 
the control signal is not. 

Configuration I. This case has an interesting result: 

Theorem 2 Consider the system (26) with quantized 
control input. Suppose (A,C) is an obseruable pair. 
Then, the coarsest quantization density for quadratic 
stabilization by state feedback can also be achieved by 
output feedback. In particular, the corresponding output 
feedback controller can be chosen as an observer-based 
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where I? is defined in (30) and 

G&) = (1 - H ( ~ ) G ( ~ ) ) - ' H ( ~ ) G ( ~ )  (33) 

where G ( z )  = C(oI-A)- 'B  and H ( z )  = D,+C,(zI- 
A J 1 B C .  Further, if G(z) has relative degree equal to 
1 and no unstable zeros, then the coarsest quantzzation 
density for quantized state feedback can be reached via 
quantized output feedback. 0 

where f ( . )  is the quantizer as befow, K is the state 
feedback gain designed for  any achievable quantization 
density via quantized state feedback, and L is a stabi- 
lizing observer gain. 0 

Proof. Let K be any state feedback gain that  achieves 
any given quantization density. Choose L such that the 
observer is deadbeat, i.e., e ( k )  = z (k )  ~ z . ( k )  only for 
a finite number of steps N. This can be always done 
because (A ,  C )  is observable. Then, after N steps, the 
output feedback controller is the same as state feedback 
controller. Hence, the system is quadratically stabi- 
lized after N steps. Finally, it is a simple fact (although 
we do not give the details) that  if a (nonlinear) system 
is quadratically stable after N steps and that the state 
is hounded in the first N steps (which clearly holds for 

0 the  system (27)), it is quadratically stable. 

Configurat ion 11. The controller now has the form 

z c ( k  + 1) = A c z c ( k )  + Bcf ( y ( k ) )  
4 k )  = C c ~ c ( k )  + D c f  ( ~ ( k ) )  (28) 

where f (.) is the quantizer as before. I t  is easy to  verify 
that  the closed-loop system is given by 

Z ( k  + 1) = A(A(y(k))Z(k) (29) 

where A(.) is the same as in (12) and 

and 
A(A) = A + BE((;. + iAC)  (31) 

The problem of concern is to find the coarsest quantizer 
for quadratic stabilization of the closed-loop system. 

In  fact, the coarsest quantization problem for (26)-(28) 
can he solved by generalizing the idea for the state 
feedback case. The result is given below. 

Theorem 3 Consider the system (26) and the con- 
troller structure (28). The coarsest quantizer for  
quadratic stabilization is given b y  (6)-(9) with 

Proof. The proof is very similar to the proof of The- 
orem 1. The sector bound for the quantization error 
is done as in (11)-(12). The quadratic stability of the 
closed-loop system (26)-(28) requires the existence of 
some P = PT > 0 such that 

ZT[d(A(y))TPd(A(y)) - I ']f  < 0 (34) 

for all f # 0 and y = Ca: = CZ. 

It  is straightforward to verify that 

G c ( Z )  = iZC(z1 -  A ~ BKC)-'B (35) 

It is well-known [15] that  the H,  optimization prob- 
lem in (32) is equivalent to  (34) if A is allowed to  he 
arbitrary (but subject to  lAl 5 6). Hence, the solution 
to the H ,  optimization problem implies the solution 
to (34). 

To see the converse, we assume (34) holds hut 

VP(A") = d(Ao)TPA(A") - P # 0 (36) 

for some lA"/ 5 6. Let fo be the eigenvector corre- 
sponding to the non-negative eigenvalue of VP(Ao). 
Note that  y = CZO # 0 because 0!(34). Take Z1 = azo 
for some Q # 0 such that A(Cf1) = A", which is 
always possible. Then, (34) is violated at E = 11. 
This contradicts the assumption. Hence, the converse 
is proved. 

Suppose G ( z )  has relative degree 1 and no unstable 
zeros. Write G ( z )  = b ( z ) / a ( z ) .  From the proof of 
Theorem 1, we know that  the state feedback case cor- 
responds to  H ,  optimization of G,(z)  in (20). If we 
choose H ( z )  = k ( z ) / b ( z ) .  Then, c c ( z )  in (33) becomes 
Gc(z) .  Hence, the quantization density for the quan- 
tized state feedback can be achieved by quantized out- 
put feedback. 0 

The example below shows that  using quantized output 
requires a denser quantizer than using quantized state 
feedback. 

E x a m p l e  1 The system is given by (26) with G(z )  = 
C(e1 - A)-'B = (2 - 3)/z(z - 2). Using,quantized 
state feedback, 6 = 2 and p = (2 - 1)/(2 + 1) = 0.3333. 
For quantized output feedback, computing (32) yields 
6 = 10 and p = (10 - 1)/(10 + 1) = 0.8182. 
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R e m a r k  2 In 1111, output feedback control design is 
done in two steps. In Step 1, coarsest quantization is 
solved for state estimation, which is a dual problem to 
the state feedback stabilization problem. In Step 2, the 
separation principle is applied, i.e., optimal state feed- 
back is combined with optimal state estimation. The 
main result is that logarithmic quantization is sufficient 
for output feedback stabilization. 

The drawback of the approach in [ll] is that the phys- 
ical meaning of the state estimation quantizer is not 
clear. Indeed, the problem of quantized state estima- 
tion i:j formulated to be: 

e(k  + 1) = Ae(k )  + L f , ( C e ( k ) )  (37) 

where e ( k )  = z ( k )  ~ x , (k )  is the state estimation error 
and j e ( . )  is its quantizer. This can be unsatisfactory 
because the quautizcr needs to know both y ( k )  and its 
estimate C z , ( k ) .  If the control signal is generated at  
the measurement end, there is obviously no need to use 
quantized y ( k ) .  If the control signal is generated else- 
where using a quantized y ( k ) ,  it is difficult to imagine 
why i1.s estimate needs to be sent back to the measure- 
ment end to form C e ( k )  for quantization. Hence, the 
va1idit.y of this formulation seems to  be questionable. 

4 Stabilization of MIMO Systems using 
Quant ized Feedback 

Now w e  generalize the quantization resu1t.s in Section 
2 to b1IMO systems. 

Configuration I. The system is still as in (26) (or 
(1) for state feedback) except that  U E R", y E R'. 
Suppose quantized state feedback (2)-(3) is uscd, where 
K E Plmx" and 

f ( v )  = diag{fi(vl),f*(vz);...,fm(vm)} (38) 

where w j  is the j t h  component of v and f j ( . )  is a quan- 
tizer of the form (6) but with 0 < p, < 1. 

Because we have more than one quantizer, the notion 
of coarsest quantization is not well-defined. Instead, 
we ask the following question: Given a vector of quan- 
tization levels p = [p1 p2 . . . pm] ,  does there exist an 
quantized feedback controller that quadratically stabi- 
lizes the system (26)? The main result is given below: 

Theorem 4 Given the system in (26) and a quantiza- 
tion leuel vector p, consider the auxiliary system: 

z ( k  + 1) = A z ( k )  + B(I  + A ( k ) ) v ( k )  (39) 

where I A j ( k ) J  5 6J for a l l j  and k ,  and63 are converted 
from p:; using (9), and v ( k )  is a control input. Suppose 

the auxiliary system is  quadratically stablizable via state 
feedback (31, then (26) is quadratically stabilizable via 
quantized state feedback. Conversely, suppose the sys- 
tem (26) is quadratically stabilizable aia quantized state 
feedback and, in addition, suppose Inpi/ Inpj are i m -  
tional numbers for all i # j when rn > 1. Then, far any 
(arbitrarily small) E > 0,  the auxiliary system (39) with 
lA,(k)l < Sj  - E is quadratically stabilizable via state 
feedback (3). Further, the auxiliary system is quadmt- 
ically stabilizable via state feedback (3) i f  the folloving 
state feedback H ,  control has a solution K for some 
diagonal scaling matrix r > 0:  

IlArK(z1- A - BK)-'Br-'Ilm < 1 (40) 

where 
A=diag{bl,...,S,) (41) 

In particular, any K that renders (40) is a solution 
to either quadratic stabilization problem. Finally, i f  
( A ,  C )  is an observable pair and (26) is quadmatically 
stabilizable via quantized state feedback for the given p, 
then it is also quadratically stabilizable via observer- 
based quantized state feedback (27) for the same p. 0 

Remark 3 It is easy to see that if a given set of p j ,  j = 
1 , 2 , .  . . ,m do not satisfy the condition that Inpillnp, 
are irrational for i # j ,  we can make it so by perturbing 
the pj arbitrarily slightly. That is, the condition above 
holds generically. 

Proof of Theorem 4. The basic idea is similar to the 
proof of Theorem 1. Although we are dealing with a 
MIMO system, the notation in that proof is still valid. 
In particular, the condition for quadratic stability of 
the closed-loop system is still given by (14). As in 
that proof, it is known [l6] that the Hm optimization 
condition (40) implies quadratic stabilizability of the 
auxiliary system (39) via state feedback which in turn 
implies the quadratic stabilizability of (26) via quan- 
tized state feedback, and that the same controller ap- 
plies to  all three problems. The proof of the converse 
is are quite involved and omitted due to space limits. 

The result on observer-based feedback is proved in a 
way similar to that of Theorem 2. CI 

Configuration 11. When quantized measurements are 
available, we have the following result: 

Theorem 5 Given the system in (26) and a quantiza- 
tion level vector p, consider the auxilialy system: 

z ( k  + 1) = A z ( k )  + B u ( k )  
Y ( k )  = W k )  (42) 
~ ( k )  = ( I +  A ( k ) ) y ( k )  
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where lAj(k)l 5 6j for all j = 1 , 2 , .  . . , m and k ,  and 
6, are converted from pj using (Q), and u ( k )  is the out- 
put available for feedback. Suppose the auxiliary system 
is quadratically stablizable, then (26) is quadratically 
stabilizable via (28). Conversely, suppose the system 
(26) is quadratically stabilizable uia (28) and, in  addi- 
tion, suppose In pt /  In p3 are irrational numbers for all 
i # j when m > 1. Then, for any (arbitrarily small) 
E > 0, the auz-iliary system (42) with lA,(k)l 5 6, - E 

is quadratically stabilizable. 

Further, the auxiliary system is quadratically stabiliz- 
able if the following state feedback H ,  control has a 
solution H ( z )  for some diagonal scaling matrix r > 0- 

I l A r ( I ~  C(r )H( t ) ) - ’C(r )H(z ) r ’ I / ,  < 1 (43) 

where A is given in (41). In particular, any H(z)  that 
renders (40) is a solution to either quadratic stabiliza- 
tion problem. 0 

Proof. The “equivalence” between the quadratic sta- 
bilization problems is similar to that of Theorem 4, but 
the details are not given due to  space limits. The proof 
for the relation to H, optimization is similar to the 
proof of Theorem 3. 0 

5 Conclusions 

We have reinterpreted a key result in 1111 on quadratic 
stabilization. This is done using the sector hound 
method, i.e., by treating the quantization error i ~ s  a 
sector-bounded uncertainty. This simple interpretation 
allows us to  generalize their result to quantized out- 
put feedback control and quantized control for MIMO 
systems. Finally, we point out that the sector bound 
method can also be applied to  quantized control for 
H ,  performance and quadratic performance. 
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