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Abs t r ac t  

This paper deals with the problem of guaranteed cost 
analysis and control of a class of nonlinear discrete-time 
systems with uncertain parameters. We use polynomial 
Lyapunov functions to derive stability conditions with 
a guaranteed bound on the 2-norm of the performance 
output in terms of linear matrix inequalities (LMIs). 
We then extend this approach to  control design by con- 
sidering parameter-dependent Lyapunov functions and 
nonlinear (state- and parameter-dependent) multipli- 
ers. 

1 Introduction 

In the last decade or so, there has been significant 
interest in using the LMl (linear matrix inequality) 
framework in control of continuous-time nonlinear sys- 
tems. Design approaches range from using quadratic 
Lyapunov functions ([l]) to those based on polynomial 
Lyapunov functions ([2]) in both guaranteed cost and 
'HW settings. In general, non-quadratic Lyapunov func- 
tions are less conservative in dealing with uncertain and 
nonlinear systems than the quadratic ones at the ex- 
pense of extra computation [3]. However, most of the 
robust control results using non-quadratic Lyapunov 
functions for nonlinear systems involve solving matrix 
inequalities which are non-convex in the decision vari- 
ables. 

On the other hand, 'for nonlinear discrete-time sys- 
tems we have another fundamental difficulty with non- 
quadratic Lyapunov functions which lies in the fact 
that the difference between the Lyapunov functions at 
time k + l  and k is highly nonlinear. To make this point 
clear, consider the system 

and a Lyapunov function 

where S ( k )  represents uncertain parameters, and the 
matrices A ( z ( k ) ,  b ( k ) )  and P ( z ( k ) ,  6 ( k ) )  depend on 
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z ( k )  and 6 ( k ) .  In the Lyapunov function difference 
(which we will refer to  as a Lyapunov inequality) ap- 
pears the term 

A(z(k) ,  d(k)) 'P(z(k + 11, 6 ( k  + 1))A(z(k), 6 ( k ) )  (1) 

which is typically a highly nonlinear function of z ( k ) ,  
6 ( k )  and S(k + 1). In contrast, if we consider a similar 
continuous-time system i ( t )  = A ( z ( t ) ,  b( t ) ) s ( t )  and a 
similar Lyapunov function, we have much less product 
terms between z ( t )  and 6 ( t ) .  

An alternative approach to the robust control 
of discrete-time systems is the quasi-LPV (linear 
parameter-varying) representation of nonlinear sys- 
tems, i.e. systems described by 

where the state-dependent parameter B ( z ( k ) )  E 0 with 
0 being a given polytope. For example, the works of Tu 
and Shamma in [4] and Tuan et. a1 in [5] use LPV tech- 
niques for guaranteed cost and 7-t, control of nonlinear 
discrete-time systems, respectively. In spite of the fact 
that the quasi-LPV approach overcomes the problem 
caused by the term in (l), there are some shortcomings 
in this methodology. More specifically, it is computa- 
tionally feasible only for a small number of nonlinear 
terms and when considering parameter-dependent Lya- 
punov functions (e.g. V ( z ( k ) )  = z (k ) 'P (B(z (k ) ) ) x (k ) )  
the forward-shift parameter O(z(k + 1)) that appears in 
the Lyapunov inequality has to belong to the polytope 
0 increasing the computational effort. 

The approach used in this paper is motivated by the 
work of Olaveara et. al. [6] which proposed a new test 
of stability using LMIs for linear discrete-time systems 
with polytopic uncertainties. In this approach, the sys- 
tem matrix and the Lyapunov matrix are assumed to be 
affine in uncertain parameters, i.e. A(6) and P(6) are 
used and they are affine in 6. The Lyapunov inequal- 
ity is modified by introducing an auxiliary matrix that 
separates the system matrix A(6) from the Lyapunov 
matrix P(6).  This introduces some conservatism, but 
significantly reduce the nonlinearity. Further, the re- 
sulting inequality can be expressed as an LMI which is 
affine in 6. Although, one can think of many possible 
auxiliary matrices with the above feature, the partic- 
ular one introduced in [6] appears to  be excellent in 
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terms of the conservatism it brings. This method has 
been also extended to performance analysis and control 
design [7]. 

The purpose of this paper is to  devise a technique 
for guaranteed cost analysis and robust controller de- 
sign for a class of nonlinear discrete-time systems with 
(time-varying) uncertain parameters. We employ poly- 
nomial Lyapunov functions and give regional stabil- 
ity conditions with guaranteed cost in terms of LMIs. 
However, suitable Lyapunov inequalities will be used to 
simplify the numerical computations which will be done 
by generalizing the work of [6]. We then extend this re- 
sult to control design by using a parameter-dependent 
Lyapunov function and nonlinear multipliers. 

Lemma 1 Consider system (2). Let V ( x , b )  = 

x’P(x ,  6). be a given Lyapunov function candidate, 
where P ( x , 6 )  is a matrix function of ( ~ ~ 6 ) .  Define 
a region in the state-space as follows: 

X a { x  : x ER”, x ’P(x ,6 )x  5 1, V 6 E A} (3) 

Suppose there exists positive scalars €1, €2  and X such 
that: 

€12’5  5 x ’ P ( x , b ) x  5 Q X ’ X ,  v x E x, 6 E a (4) 

x ’ ( A ( x , ~ ) ’ P ( z : , , ~ + ~ ) A ( x , ~ )  - P ( x , ~ ) ) x  < --, X 
z‘z 

V x E X ,  ( 6 , w )  E A ( 5 )  

where x+ is as defined in (2). Then, V ( x ,  6) is a Lya- 
punov function in X and X is an estimate of the DOP. 

2 Problem Statement 

Consider the following class of discrete-time nonlinear 
systems: 

”+ = f ( X ( k ) ,  J(k)) = A ( z ( k ) ,  J ( k ) ) x ( k ) ,  
(2) 

where x+ = x ( k  + l), x ( k )  E R” is the state vec- 
tor, z ( k )  E R n z  represents the performance output and 
b ( k )  E IW‘ denotes the vector of bounded uncertain pa- 
rameters with bounded variation w(k) = 6(k+l)-d(k) ,  
and the system matrices A ( x ,  b ) ,  C(z, 6) are allowed to 
depend on x ( k )  and 6 ( k ) .  It is assumed that A ( x , b )  
and C(z,6) are continuous functions in Rn x IW‘ and 
Rnz x R1, respectively. We further assume that the pa- 
rameter vector 6 ( k )  and its variation v ( k )  lie in a given 
polytope A with known vertices. 

Note that the values of the forward-shift parameter 
b(k + 1) depends on the  values of 6 ( k )  and w ( k ) ,  i.e. 
6(k + 1) = 6 ( k )  + w(k). Assuming that the values of 
S(k)  are independent of k and thus are the same for 
S(k  + l), the admissible values of w(k) have to  satisfy 
the constraint 6(k + 1) = 6 ( k )  + w(k). A polytope sat- 
isfying this condition is called a consistent domain [8]. 
For simplicity, we assume throughout this paper that 
A represents a consistent domain. 

The problem of concern in this paper is of two fold: (2) 

to  determine a region in the state-space (that we will 
refer to  as a domain of performance) in which a bound 
on the 2-norm of the output signal is guaranteed , and 
(ii) to  design a robust controller such that the domain 
of performance is maximized for a given cost bound. 
To this end, we first introduce the notion of domain of 
performance (DOP). 

Given a region R c EXn, we say that R is a DOP for 
system (2) if for every x ( 0 )  E R and 6 E A, the 2- 
norm of the output signal satisfies Ilz(k)llz < X and 
the trajectory z ( k )  remains in R for all k 2 0 and 
approaches to  the origin as k + CO. 

From the Lyapunov theory, we have the following re- 
sult: 

A possjble approach to simplifying the product term 
A ( x ,  6) P ( x + ,  6 + w)A(x ,  6 )  is to  use the idea of Schur 
complement. However, we still have a very complicated 
condition to  be checked because of two problems: (1) 
coupling of A(z,S)  and P ( x + , 6  + U )  still gives non- 
convex terms; (2) checking the conditions over X x A 
is highly nontrivial [9]. These are the problems we will 
address in the next section. 

3 Preliminary Results 

We give two results in this section. The first one, 
Lemma 2, is a nonlinear version for guaranteed cost 
analysis of the result in [6, Theorem 11 which will al- 
low to remove the coupling between the system and the 
Lyapunov matrices. The second one, Lemma 3, give a 
way to remove the nonlinear dependence on x in the 
conditions of Lemma 1 by a relaxation technique. 

Lemma 2 Consider system (2) and V ( x , 6 )  and X 
as defined in Lemma 1 .  Suppose (4) and the follow- 
ing inequality holds fo r  some auxiliary matrix function 
5 ( x ,  6) and a positive scalar A: 

V z E K, (6,~) E A, y E R”, z E R”” ( 6 )  

where P = P(x ,6 ) ,  A = A ( x , 6 ) ,  Q = G(x ,S ) ,  and 
P+ = P(x+,6 + w). Then, V ( x , b )  is a Lyapunov 
function in X and X is an estimate of the DOP with 
Ilz(k)llz < X for all ( 6 , w )  E A. 

Remark 1 The conservativeness of Lemma 2 lies in 
the choice of the auxiliary matrix G(x,6) .  Observe 
that we can recover Lemma 1 by considering G(x ,  6) = 
P ( x + ,  b+w). But this choice of G(z, 6 )  leads to compli- 
cated conditions. Consequently, we will have a compro- 
mise between the conservatism and complexity when 
choosing G ( x ,  6). 
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Note that when A(x, 6), P ( x ,  6) and G(x, 6) do not de- 
pend on x and v = 0 and X = 0, Lemma 2 reduces to  
the original result in [6]. 

Next, we aim to remove the dependence on x in condi- 
tions (4) and (6). To this end, we use a version of the 
well-known Finsler’s Lemma (see, e.g. [lo]). 

Lemma 3 Consider th,e following nonlinear matrix in- 
equality: 

7(E) > 0, 770 = 7 ( E ) ‘ ,  v E E E (7) 

where E E Rn( denotes a parameter vector, and the 
matrix 7(() E R”txnt is a nonlinear function of E and 
& c Rnc is a polytopic region with known vertices. Sup- 
pose I([) can be decomposed as follows: 

where T E RmtXmt is a constant symmetric matrix, 
M([) E RmtXnt is a nonlinear matrix function of E 
with the property that 

E l ( € )  + =2(E)M(E) = 0 (9) 

for some matrices SI([) E RmcXnt,E2(E) E RmEXmt 
which are afine functions of E with E:z(E) having col- 
umn full rank for all [ of interest. Then, (7) is satisfied 
i f  there exists a constant matrix L such that 

T + L a ( [ )  + E’([)L‘ > 0, E E V ( E )  (10) 

where a([) = [ E l ( [ )  
all vertices of E .  

Z2([) ] and V ( & )  is the set of 

Note that (10) is affine in E ,  so it can be checked by 
setting E at the vertices of E .  We point out that the de- 
composition conditions (8) and (9) are very general and 
can be satisfied for many nonlinear matrix inequalities 
such as those with rational nonlinearities. 

Conservativeness of NLMIs 
The use of standard LMI techniques for testing state- 
dependent matrix inequalities can be quite conservative 
[ l l ] .  For example, consider the condition: 

E ’ 7 ( E ) E  > 0,  v E E E .  (11) 

Here we have nt = n t .  This condition may be checked 
by applying Lemma 3 to 7([) > 0. If there exists a 
solution to (10) for all E V ( & ) ,  then the following is 
satisfied: 

t’7-(E)t > 0 ,  v E E E ,  v t E R“(. (12) 

Obviously, this is too conservative. To relax this, the 
notion of linear annihilators is introduced in [ll] as 
below: 

Definition 1 A matrix N(E) is called a linear annihi- 
lator of 5 i f  it is a linear function of E and N(<)( = 0. 

The basic idea in this approach is to associate a multi- 
plier to the constraint N ( E ) [  = 0, hence reducing the 
conservativeness of (12). In this paper, we will consider 
the following linear annihilator: 

r t2 -tl o o . . .  0 1  

Similarly to [3, Lemma 3.11, we modify the condition 
(10) to the following: 

T+LaE+Z’L~+LbN(E)Qm+Q~A”([)’Lb > 0, (14) 

for all E E V ( & ) ,  where Qm = [ In( 
and Lb are constant matrices to be determined. 

Oncxmt 1, and L a  

4 Performance Analysis 

In order to  apply the results in the previous section, 
we need to re-parameterize the system model (2) and 
define the structure of the Lyapunov matrix P ( x , 6 )  
and the auxiliary matrix g ( x ,  6) accordingly. These 
are detailed below. 

4.1 System Model Representation 
We further assume that system (2) can be decomposed 
as follows: 

X +  1 (Ao + Aini(z,  6)) 2, 

z = (CO + C1H1(x76)) 2, (15) { 0 = Ro ( x ,  6) + a1 ( E ,  b)nl(x, 6) 
where Ao E RnXn,A2 E RnXm,Co E Rnzxn  and 
C1 E Rnzxm are constant matrices; II ,(x,6) E Rmxn 
is a nonlinear matrix function of (z, 6); and Ro(z, 6) E 
Rpxn and Rl(x,b) E Rpxm are affine matrix functions 
of ( x ,  6). We assume that the matrix 521 (2 ,  6) has col- 
umn full rank for all x and 6 of interest. 

For simplicity of notation, we may hereafter repre- 
sent the matrices IIl ( x ,  6), Ro(x ,  6 )  and R I  ( x ,  6) with- 
out their respective dependence on x and 6, and the 
system (15) may be also described in the following com- 
pact form: 

Z+ = A I I X ,  z = CIIz:, RH = 0 

where 

and R = [ 52o(x,6) R l ( x , b )  1. 

Note that the choice of d, C, II and R is not unique and 
there is no a systematic way to compute them. How- 
ever, this allows the representation of a large class of 
nonlinear systems. In this paper, we will use the afore- 
mentioned degree of freedom in order to  parameterize 
the Lyapunov matrix in terms of the above nonlinear 
decomposition in order to test the conditions of Lemma 
2 via an optimization problem over a set of LMIs. 
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Remark 2 In fact, a wrong choice of the matrices 
A, C, II and 0 may lead to a poor performance estima- 
tion (see Example 3.2 of [12]). The conservativeness 
of choosing these matrices is in part reduced by the 
inclusion in the stability conditions of the constraint 
n/(x)x = 0 adding free variables to the problem, simi- 
larly to [12, Lemma 3.11 and [3, Lemma 3.11. 

4.2 Lyapunov Function Candidate 
Consider the following Lyapunov matrix: 

P(X,b) = [ l ’P (6 )  [ ‘jr) ] (17) 

where P(6) = P(6)’ is an affine matrix functions of 6, 
and O(x) E Rqxn is a given matrix function of z. 

Observe from Lemma 2 that we need to compute the 
following matrix: 

are easy to check. A possible way to achieve a good 
compromise is to  define the shape of the bounding set 
and use a parameter to control its size. This parameter 
can be then adjusted through iterations to obtain an 
optimal size. But for the discussion in the sequel, we 
assume that the bounding set is given. 

Without loss of generality, we assume that the bound- 
ing set is represented in terms of the following con- 
strains: 

X = {z : ai.: 5 1, j = 1 , .  . . , ne}  (22) 

where aj E Rnx are given vectors associated with the 
ne edges of X .  
Using the S-procedure (see, e.g., Section 4 of [2]), the 
condition X c X is satisfied if the following inequality 
is satisfied for all j: 

To this end, we require the following constraints on 
Q(x): 

In order to ensure that the Lyapunov matrix function 
P(z ,b)  in (17) is positive definite for all z E X, we 
apply Lemma 3 and obtain the following condition: [ e;;’ ] = F * =  [ 2 1.4 e p )  ] = H n =  [ 2 1. 

(18) P(6)  + LQi(z) + Qi(z)’L’ > 0,  V (z,6) E V ( 2  x A) (24) 
\ ,  

where Q = [ I ,  
stant matrices, and 

On,, 1, F1,HI E Rqx(n+m) are con- 
is the Same matrix defined in where L is a free matrix to be determined and 

@l(X) = [ I, -‘(z) 1 .  (25) (16). 

Also, in accordance with the system and Lyapunov 
function parameterization, we choose the auxiliary ma- 
trix function G ( x ,  6) to be of the following form: 

G ( x ,  6) = II’G(6) (19) 

where G(b) E B(n+m)xn is an affine matrix function of 
6 to  be determined. 

With the above choice of G(x, b ) ,  we may have a certain 
degree of conservatism (see Remark 1) .  Nevertheless, 
it can lead to a convex characterization of Lemma 1 as 
we will see later in this section. 

In order to maximize the volume of X, we normally ap- 
proximate it by minimizing the trace of the Lyapunov 
matrix. However, P ( z , 6 )  is a nonlinear function of 
(x,S) that leads to a non-convex condition. To over- 
come this problem, we will approximate the volume 
maximization by 

where r = V ( k  x A). 

In addition, taking into account the above definitions, 
we can rewrite the inequality (6) as follows: 

N ~ ~ ,  with above analysis we can state the following 
theorem which gives a convex solution to  the DOP 

for all 5 E X, y E Rn and ( 6 , ~ )  E A, where ua = IIz, 
U b  = IIy and 

C = HIP(& + v ) H  - G(6)Q - Q’G(6)’. (21) 

In order to  apply Lemma 2 in a numerically tractable 
manner, we also need a polytopic bounding set X for X. 
In this way, we will require (20) to  hold for all X instead 
of X. Hence, we want to choose X t o  be reasonably 
close to X to  reduce the conservativeness but having 
a small number of vertices so the resulting conditions 

problem for system (2) in terms of LMIs. 

Theorem 1 Consider the nonlinear discrete-time sys- 
tem (2) as decomposed in (15). Let ‘(2) be a given 
affine matrix function of x satisfying (18) and theALya- 
punov matrix P ( x ,  6 )  be in the form of (17). Let X and 
A be given polytopes such that A is consistent. Let X 
be an upper-bound on the output 2-norm. Define Ql(z) 
as in (25) and 

Q 2 ( 2 , 6 )  = diag { R,  R }. (27) 

Suppose there exist af3cine matrices G(6), P(6); con- 
stant matrices L, N I ,  N2 and Mj (j = 1 , .  . . , ne);  and 
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a positive scalar 7 solving the following optimization 
problem where the LMIs are constructed at V ( X  x A). 

where V ( . )  denotes the set of all vertices o/ (.) and 
C is as defined in (21). Then, V ( x , b )  = x P(x ,6)x  
is a Lyapunov function in X .  Moreover, X given b y  
(3) is an estimate of the DOP, i.e. for all x (0 )  E X 
and (6,v) E A the trajectory x(k) E X for  all IC and 
approaches the origin as Ic 4 cm with Ilz(lC)ll2 < A. 

5 Control Design 

The LMI methods for If2 and 7 fm control synthesis 
of discrete-time LPV systems use the dual version of 
Lemma 1 (i.e. stability conditions in terms of the Lya- 
punov matrix inverse) and then parameterize the con- 
trol gain leading to convex conditions (see e.g. [7]). 
However, an extension of this technique to deal with 
nonlinear systems yields non-convex conditions since it 
appears in the stabilization matrix inequalities the vec- 
tor x+ which is a function of the control matrix loosing 
the convexity. To make this point clear, consider in 
the following the class of nonlinear system to be con- 
sidered in this section and a dual version of Lemma 2 
for control design. 

Consider the following nonlinear system: 

where u ( k )  E R' is the control input, B(x ,b )  E 
Rnx ' ,D(x ,6)  E R"zxT and K ( x , b )  E RTXn are non- 
linear matrix functions of x ( k )  and S(!C). Also, for sim- 
plicity, assume that the parameters & ( I C )  are known on- 
line to the controller as in the gain-scheduling control 
~ 3 1 .  

Now, consider the following basic result for control de- 
sign (a  nonlinear version of [14, Theorem l] for guar- 
anteed cost control). 

Lemma 4 Consider system (32), V ( x , 6 )  = 
z (y(z ,b))- 'z  and x = {x : z E Rn, V ( x , 6 )  5 
1,  V 6 E A}. Suppose the following inequalities are 
satisfied for y ( x ,  6), some auxiliary matrix functions 
G(x ,  6 )  and K ( x ,  6 )  of appropriate dim,ensions, and a 

positave scalar A: 

sfY(x,6)s > 0, V x E X, s E Rn, 6 E A (33) 
c, * * 

Cd 0 -AInz 

for all x E X ,  s E Rn, w E Rn, p E Rnz, ( 6 , ~ )  E 
A. Where C, = Y ( x , S )  - G ( z , ~ )  - G(x,6)', c b  = 

and = ( C ( x ,  6 )  + D ( x ,  6 )K(x ,  6 ) )  G(x ,  6 ) .  Then, the 
following holds: (a) the closed-loop system with U = 
K ( x ,  6)x  is regionally asymptotically stable; (ai) V ( x ,  6 )  
is a Lyapunov function in X; (iii) X is an estimate 
of the closed-loop DOP; and (iv) Ilz(lC)l(2 < X for  all 
x (0)  E X and (6,v) E A. 

[ :]'[ cb cc * ] [ i] < o ,  (34) 

(A($ ,  6) + B(x ,  ~ ) K ( z ,  6) )G(x ,  6 ) ,  c c  = -Y(x+, 6 + V) 

Observe from above that the matrix Y ( x + ,  6 + V) is a 
nonlinear function of z+, i.e. it is a function of the 
control matrix K ( x ,  6), not allowing a parameteriza- 
tion as proposed in Section 4 for the Lyapunov func- 
tion candidate. A possible solution could be decoupling 
the vectors x and x+ by considering that Z+ as a pa- 
rameter that belongs to  a known polytope turning the 
vector x+ independent of x as in the quasi-LPV rep- 
resentation (see e.g. [4, 51). On the one hand we are 
considering polynomial Lyapunov functions for control 
purposes, on the other hand we are adding a certain 
degree of conservativeness since we are not taking into 
the account the system dynamics. 

To overcome this problem, we will use in this paper 
a parameter-dependent Lyapunov matrix of the form 
y ( x ,  6) = Y(6) and a nonlinear multiplier G(x,  6) lead- 
ing to a parameterization 2(z, 6) = K ( z ,  s & ( ~ ,  6). 
From these definitions and similarly to  the analysis 
problem, we can transform the stabilization conditions 
in Lemma 4 into convex ones. To this end, consider 
that  system (32) can be rewritten as follows: 

z+ = (All + i i l ( Z ,  a)'.&) z + (Bo + fil(2, 6)'B1) U 

I = (eo + @1(z, &)'Cl) x + (Do + %(x, 6)'Dl) U (35) 
0 = slo(x, 6 )  + 61(z, b)i i l (Z,  6 )  
O=Ao(x,6) +Ai(~,6)@i(x,6) 

where .& E Rnxn,A1 E R*xn,Bo E Rnxr,B1 E 
R * X '  ,CO - E Rnzxn,C1 E IWmzXn,D0 E RnzX' and 
~1 E ~~z~~ are constant matrices; f i l ( x , ~ )  E R * X ~  
and @1(x,b)  E I W m z X n z  are nonlinear matrix func- 
tions of (.,a); and f i o ( ~ , S )  E RCxn,fi1(x,6) E 
RfiX*,AO(x,6) E R q z x n z  and Al(x,6) E R'Jzxmz are 
@ne matrix functions of (x ,6) .  Further, assume that 
01 ( x ,  6) and A1 ( x ,6 )  have column full rank for all x 
and 6 of interest. 

In order to simplify the notation, we may represent the 
above matrix functions without their respective depen- 
dence on x and 6 and also we may represent system 
(35) in the following compact form: 

Z+ = f i ' ( A ~ + B u ) ,  z = @'(?x+Du), fifi = 0,  A@ = 0, 
Proceedings of the American Control Conference 
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Also, consider the following structure for the matrices 
G(z, 6) and 2(z, b):  

G ( x ,  6) = G(6)fi and 2 ( x ,  6) = Z(6) f i  (36) 

where G(6) E Rnx(n+fi)  and Z(6) E W‘X(n+fi) are 
affine matrix of 6 to  be determined. In addition, define 
the following matrices: 

Q = [ In o n x f i  ] ,&z = [ I** o n , x m ,  ] ’ (37) 

Thus, we can state the following convex characteriza- 
tion of Lemma 4. 

Theorem 2 Consider the nonlinear discrete-time_ sys- 
tem (32) as decomposed an (35), and the matrices Q ,  Qz 
as defined in (37). Further, define: 

= diag{fi, fi, A}. (38) 

Let X and A be given polytopes such that A 
is  consistent. Suppose there exist afine matrices 
Y(6),  G(b) ,  Z (6 ) ,  and a constant matrix L solving the 
following optimization problem where the LMIs are con- 
structed at V ( k  x A). 

max trace(Y(6)) subject to: 
1 - a:Y(J)a, > 0 ,  j = 1,. . . ,ne (39) 

+ LQ + Q’L’ < 0 (40) 

where Cl1 = Q’Y(6)Q - Q’G(6) G(6)’Q, = 

VZ(6) .  Then, the following _holds: (i)  the closed-loop 
system with K ( s ,  6 )  = Z(6)II(G(6)II)-1 is regionally 
asymptotically stable; (ii) V ( x , 6 )  = z’(Y(S))-lx is a 
Lyapunov function in X; (iii) X = {x : V ( z , b )  5 
1, V 6 E A} is  an estimate o j  the closed-loop DOP; 
and (iu) llz(lc)112 < X for all s(0) E X and ( 6 , w )  E A. 

E31 o -XQ:Q= : I  Cl1 * 
E21 c 2 2  [ 

dG(6)  + BZ(b) ,  E22 = -Q’Y(b + w)&, E31 = CG(6) + 

6 Concluding remarks 

This paper has generalized the results of [6] to the guar- 
anteed cost control for a class of uncertain nonlinear 
discrete-time systems. We have used polynomial Lya- 
punov functions to  reduce the conservatism in the per- 
formance analysis and applied a decomposition tech- 
nique to both the nonlinear system and the Lyapunov 
function candidate in order to make the computations 
feasible. We have also extended these results to de- 
signing stabilizing controllers with a guaranteed upper- 
bound on the 2-norm of the output signal. 
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