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Abstract This paper focuses on the aggregated control of

a large number of residential responsive loads for vari-

ous demand response applications. We propose a general

hybrid system model which can capture the dynamics of

both Thermostatically Controlled Loads (TCLs) such as

air conditioners and water heaters, as well as deferrable

loads such as washers, dryers, and Plug-in Hybrid Electric

Vehicles (PHEVs). Based on the hybrid system model, the

aggregated control problem is formulated as a large scale

optimal control problem that determines the energy use

plans for a heterogeneous population of hybrid systems. A

decentralized cooperative control algorithm is proposed to

solve the aggregated control problem. Convergence of the

proposed algorithm is proved using potential game theory.

The simulation results indicate that the aggregated power

response can accurately track a reference trajectory and

effectively reduce the peak power consumption.

I. INTRODUCTION

Demand response has the potential to shift and sculpt

energy use, and help maintain the supply-demand balance

of the grid. It has attracted considerable research attention

in recent years. In [1]–[3], various control and scheduling

algorithms are developed based on different real time pricing

schemes. The aggregated modeling and control for a large

load population has been studied extensively recently [4]–

[6] which mainly focuses on first-order Thermostatically

Controlled Loads (TCLs), and try to design their aggregated

power response through centralized control.

This paper focuses on the aggregated control of a het-

erogeneous load population, including both TCLs as well

as deferrable loads. Our goal is to develop a practically

sound control strategy to coordinate the loads to achieve

a desired aggregated power response. We propose a hybrid

system model which is suitable for many responsive loads,

e.g., TCLs, PHEVs, etc. We then formulate a decentralized

control framework for which each responsive load solves a

simple local optimal control problem coordinated through

the central aggregator. Different from [7], we assume that

there is no direct communication channel among responsive

loads. To accomplish the decentralized control, we introduce
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a coordination signal generated and broadcasted by the

aggregator. This signal reveals system-level information to

each responsive load. The responsive loads can thus improve

system performance cooperatively by choosing their own

optimal operations. Convergence of the decentralized control

algorithm is proved using the potential game theory. As long

as each responsive load has a finite number of operation

modes, the existence of Nash Equilibrium (NE) holds. Al-

though the NE is only a local minimum of the overall aggre-

gated control problem, it typically leads to rather impressive

performance as indicated in our simulations. Considering

the costly centralized method, this tradeoff is acceptable.

Different from many other game-theory based works [7], [8],

the payoff (cost) in our work does not represent the explicit

welfare received from the market. Instead, it is regarded

by each responsive load as a local indicator reflecting the

fulfillment of the system-level objective.

Compared with the previous studies, our work has the

following advantages. Due to its decentralized nature, our

method can handle load heterogeneity in terms of both load

types and load parameters. In many cases, load dynamics

are time varying due to environmental changes. For exam-

ple, model parameters of HVACs are highly dependent on

the outdoor temperature [9]. The proposed framework can

deal with this time varying effect as well. In addition, the

proposed decentralized control framework allows for simple

incorporation of operational constraints of individual loads.

For example, HVAC units have the so-called “lockout” effect,

namely, the compressor cannot be immediately turned back

on after being turned off to avoid short-cycling issues.

The proposed decentralized aggregated control strategy is

validated through realistic simulations. In the simulations,

the load population involves both HVACs and PHEVs with

heterogeneous load parameters. The “lockout” effect and

the dependence on outdoor temperature of HVACs are also

taken into account in the simulations. Under this realistic and

challenging setup, our approach successfully solves several

aggregated control problems for reference tracking and peak

reduction applications.

II. PROBLEM FORMULATION

A. General Hybrid System Model for Responsive Loads

Consider a large number of heterogeneous responsive

loads in the grid. Denote M as the responsive load set with

M = |M| being the number of the loads. Many responsive

loads have multiple discrete operation modes. Transitions

among these modes are governed by certain switching logic

rules that depend on the evolution of some continuous state
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variables or exogenous controls. Such dynamics can be

described by a hybrid system model, i.e., ∀i ∈ M
{

xi(k + 1) = f i
vi(k)(x

i(k); θi(k))

yi(k) = hi(vi(k)), k = 0, . . . , N − 1
(1)

where [0, . . . , N − 1] is the time horizon, xi(k) ∈ X i is

the continuous state at discrete time instant k with a known

initial state xi(0), vi(k) ∈ V i = {1, . . . , m} represents the

discrete operation mode of the system. For each discrete

mode ν ∈ V i, the function f i
ν(·; θ) : X i → R

n is the

state update equation that governs the state evolution in

mode ν, and hi(ν) denotes the output that is assumed to

be independent of the continuous state. Here, θi(k) ∈ R
n

θi

is the model parameter which is possibly time varying due

to environmental changes. Denote by vi = [vi(0) . . . vi(N −
1)]T ∈ Qi an admissible mode sequence. Define Qi as the

set of all feasible mode sequences for load i starting from

initial state xi(0), i.e., Qi(xi(0)) , {vi ∈ (V i)N |xi(k) ∈
X i}. Furthermore, define Q ,

∏M

i=1 Q
i and let v =

(v1, . . . ,vM ) ∈ Q be an admissible mode sequence profile.

We may write v−i = (v1, . . . ,vi−1,vi+1, . . . ,vM ), where

v−i is an admissible mode sequence profile without load i.
Denote Q−i =

∏

j 6=i Q
j . Denote yi = [yi(0) . . . yi(N −

1)]T , we can thus write

yi = hi(vi) (2)

which is consistent with (1).

Before stating the aggregated control problem, we will

first use HAVCs and PHEVs as examples to illustrate the

application of the hybrid system load model described above.

B. Example for HVAC

HVACs are the most important type of TCLs for demand

response. We adopt a second-order Equivalent Thermal Pa-

rameter (ETP) model that describes the coupled dynamics of

the air and mass temperatures as follows:
{

ẋa(t)= 1
Ca

[xm(t)Hm−(Ua+Hm)xa(t)+Qa+ToUa]

ẋm(t)= 1
Cm

[Hm(xa(t)−xm(t))+Qm]

(3)

Here, xa is the indoor air temperature, xm is the inner mass

temperature. The readers are referred to [9] for a detailed

description of these physical parameters and their relations

to the ETP model parameters. Depending on the power state

of the unit, the heat flux Qa could take the following two

values:

Qon
a = Qi + Qs + Qh and Qoff

a = Qi + Qs.

The coupled ODEs in (3) can be written in a state-space

form

d

dt
x(t) = Â(t)x(t) + B̂v(t)(t), (4)

where x(t) = [xa(t) xm(t)]T , and v(t) is the discrete mode

taking two values with 0 representing the “Off” state and 1

representing the “On” state. Note that the system matrices

Â(t), B̂0(t) and B̂1(t) are possibly time-dependent due to

the varying outdoor temperature. Discretizing model (4) with

sampling time T results in

x(k + 1) = A(k)x(k) + Bv(k)(k) (5)

where k = 0, 1, . . . , N − 1, A(k) = eÂ(kT )T , B0(k) =
∫ T

0
eÂ(kT )tdtB̂0(kT ) and B1(k) =

∫ T

0
eÂ(kT )tdtB̂1(kT ).

The feasible mode sequence set is determined by two

state constraints. First, a suitable air temperature range is

desired by each house, i.e., xa(k) ∈ [Ta,min Ta,max], k =
0, . . . , N − 1. Second, once the HVAC unit is turned off, we

must wait for Tw minutes before turning it back on again to

prevent short cycling. We call Tw the minimum off-time. An

extra state is introduced in order to cope with this constraint.

Denote x3 as the steps since the last turning-off time. We

have

x3(k + 1) =

{

x3(k) + 1 in mode 0,

0 in mode 1.

Now we introduce the feasible mode sequence set

of HVACs as follows: v = [v(0) . . . v(N − 1)]T ∈
Q(x(0), x3(0)) if ∀k ∈ {0, . . . , N − 1},

v(k) ∈

{

{0} if 0 < x3(k) < ⌈Tw

T
⌉

{0, 1} otherwise
(6)

and xa(k + 1) ∈ [Ta,min Ta,max] with dynamics (5).

Here, ⌈x⌉ denotes the smallest integer not less than x. Equa-

tion (6) represents the constraint of short cycling problem,

i.e., HVAC units can not be turned on again if the off-time

is less than Tw (0 < x3(k) < ⌈Tw

T
⌉).

C. Example for PHEV Charging

A PHEV charging job can be characterized by a tuple

(t0, τ, tf), where the three entries represent the arrival time,

the size of the job, and the deadline to complete the job,

respectively. The job size τ = E
r

, where E is the total energy

needed to finish the charging and r is charging rate. The

timing dynamics of a charging job can be described as a

hybrid system with two discrete modes {0, 1}, representing

that the load is waiting to be processed, and actively running

respectively. The continuous state space is two-dimensional

with x1(k) representing the remaining time to finish the load

if it is running, and x2(k) representing the time before the

deadline. The state update equation in each mode is given

by






















f0(x(k)) =

(

x1(k)

x2(k) − T

)

f1(x(k)) =

(

x1(k) − T

x2(k) − T

) (7)

Here, T is the sampling time. The feasible mode sequence

set Q = {v ∈ Q|x1(k) ≤ x2(k) with dynamic (7)}.

D. Aggregated Control Problem

We consider the scenario where the aggregator has signed

contracts with participating residential customers to directly

control some of their loads. The aggregator could be part of a
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Load Serving Entity (LSE) or a Curtailment Service Provider

(CSP). It has two-way communication channels with each

individual load. Many objectives of the aggregator can be

formulated as the following general centralized optimal con-

trol problem.

Problem 1 (Aggregated Control Problem):

min
v

i∈Qi,i=1,...,M
J(v1, . . . ,vM )

where J(v1, . . . ,vM ) ,

N−1
∑

k=0

Fk(x(k),v(k)).

Here, x(k) and v(k) are the overall state and mode vectors

for the participating loads at time instant k, i.e.,

x(k) = [x1(k)T x2(k)T . . . xM (k)T ]T ,

v(k) = [v1(k) v2(k) . . . vM (k)]T .

The function Fk(·, ·) :
∏M

i=1 X
i ×

∏M
i=1 V

i → R is the

running cost function of the entire load population.

This optimal control problem can be solved by Dy-

namic Programming. However, it is often computationally

intractable if the number of the loads M is large due to the

curses of dimensionality. More importantly, even if such a

solution is available, its application in smart grid would be

rather limited because the aggregator requires the knowledge

of the model parameters and states of all the loads, which is

rather costly or even unrealistic.

III. DECENTRALIZED SOLUTION

A. General Solution

We decompose Problem 1 into decentralized subproblems.

Suppose load i ∈ M has the following objective.

min
v

i∈Qi
J i(vi, γ)

where J i(vi, γ) ,

N−1
∑

k=0

F i
k(xi(k), vi(k), γ(k)). (8)

Here, γ = [γ(0) γ(1) . . . γ(N − 1)]T ∈ R
N denotes the

coordination signal received from the aggregator, F i
k(·, ·) :

X i ×V i → R is the running cost of load i at time instant k.

After collecting all the outputs of the loads, the aggregator

can generate a coordination signal according to the following

equation,

γ = L(yi, . . . ,yM ) =

M
∑

i=1

wi(yi) + ζ. (9)

where wi : R
N → R

N is a function evaluating the output

of load i, ζ ∈ R
N is a system metric parameter. Notice that

both the states and outputs depend on the mode operations,

i.e., vi. Substituting (9) and (2) to (8), we can rewrite

J i(vi, γ) , Ĵ i(v1, . . . ,vM ) = Ĵ i(vi,v−i), i = 1, . . . , M.

The process of deciding vi can be regarded as a game

played by each load with the corresponding cost function

Ĵ i(·). We call it mode decision game denoted by Γ =
〈M,Q,J 〉, where J = (Ĵ1, . . . , ĴM ).

Definition 1: A mode sequence profile v∗ = (vi∗,v−i∗)
is a Nash Equilibrium (NE) if ∀i and ∀vi ∈ Qi

Ĵ i(v∗) ≤ Ĵ i(vi,v−i∗).
Assumption 1: ∀i, ∀v−i ∈ Q−i and for all ai,bi ∈ Qi

Ĵ i(ai,v−i) < Ĵ i(bi,v−i) ⇔ J(ai,v−i) < J(bi,v−i)
Assumption 1 requires the global cost that exhibits the same

“directional” behavior, when the individual load unilaterally

deviates. Under this assumption, the mode decision game Γ
becomes a potential game with the global cost function J(·)
the potential function. A potential game with finite action

set are known to possess at least one NE in pure strategies

[10]. Although the NE is not guaranteed to be the global

optimal solution of Problem 1, we will show in the following

sections that the performance of the NE is acceptable in real

applications.

There are a wide range of distributed learning algorithms

that converge to an NE in potential games. However, most

methods depend on sufficient information exchange between

all the players, which is not practically feasible or rather

costly for demand response applications. We thus introduce

the coordination signal γ to reduce the communication

burden.

Now we give our learning algorithm which is illustrated

in Fig. 1 and described by Algorithm 1. The basic idea here

is to obtain a better reply for each responsive load at every

iteration.

v̂
1

v̂
j

v̂
M

R1

Rj

RM

γl

γlγl Aggregator

Better

BetterBetter

Fig. 1. Learning algorithm in smart grid, where Ri represents responsive
load i

Algorithm 1 Learning Algorithm

Input: Cost functions, initial states and the dynamic of each

responsive load

Output: v1∗,v2∗, . . . ,vM∗

1: l = 1
2: Each load randomly chooses an admissible mode se-

quence, e.g., vi
0 and sends it to the aggregator

3: while There exists better reply do

4: The aggregrator generates γl and broadcasts it

5: Each load simultaneously solves Problem 2 and ob-

tains a new mode sequence v̂i, i = 1, . . . , M
6: if v̂i is a better reply then

7: v̂i is transmitted to the aggregator

8: end if

9: The aggregator randomly accepts one better reply and

updates the mode sequences according to (10)

10: l = l + 1
11: end while
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At iteration l, load i receives γl and solves the following

optimal control problem with only local information vi
l−1 at

the last iteration and the current coordination signal γl.

Problem 2 (Decentralized Control for Load i):

min
v̂

i∈Qi
J i(v̂i, φ)

where φ = γl − wi(hi(vi
l−1)) + wi(hi(v̂i))

In Algorithm 1, v̂i ∈ Qi is a (strictly) better reply at

iteration l if

Ĵ i(v̂i,v−i
l−1) < Ĵ i(vi

l−1,v
−i
l−1).

The mode sequences are updated as follows:

vi
l =

{

v̂i v̂i is a better reply and is accepted,

vi
l−1 otherwise.

(10)

Notice that the information required for load i to solve

the above optimization problem includes γl,v
i
l−1,h

i(·) and

wi(·). They are all available since γl can be received from

the aggregator, and the last three are all local.

Theorem 1: The solution proposed here will reach an NE.

Proof: Algorithm 1 can generate a finite improvement path.

It is proved in [10] that every maximal improvement path

must terminate in an NE in potential games. �

B. Reference Tracking Problem

We now consider an important class of the general aggre-

gated control problem, which tries to cooperatively control

the loads to track a given aggregated power reference. Let

yref = [r(0) r(1) . . . r(N −1)]T ∈ R
N
+ denote a reference

power trajectory. Here, the output of each load is the power

consumption. Different operation modes correspond to dif-

ferent power consumptions. For both HVACs and PHEVs,

hi(0) = 0, hi(1) = pi ⇒ hi(vi) = vipi, where pi is

the power consumption when the HVAC is “On” or the

PHEV is actively charging. Hence, the tracking problem can

be formulated as an aggregated control problem with the

following cost function

J(v1, . . . ,vM ) = ‖yref −

M
∑

i=1

vipi‖.

We design a specific coordination signal

γ = df = yref −
M
∑

i=1

vipi ∈ R
N . (11)

Here, df is called the difference vector and ‖df‖ is the

error between the reference and the aggregated response. We

design J i as

J i(vi, γ) = J i(df ) = ‖df‖.

Each load has the following objective:

min
v

i∈Qi
J i(vi, γ).

Notice that J = J1 = . . . = JM . Assumption 1 is thus

satisfied which makes the the process a potential game.

We can directly use Algorithm 1 to get an NE. However in

Algorithm 1 each load randomly chooses an admissible mode

sequence initially, which may result in a slow convergence

rate. Hence, we introduce Algorithm 2 as illustrated in Fig. 2

to obtain better initial mode sequences. Responsive loads are

divided into G groups. Every load is associated with a unique

group say i ∈ gj . Each load solves the following problem.

Problem 3 (Initialization of Load i):

min
v

i∈Qi
‖λT

j vipi‖, i ∈ gj

Here λj ∈ R
N is the coordination signal at this stage with

the kth element λj(k) determined by

r(k) −
∑

i∈ determined gm

vi(k)pi. (12)

Group gm is determined if all the loads belong to gm obtain

mode sequences and send them to the aggregator.

v
1
0

v
j
0

v
M
0

R1

Rj

RM
λh

λf

λn
Aggregator

Fig. 2. Initialization stage optimization (1 ∈ gh, j ∈ gf , and M ∈ gn)

Algorithm 2 Initialization Stage Optimization

Input: yref , initial states and the dynamic of each respon-

sive load

Output: v1
0,v

2
0, . . . ,v

M
0

1: The aggregator randomly divides loads into G groups,

i.e., ∃j ∈ {1, . . . , G}, ∀i, load i ∈ gj

2: The aggregator obtains λ1 as follows

3: for k = 0 to N − 1 do

4: λ1(k) ∝ 1/r(k)
5: end for

6: for j = 1 to G do

7: The aggregator transmits λj to every load belong to

gj

8: Load i ∈ gj solves Problem 3, obtains vi
0 and

transmits it to the aggregator

9: if j < G then

10: The aggregator updates λj+1 as follows

11: for k = 0 to N − 1 do

12: λj+1(k) ∝ 1/(12)

13: end for

14: end if

15: end for

C. Online Implementation of Reference Tracking

{{0 tl tnT (h − 1)T hT (N − 1)T NT

D D

λtl v
i
tl

v
i
tn

dftn

Aggregator

Fig. 3. Online optimization for responsive load i, the process of dashed
line is only for HVACs
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The solution proposed in the previous subsection is actu-

ally an off-line planning. In real power systems, an online

method is necessary to track the reference in a decentralized

manner. Hence, we revise the above solution and obtain such

online method. For simplicity, only the reference tracking

problem is considered. Other applications can be obtained

similarly.

The solution is depicted in Fig. 3. Suppose there are

HVACs and PHEVs in the grid with sampling time Th and Tv

respectively. We assume that Th = Tv = T . One can easily

extend our algorithm to the case when Th 6= Tv. Denote

Mh and Mv the HVAC set and PHEV set respectively. The

continuous time horizon is discretized by T into N instants,

i.e., [0, 1, . . . , N − 1]. We know that HVACs are running

all the time. PHEV i however is operated during [ti0, t
i
f ].

The aggregator calculates and sends D times of coordination

signals every T time. The aggregator divides HVAC units

into ⌈Mh

D
⌉ groups. The time interval of [0, T ] is also divided

into ⌈Mh

D
⌉ slots. Each slot is assigned to one group of HVACs

to finish the similar procedure described by Algorithm 2.

Notice that T is the sampling time of HVACs. So with this

division the initialization stage will be finished within one

instant. PHEVs are arriving randomly during the whole time

horizon. Assume that in [0, T ] there is no PHEV arrival. This

assumption is realistic because this interval is rather small

compared with the whole horizon.

Let vi
t(h :) denote a vector

[vi
t(h) vi

t(h + 1) . . . vi
t(N − 1)]T .

Similarly,

λtl
(1 :) = [λtl

(1) λtl
(2) . . . λtl

(N − 1)]T ,

df tn
(h :) = [df tn

(h) df tn
(h + 1) . . .df tn

(N − 1)]T .

The optimization problems are similar to the previous sub-

section. At the initialization stage (between 0 and T ), each

HVAC solves the following optimization problem to find the

future modes after instant 0.

Problem 4 (Initialization of HVAC Load i):

min
v

i
tl

(1:),vi
tl
∈Qi

‖λtl
(1 :)Tvi

tl
(1 :)pi‖

The first instant mode vi(0) of HVAC i is randomly deter-

mined. Thus the above optimization problem can only deter-

mine the modes after instant 0. PHEVs are not participating

in the initialization stage since there is no PHEV arrival at

the time horizon [0, T ].

Between time instant h− 1 and h, all the loads including

HVACs and the already arrived PHEVs solve the following

optimization problem to obtain a better reply (the modes after

instant h − 1).

Problem 5 (Decentralized Control For Each Load i):

min
v

i
tn

(h:),vi
tn

∈Qi
‖df tn

(h :) + (vi
tn−1

(h :) − vi
tn

(h :))pi‖

Now we summarize the online implementation as follows.

• Each HVAC unit i randomly choose an admissible vi
0(0)

and evolves according to its dynamic at k = 0.
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Fig. 4. Hour by hour outdoor temperature of August 15 in Columbus,
Ohio (from 9am to 9pm) [11]
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Time (Hour)

R
a
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Fig. 5. Last trip ending time distribution [12]

• The following procedure is similar to Algorithm 2.

HVACs are divided into ⌈Mh

D
⌉ groups. Group of HVACs

solve Problem 4 sequentially. When t = T , houses

evolve individually.

• Next stage is similar to Algorithm 1. At time tn
the aggregator sends df tn

to all the loads who solve

Problem 5, where (h−1)T ≤ tn < hT . If vi
tn

is a better

reply, then it is sent to the aggregator who accepts one

reply such that the error will be reduced. Responsive

loads evolve according to their dynamics.

• If there is no more better reply at time te, then the

computation stops. The random arrival of PHEVs may

restart the computation.

IV. SIMULATION RESULTS

A. Reference Tracking Example

Fig. 6 shows the aggregated response of 1000 HVAC units

and 500 PHEVs with the objective of tracking the reference

(also depicted in Fig. 6) during a day time.

The ETP model parameters used in the simulation were

generated using GridLAB-D [9]. Their power ranges from

4kw to 5kw. The outdoor temperature depicted in Fig. 4 was

generated according to the figure in [11] which shows the

average weather on August 15 for Columbus, Ohio, USA.

We assume that every participating HVAC unit has the same

air temperature control deadband [73◦F, 75◦F].
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Fig. 6. Reference tracking
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Type # Electric Range Voltage Current Charging Time

1 10 miles 110 (v) 15 (A) 2.1 (h)
2 20 miles 110 (v) 15 (A) 4.2 (h)
3 30 miles 110 (v) 20 (A) 4.8 (h)
4 40 miles 220 (v) 20 (A) 3.3 (h)

TABLE I

4 TYPES OF PHEVS USED IN OUR SIMULATION. DATA COURTESY [13]

Each PHEV charging job is described in Section II-C.

Arrival times are generated randomly according to the last

trip ending time distribution over one day (See Fig. 5)

provided in the 2001 National Household Travel Survey [12].

The size of the charging jobs depends on the State of Charge

(SOC) when the vehicle plugs in, as well as the battery

capacity of the vehicle. We consider 4 representative types

of PHEVs as described in Table I. Each charging job i is

randomly associated with one of the four categories and

assigned with a random initial SOC uniformly distributed

between 0.1 to 0.8. In this way, the job size τ i can be

determined. The deadline time tif is also generated randomly

with mean ti0 + 10 and a 2-hour standard deviation.

Without aggregated control, the HVACs will switch on

when the air temperature hits the upper boundary of the

control deadband, and will switch off when hitting the lower

boundary. For the charging of PHEVs, they can randomly de-

termine to run or wait as long as not violating the constrain,

i.e., xi
1(k) ≤ xi

2(k). We can see that the aggregated response

tracks the reference accurately with a few exceptions around

the beginning time.

B. Peak Reduction Example

Here, we use online implementation algorithm proposed

in Section III-C to reduce peak power consumption. Since

the highest outdoor temperature is mostly at afternoon as

depicted in Fig. 4, peak power consumption occurs around

the same time. We consider 1000 HVAC units to illustrate the

peak reduction with a minor modification of the optimization

objective described in Section III-C, i.e.,

min
v∈Q

J(df ) = min
v∈Q

N−1
∑

k=0

s(df (k))

where s(x) =

{

x2 x ≤ 0,
0 otherwise.

The coordination signal is the same as described in equa-

tion (11). Our main purpose is keeping the aggregated

response below power Limit 1 in the horizon [t0, t2) (at t2
the temperature is highest). In addition, between t2 and t3,

we impose another limit, Limit 2, to prevent large rebounds.

The result is given in Fig. 7.

V. CONCLUSION

This work proposes a general framework of decentralized

demand side control. The decomposition of the global in-

tractable problem is used such that each individual problem

is tractable for each responsive load. The formulation of the

mode decision game is employed to obtain a local optimal

convergent solution. In the scenario of reference tracking,

we design an initialization optimization stage where each

responsive load obtains a better initial mode sequence such

that the algorithm will converge faster. An online algorithm is

also given. Future research will focus on the receding horizon

control and its analysis.

REFERENCES

[1] O. Corradi, H. Ochsenfeld, H. Madsen, and P. Pinson, “Controlling
electricity consumption by forecasting its response to varying prices,”
to appear in IEEE Transactions on Power Systems, 2012.

[2] A. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load con-
trol with price prediction in real-time electricity pricing environments,”
IEEE Transactions on Smart Grid, vol. 1, no. 2, pp. 120–133, 2010.

[3] C. Joe-Wong, S. Sen, S. Ha, and M. Chiang, “Optimized day-ahead
pricing for smart grids with device-specific scheduling flexibility,”
IEEE Jouranl on Selected Areas in Communications, vol. 30, no. 6,
pp. 1075–1085, 2012.

[4] J. L. Mathieu, S. Koch, and D. S. Callaway, “State estimation and
control of electric loads to manage real-time energy imbalance,” to

appear in IEEE Transactions on Power Systems, 2012.
[5] C. Perfumo, E. Kofman, J. H. Braslavsky, and J. K. Ward, “Load

management: Model-based control of aggregate power for populations
of thermostatically controlled loads,” Energy Conversion and Manage-

ment, vol. 55, pp. 36–48, 2012.
[6] W. Zhang, K. Kalsi, J. Fuller, M. Elizondo, and D. Chassin, “Aggre-

gated model for heterogeneous thermostatically controlled loads with
demand response,” in IEEE PES General Meeting, San Diego, CA,
USA, Jul 2012.

[7] A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Transactions on Smart Grid, vol. 1, no. 3, pp. 320–331,
2010.

[8] L. Chen, N. Li, S. H. Low, and J. C. Doyle, “Two market models
for demand response in power networks,” in IEEE International

Conference on Smart Grid Communications, 2010, pp. 397–402.
[9] Gridlab-d residential module users guild. Available at

http://sourceforge.net/apps/mediawiki/gridlab-d/index.php?title=
Residential module user%27s guide.

[10] D. Monderer and L. Shapley, “Potential games,” Games and Economic

Behavior, vol. 14, pp. 124–143, 1996.
[11] Average weather on august 15 for columbus, ohio, usa. Avail-

able at http://weatherspark.com/averages/31170/8/15/Columbus-Ohio-
United-States.

[12] D. V. Collia, J. Sharp, and L. Giesbrecht, “The 2001 national house-
hold travel survey: A look into the travel patterns of older americans,”
vol. 34, no. 4, 2003.

[13] A. Elgowainy, J. Han, L. Poch, M. Wang, A. Vyas, M. Mahalik, and
A. Rousseau, “Well-to-wheels analysis of energy use and greenhouse
gas emissions of plug-in hybrid electric vehicles,” Argonne National
Laboratory, Tech. Rep., June 2010.

6606


