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Abstract— The paper develops a new distributed state esti-
mation technique for power networks. This distributed state
estimator aims to provide the same optimal estimate as the
centralized one via a small amount information exchange
between neighbors, which are physically in parallel with the
partition of power networks. Moreover, we show that the
distributed state estimator converges to the optimal estimate
in a finite number of iterations depending on the size of the
abstract graph. Both rigorous analysis and simulations are
provided to show the correctness.

I. INTRODUCTION

Power system state estimation as a core application of

the on-line energy management system (EMS) has been

well developed since it was introduced in early 1970’s

[12]. The traditional centralized state estimator is typically

installed in a central control center in order to provide the

best estimate of the state based on all the measurements

collected by SCADA systems as well as a global power

system model [5], [11]. However, the significant growth of

demand for electricity has even stressed the importance of the

development of renewable and distributed power generation

along with decentralized energy storage technologies in the

last decade. In this process, the so-called “smart grid” is

considered to replace the traditional highly centralized power

system at low voltage levels, where the architecture of the

future power grid is fully distributed to distributed generation

and distributed control [3]. Correspondingly, distributed state

estimation techniques become more desirable in smart grids.

To this end, this paper investigates the distributed state

estimation problem replacing a single central estimator by

a set of local estimators distributed over a power network.

In recent years, there have been developed quite a few

distributed state estimation techniques [2]. However, the

algorithms either still require a coordinator to cope with the

interaction of local estimators [4], [6], [7], [10], [16], or they

are not able to provide the optimal estimate as the centralized

one or do not converge in finite time [1], [8], [9].

This paper develops a new distributed state estimation

technique for power networks, which does not require a

coordinator like those hierarchical estimation schemes ( [4],

[6], [7], [10], [16]) and is fully distributed. The execution

of the algorithm only needs a small amount information
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exchange between neighbors via a data communication net-

work that is topologically the same and physically in parallel

with the partition of a power network, which is unlike [9]

where a particular communication structure has to be defined.

Among all these distributed estimation techniques, the most

distinct feature of our proposed scheme is that each local

estimator only estimates the local state in the region it

is in charge of, rather than the global state of the entire

power network. Thus, the topological information of the

whole network and the global power network measurement

model are not the requisite. Instead, each local estimator only

needs to get access to the local measurements in its own

region and also the boundary measurements related to its

physical neighbors. By carrying out a local estimation based

on the local measurements and updating its local estimation

iteratively based on the boundary measurements and the

exchanged estimates of its neighbors’ states, our proposed

scheme ensures a finite time convergence towards the same

optimal estimate as obtained by a centralized estimator. By

comparison, our algorithm results in the optimal estimate

while [9] provides an approximate estimate with the estimate

errors upper bounded. Moreover, our algorithm requires

to transmit low dimensional estimation information of the

boundary states between two neighbors while the algorithms

in [9] need to transmit individual copy of the estimation

information of the whole states. Our proposed algorithm is

general, with applications not only on power systems but

also other networked systems such as traffic systems, sensor

networks, etc.

II. SYSTEM MODELING AND PROBLEM STATEMENT

Consider an interconnected system that can be represented

by an acyclic graph G = (V , E) (see for example Fig. 1).

. . .

. . .

. . .

. . . 1

2

3

4

5

6

i

j

k

(1, 3)

(2, 3)

(3, 4)
(4, 5)

(4, 6)

Fig. 1. An interconnected system represented by an acyclic graph.

Each node i ∈ V = {1, 2, · · · , n} represents a subsystem

of the interconnected system, whose state is xi ∈ R
si .

The edges in the graph indicate the links between different
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subsystems. Lots of practical systems can be modeled in this

way, including power grids, traffic networks and internet.

Taking a power grid as an example, a node i refers to a

subnetwork in a local area, while the edges refer to the

transmission lines between different subnetworks.

Suppose on each node i in the graph, we have a node

measurement, namely,

zi = Aixi + wi, i ∈ V , (1)

where zi ∈ R
qi is called the measurement on node i, Ai ∈

R
qi×si is the measurement matrix, and wi stands for the

measurement noise, which is white Gaussian with zero mean

and covariance cov (ωi) = Ri.

Moreover, on each edge (i, j) ∈ E , we have an edge

measurement for which the measurement relates to the states

of both nodes associated with this edge. That is,

z(i,j) = Bijxi +Bjixj + w(i,j), (2)

where z(i,j) ∈ R
rij is called the measurement on edge

(i, j), Bij and Bji with appropriate dimensions are the

measurement matrices, and ω(i,j) is also white Gaussian with

zero mean and covariance cov
(
ω(i,j)

)
= R(i,j).

For the example of power grid, the node measurement

represents the internal measurement for subnetworks where

a measurement equipment is placed, and the edge mea-

surement represents the tie-line measurement between two

subnetworks.

In the paper, we have the following assumptions.

Assumption 1: The topological structure of graph G is

acyclic.

Assumption 2: Ai is of full column rank for i ∈ V .

Denote the aggregated state x = (x1, . . . , xn) and the

aggregated measurement z = (· · · zi · · · zij · · · ). Then the

measurement equation for the graph can be written as

z = Hx+ ω, (3)

where H =
[
· · · Hi · · · H(i,j) · · ·

]T
, with Hi =

[0 Ai 0] and H(i,j) = [0 Bij 0 Bji0]. In the above 0 indi-

cates a zero matrix with proper dimensions. The covariance

of ω is of the block diagonal form, i.e.,

R := cov (ω) = diag
(
· · · Ri · · · R(i,j) · · ·

)
.

Then based on the typical linear measurement equation

(3), the traditional weighted least squares (WLS) estimation

method can be utilized to calculate the optimal estimation

value as

x̂∗ = arg min
(
(z −Hx)

T
R−1 (z −Hx)

)
(4)

=
(
HTR−1H

)−1
HTR−1z. (5)

The estimation error covariance is given by

P ∗ = E
(
(x− x̂∗) (x− x̂∗)

T
)
=

(
HTR−1H

)−1
. (6)

The above centralized WLS estimation method assumes

the complete knowledge of the matrices H and R. In other

words, all the measurements z need to be transmitted to a

central monitor. Furthermore, Eq. (5) requires the inversion

of HTR−1H . Hence a heavy burden of computation and

communication is the great challenge for the centralized

WLS estimation method applied in very large-scale power

systems.

In the paper, we are seeking for light solutions for each

node so that it is capable of estimating its own local state,

without degrading any estimation performance compared

with the centralized estimation scheme. In the proposed

distributed estimation algorithm, a number of distributed

local monitors are installed to replace the single central

monitor. The local monitors need to finish the following two

task in estimation: 1) Local communication: interchange

the boundary estimates with its neighbor nodes; 2) Local

calculation: run the local estimator based on its own local

measurement and the boundary estimates received from its

neighbor nodes.

The following notions and notations will be used through-

out the paper. The set of neighbor nodes of i is defined as

Ni. Denote Ni/j the set of all the neighbor nodes of node

i except j. The set of edges linking i and j ∈ Ni, is defined

as Mi.

Now we are ready to introduce the problem formally.

Distributed WLS Problem. Design a local estimation

scheme for each node i based on its own node measure-

ment (1), its directly related edge measurement (2), and

communication information from its neighbors, to find the

unbiased estimates x̂i, i ∈ V , minimizing the global objective

function

J(x̂) := (z −Hx̂)T R−1 (z −Hx̂) (7)

where x̂ is the aggregated state of local state estimates x̂i.

The motivation for the problem is clear, as for a distributed

network over a large scale regions such as power networks, it

is usually impossible or costly to collect all the measurements

and then make a centralized estimation.

III. DISTRIBUTED WLS ALGORITHM

In this section, we present a distributed WLS estimation

scheme and then show that it offers the optimal solution as

the centralized one.

We first present our proposed algorithm formally and next

give detailed interpretations.

In the algorithm presented below, we use the form of infor-

mation filter, for which we define αi (k) = Pi (k)
−1

x̂i (k)
and Qi (k) = Pi (k)

−1
for any i ∈ V and k = 0, 1, . . . ,

called the information vector and information matrix respec-

tively.

Algorithm 3.1: For each i ∈ V ,

1) Initialization (k = 0).

a) Local estimation:

αi (0) = AT
i R

−1
i zi (8)

Qi (0) = AT
i R

−1
i Ai. (9)
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b) Information transmitting to neighbor j ∈ Ni:

βj
i (0) = BijQ

−1
i (0)αi (0) (10)

Φj
i (0) = BijQ

−1
i (0)BT

ij . (11)

2) Iteration (k = 1, 2, . . . ).

a) Information receiving and update:

For any edge (i, j) with j ∈ Ni, edge mea-

surement update using the estimation from its

neighbor:

yji (k) = z(i,j) − βi
j (k − 1) ; (12)

Corresponding noise covariance update:

Sji (k) = R(i,j) +Φi
j (k − 1) . (13)

b) Local estimation update:

αi (k) = αi (0) +
∑

j∈Ni

BT
ijS

−1
ji (k)yji(k)

Qi (k) = Qi (0) +
∑

j∈Ni

BT
ijS

−1
ji (k)Bij .

(14)

c) Information transmitting to neighbors j ∈ Ni:

Compute

αj
i (k) = αi (k)−BT

ijS
−1
ji (k)yji(k)

Qj
i (k) = Qi (k)−BT

ijS
−1
ji (k)Bij ,

(15)

and then transmit the following information to

node j

βj
i (k) = Bij

[
Qj

i (k)
]−1

αj
i (k) (16)

Φj
i (k) = Bij

[
Qj

i (k)
]−1

BT
ij . (17)

First, each node i receives information transmitted from

its neighbors, which is calculated via the estimate and

corresponding estimation error covariance: (k indicates the

iteration step)

βi
j (k) = Bjix̂j (k) (18)

Φi
j (k) = BjiPj (k)B

T
ji, (19)

and then updates the edge measurement using the received

information according to the following formula:

z(i,j) − βi
j (k) = Bijxi +Bji(xj − x̂j (k)) + w(i,j). (20)

The left-hand side of (20) is treated as a known measurement

and the last two terms in the right-hand side of (20) is

treated as the measurement noise with covariance Φi
j (k) +

R(i,j). Here we would like to point out that the transmitting

information (βi
j and Φi

j) relating to the edge measurement

is of very small dimension and this indicates a very light

communication load.

Second, each node runs a local estimator based on its own

measurement (1) and the updated edge measurements (20)

to estimate its own state x̂i (k + 1) and also provides the

estimation error covariance Pi (k + 1).
Third, update the information going to send to the neigh-

bour nodes. We take the information from node i to j,

i.e., βj
i (k + 1) and Φj

i (k + 1), as an example. The local

estimator on node i is ran again based on (1) and (20)

(without using the information from j) to calculate x̂
′

i (k + 1)
and P

′

i (k + 1). Then

βj
i (k + 1) = Bij x̂

′

i (k + 1) (21)

Φj
i (k + 1) = BijP

′

i (k + 1)BT
ij (22)

will be sent to node j.

Iterations continue until every estimate attains the optimal

one. It will be shown that after a finite number of steps

related to the “diameter” of the graph, all the estimates will

attain the optimal values and further iterations will result in

the same values. As a result, each node can terminate its

estimation after a fixed number of steps.

In the proposed distributed estimation scheme, the re-

source being used only includes local calculation and local

communication with neighbors. Local calculation occurs on

each node by only estimating its own state, while communi-

cation is only required between neighbors in transmitting a

very light data. Comparing to the centralized WLS estimation

scheme that needs to collect the knowledge of all the

nodes via communication and needs a powerful computer

to do relatively heavy calculations, the proposed distributed

scheme can save considerable computation burden and com-

munication bandwidth and thus is particularly useful for large

scale networks.

Next we present our main result, but firstly we introduce

several notions from graph theory. The maximum distance

of a path between node i and any other node j in the graph

G is defined as the eccentricity of node i, denoted as εi.
The maximum eccentricity is called the graph diameter, L.

Also denote P ∗
i (i = 1, . . . , n) the block diagonal sub-matrix

in P ∗ corresponding to the state xi on node i, i.e., P ∗
i =

E
(
(xi − x̂∗

i ) (xi − x̂∗
i )

T
)
.

We start to analyze the proposed algorithm from the

following preliminary result.

Lemma 3.1: Consider a distributed estimation scheme un-

der Assumption 2. Let x̂i be the resulting estimate and Pi

be the associated estimation error covariance, i = 1, . . . , n.

If Pi = P ∗
i for all i = 1, . . . , n, then (x̂1, · · · , x̂n) equals to

x̂∗ and minimizes J(x̂).
Proof: Assuming the measurement noise has zero mean and

diagonal covariance, it is known that if the weighted matrix

is chosen as R−1, the WLS estimation x̂∗ is also the best

linear unbiased estimation that minimizes the mean squared

estimation error [13], i.e.,

x̂∗ = argmin
(
E
(
‖x− x̂‖2

))

= argmin
(

Tr
(
E
(
(x− x̂) (x− x̂)T

)))

For a distributed estimation scheme generating an esti-

mation x̂i and the associated estimation error covariance Pi

(i = 1, . . . , n), if Pi = P ∗
i for all i = 1, . . . , n, then we

know that Tr(P ∗) =
∑n

i=1 Tr(Pi), which means

E(‖x− x̂‖2) = E(‖x− x̂∗‖2).

Note that E(‖x − x̂‖2) is a convex function and that
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Assumption 2 ensures the uniqueness of the global minimum

for J(x̂), so it follows that (x̂1, · · · , x̂n) equals to x̂∗ and

minimizes J(x̂). �

Ensured by Lemma 3.1, we only need to show Pi =
P ∗
i , i ∈ V in the remaining of the paper for a distributed

solution.

Theorem 3.1: Consider an acyclic graph G and the dis-

tributed WLS estimation algorithm. For each node i (i =
1, . . . , n), if k = εi, then

Pi (k + l) = P ∗
i , for all l ≥ 0. (23)

Notice that, from (23), the estimate on all nodes converge

after L = max {εi, i ∈ V} steps.

The proof of the theorem requires the following lemmas.

For an acyclic graph G, when we cut off an edge (i, j),
the graph G becomes two separated subgraphs, which do not

connect each other. Denote the subgraph containing node i
as G(i,j). An example is given in Fig. 2.

. . .

. . .

. . .
. . .

. . .

. . .
ij

G(j,i) G(i,j)

Fig. 2. Cutting off edge (i, j) results in two separated subgraphs.

Lemma 3.2: (αj
i (k), Q

j
i (k)) in the distributed WLS esti-

mator for an acyclic graph G in step k is the distributed WLS

estimate on node i for the subgraph G(i,j) in step k.

Proof: From (14) and (15), we can get

αj
i (k) = αi (0) +

∑
l∈Ni/j

BT
ilS

−1
li (k)yli(k)

Qj
i (k) = Qi (0) +

∑
l∈Ni/j

BT
ilS

−1
li (k)Bil,

Comparing with the formula (14), it is certain that

(αj
i (k), Q

j
i ) is the local estimation update on node i for the

induced subgraph G(i,j) after removing edge (i, j). �

1
(1, 2)

2

1 : z1 = A1x1 + w1

2 : z2 = A2x2 + w2

(1, 2) : z(1,2) = B12x1 +B21x2 + w(1,2)

Fig. 3. An interconnected system with two nodes.

Lemma 3.3: Consider an interconnected system of two

nodes represented by G in Fig. 3. Under the distributed WLS

scheme,

Pi (εi + l) = P ∗
i , i = 1, 2, for all l ≥ 0

where εi = 1.

Due to space limitations, the proof is omitted. The readers

may refer to [14].

Before next lemma, we give a definition of the topological

structure of a particular graph.

Definition 3.1: An acyclic graph is called a radial graph

(shown in Fig. 4), if in this graph, one and only one node’s

eccentricity equals to 1, and the eccentricities of all the other

nodes equal to 2. The node with 1 eccentricity is called the

central node, which is indicated by c.

. . .

1

2

3

c

n

Fig. 4. An interconnected system represented by a radial graph.

Lemma 3.4: Consider an interconnected system repre-

sented by a radial graph G in Fig. 4 with the measurements

given by

zi = Aixi + wi, i ∈ V (24)

z(c,j) = Bcjxc −Bjcxj + w(c,j), j ∈ Nc. (25)

Under the distributed WLS estimation scheme, we have

Pc (εc + l) = P ∗
c , for all l ≥ 0

where εc = 1.

Proof: Note that the local estimation update on node c is

αc (k) = αc (0) +
∑

j∈Nc

BT
cjS

−1
jc (k)yjc(k)

and

Qc (k) = Qc (0) +
∑

j∈Nc

BT
cjS

−1
jc (k)Bcj .

They can be rewritten as

αc (k) = αc (0) +




Bc1

Bc2

...

Bcn




T

S̃




y1c (0)
y2c (0)

...

ync (0)


 (26)

and

Qc (k) = Qc (0) +




Bc1

Bc2

...

Bcn




T

S̃




Bc1

Bc2

...

Bcn


 (27)

where S̃ = diag
(
S−1
1c (0) , S−1

2c (0) , · · · , S−1
nc (0)

)
.

Eqs. (26) and (27) imply that the radial graph can be treated

as a two-node graph by combining nodes 1, . . . , n into a

single node. Thus, applying Lemma 3.3, the conclusion

follows immediately. �

Now we come to prove Theorem 3.1.

Proof of Theorem 3.1: Consider an acyclic graph G and a

node i in G. Relabel the nodes if necessary so that the graph

looks as in Fig. 5 where nodes 1 and 2 are considered to

have the maximal distance away from node i.
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Fig. 6. Topological structure of the IEEE 118-bus system.
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Fig. 5. Illustration for the proof of Theorem 3.1.

In other words, the distance from node 1 and 2 to node i
equals to εi, while the distance from all other nodes to node

i is no more than εi.
By cutting off edge (3, 4), it is known that G(3,4) is a

radial graph. Denote ε′3 the eccentricity of node 3 in the

subgraph G(3,4), which is 1 here. Then it follows from

Lemma 3.4 and Lemma 3.2 that α4
3(ε

′
3) = α4

3(ε
′
3+1) = · · ·

and Q4
3(ε

′
3) = Q4

3(ε
′
3 + 1) = · · · , satisfying Q4

3(ε
′
3) =

(P sub
3 )−1 and α4

3(ε
′
3) = (P sub

3 )−1x̂′
3, where x̂′

3 and P sub
3

are the optimal estimation on node 3 and its corresponding

estimation error covariance for the graph G(3,4) (namely, only

using the measurements in G(3,4)).

Next, cut off edge (4, 7) and look at the subgraph G(3,4).

Note that α4
3(1) = α4

3(2) = · · · and Q4
3(1) = Q4

3(2) = · · · ,
as we have just shown. Moreover, by the same way, it can be

shown that α4
5(0) = α4

5(1) = · · · and Q4
5(0) = Q4

5(1) = · · · ,
since the eccentricity of node 5 is 0 in the subgraph G(5,4).

Also, for the same reason we have α4
6(0) = α4

6(1) = · · ·
and Q4

6(0) = Q4
6(1) = · · · . Thus according to the formula

(15), α7
4(ε

′
4) = α7

4(ε
′
4 + 1) = · · · and Q7

4(ε
′
4) = Q7

4(ε
′
4 +

1) = · · · , for which ε′4 = 2 is the eccentricity of node 4 in

the subgraph G(4,7). Moreover, as Q4
3(ε

′
3) = (P sub

3 )−1 and

α4
3(ε

′
3) = (P sub

3 )−1x̂′
3, by checking the formula (15) at step

k = 2, it is equivalent to the first-step local estimate on node

4 based on the subgraph G(4,7) with G(3,4) being treated as a

single node. Thus, applying Lemma 3.4 and Lemma 3.2, we

know that Q7
4(ε

′
4) = (P sub

4 )−1 and α7
4(ε

′
4) = (P sub

4 )−1x̂′
4,

where x̂′
4 and P sub

4 are the optimal estimation on node 4 and

its corresponding estimation error covariance for the graph

G(4,7).

Since the eccentricity of any node l ∈ Ni must be less

than or equal to εi − 1, repeating this argument eventually

leads to the conclusion that for any l ∈ Ni,

αi
l(εi − 1) = αi

l(εi) = · · · = (P sub
l )−1x̂′

l

Qi
l(εi − 1) = Qi

l(εi) = · · · = (P sub
l )−1

where x̂′
l and P sub

l are the optimal estimation on node l and

its corresponding estimation error covariance for the graph

G(l,i). Thus, from the formula (14), we could get αi(εi) =
αi(εi + 1) = · · · and Qi(εi) = Qi(εi + 1) = · · · , which

implies Pi (εi) = Pi(εi + 1) = · · · .
Furthermore, since

αi
l(εi − 1) = (P sub

l )−1x̂′
l and Qi

l(εi − 1) = (P sub
l )−1

for any l ∈ Ni, the local estimate on node i at step k = εi
is equivalent to the first-step local estimate on node i for a

radial graph with G(l,i) being treated as a single node. Thus,

it follows from Lemma 3.4 that Pi (εi) = P ∗
i . �

IV. EXAMPLES AND SIMULATIONS

The IEEE 118-bus system is utilized to test the proposed

algorithm in this paper. The partition of the system is shown

in Fig. 6, which can be generally described by the graph

in Fig. 7. As mentioned in Section II, each subsystem is

seen as a node and the links with tieline measurements
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are referred as edges. In order to simplify the simulation,

only PMU measurements which offer linear measurements

are considered. The placement of PMU is optimized by the

method proposed in [15]. We point out that the traditional

SCADA measurements also can be utilized in Algorithm 3.1,

after linearizing around the operating point [12].

Under Assumptions 1 and 2, we run Algorithm 3.1

on the system described above. The sum of the differ-

ence between the distributed and centralized estimates, i.e.,∑n
i=1 |x̂i (k)− x̂∗

i |, and sum of the trace of the estimation

error covariance of each subsystem, i.e.,
∑n

i=1 Tr {Pi (k)},

are utilized to compare the performances of distributed and

centralized estimation methods. Here, we use a Monte Carlo

simulation to compute the estimation error covariance, and

1000 Monte Carlo runs are taken.

Fig. 8 and Fig. 9 show the simulation results, which show

that finite-time-convergence is guaranteed, and as indicated

in Theorem 3.1, the algorithm converges after k ≥ L = 4
steps.

1

2 3 4

56

(1, 2)

(2, 3) (3, 4)

(4, 5)
(4, 6)

Fig. 7. The graph G describing the partition of the IEEE 118-bus system.
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Fig. 8. Difference between the distributed and centralized estimates.

V. CONCLUSIONS

A novel distributed state estimation algorithm for decen-

tralized local monitors to compute the WLS estimate of the

power system state is proposed. The algorithm only requires

local topological structure information, local measurements

and low dimensional boundary information from neighbors.

After a finite number of iterations, the local estimates can

reach the same estimation values obtained via the centralized

estimator. And the total iteration step equals to the diameter

of the graph.
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Fig. 9. Trace of the distributed and centralized estimation error covariances.
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