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Linear LMS Compensation for Timing Mismatch in
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Abstract—The time-interleaved architecture permits the imple-
mentation of high-frequency analog-to-digital converters (ADCs)
by multiplexing the output of several time-shifted low-frequency
ADCs. An issue in the design of a time-interleaved ADC is the com-
pensation of timing mismatch, which is the difference between the
ideal and real sampling instants. In this paper, we propose a com-
pensation method that, as opposite to existing approaches, does not
assume that the input signal is band limited but assumes instead
that it has a stationary known power spectrum. The compensation
is then designed in a statistically optimal sense. This largely reduces
the compensation order required to achieve a given reconstruction
accuracy. Also, under the band-limited assumption, the proposed
method achieves perfect reconstruction if no constraints are im-
posed on the order of the compensation. Simulation results show
that a rough estimate of the input spectrum can be used without
much performance loss, showing that an accurate knowledge of the
input spectrum is not necessarily required.

Index Terms—Analog–digital conversion (ADC), compensation,
least mean squares (LMS) methods, multirate digital filters,
sampled-data systems, signal reconstruction, stochastic systems,
timing.

I. INTRODUCTION

A HIGH-SPEED analog-to-digital converter (ADC) can be
realized by using the so-called time-interleaved architec-

ture [1]. In this technique, a -channel time-interleaved ADC
consists of ADCs (called channel ADCs) having the same
sampling rate but different sampling phases, as if they were a
single converter operating at a sampling rate times as fast.
Recent high-speed ADCs using this technology achieve sam-
pling rates of up to 20 GS/s [2].

In spite of its conceptual simplicity, a drawback of
the time-interleaved technique is that mismatches be-
tween different channel ADCs can deteriorate the overall
signal-to-noise-and-distortion ratio (SINAD) [3], [4]. Three
kinds of mismatches take place in a time-interleaved ADC.
Timing mismatch is the difference between the ideal and
real sampling instants of each channel ADC, gain mismatch
is the difference between their gains, from analog input to
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digital output, and offset mismatch is the difference between
their ground values. In this paper, we consider the problem of
timing-mismatch compensation.

A first step in a timing-mismatch compensation strategy in-
volves estimating the mismatches. The two main approaches for
doing so are called foreground and background techniques. In
foreground techniques, the sampling times are estimated using
a test signal, which can be a ramp [5] or a sinusoid [6], [7].
In order to avoid interrupting the normal ADC operation, the
test signal can be mixed with the input signal and then sepa-
rated from the obtained samples [5]. However, this approach re-
duces the available dynamic range of the ADC. This is avoided
in background techniques, where the sample times are estimated
from the digital outputs of the channel ADCs, while in normal
operation. Different approaches for doing so are available. In
[8] and [9], the sample intervals between every two consecu-
tive channel ADCs are estimated using the mean-square value of
the difference between their samples. A different approach uses
oversampling to guarantee that the input signal has no spectral
components on a frequency band around the Nyquist frequency.
The sampling times can then be estimated by requiring that the
reconstructed samples satisfy this spectral property [10], [11].
Finally, a background-estimation technique for digital data sig-
nals is proposed in [12], where the estimation is done by min-
imizing the difference between the observed samples and their
values obtained after a slicer (i.e., after detecting their digital
values).

Once the timing mismatches have been estimated, this infor-
mation is used to design a compensator. There are two main
options for doing so. In the first option, the sampling clock of
each ADC is adjusted to eliminate the timing mismatch [13].
A drawback of this approach is that it requires some means of
controlling the sampling clock. This not only complicates the
hardware implementation but also tends to increase the random
sampling jitter. To avoid these problems, the second option cor-
rects the timing mismatches by digitally processing the channel
ADC outputs to interpolate the sample values that would have
occurred at the ideal sample times. This can be done using dif-
ferent available approaches. An early method carries out the
compensation in the frequency domain [14]. The drawback of
this approach is that, being a frequency-domain method, it re-
quires the batch processing of the “whole history” of the sam-
pled signal, which prevents its usage for real-time applications.
To get around this issue, a number of methods have been pro-
posed, which carry out the compensation using multirate filter
banks [15]–[17]. We describe these methods in some detail in
Section III.

Obviously, a timing-mismatch compensator needs to be
redesigned when the sampling pattern changes due to, e.g.,
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component aging and temperature variations. A desirable prop-
erty for a compensation technique is that this redesign can be
efficiently done so that it can be easily done online. Generally
speaking, this is addressed by expressing the compensation
filters, associated to all possible timing mismatches, as linear
combinations of a small number of fixed filters, weighted by
coefficients that depend on the mismatches. In [16] and [18],
the fixed filters are optimally designed in a least squares or
min–max sense. Since this technique leads to a high design
complexity when the number of channels is large, a suboptimal
solution was proposed in [19] and [20] using the Taylor ex-
pansion of the compensation filters with respect to the channel
timing mismatches.

A common assumption of the timing-mismatch compen-
sation methods in [15]–[17] is that the signal to be sampled
is band limited. Under this assumption, all aforementioned
methods are able to achieve perfect reconstruction (i.e., the
contribution of the timing mismatch to the overall SINAD
is completely removed) if the order of the compensation can
be arbitrarily large. However, the band-limited assumption
may not only be unrealistic in many applications but also, as
illustrated in Section VI-D, results in compensation filters with
a very slow impulse response decay. Consequently, accuracy
can only be achieved with compensations having very high
orders. This is particularly important in real-time applications
since, due to the high sampling rate, a compensation of very
high order can be computationally unaffordable. To address
this issue, in this paper, we drop the band-limited assumption,
and we design the compensation in a statistically optimal
[least mean squares (LMS)] sense, using some knowledge (see
hereinafter) on the power spectrum of the input signal. This
leads to compensation filters having a much faster decay rate,
largely reducing the compensation order for a given accuracy.
Furthermore, the design can be optimally done by taking into
account a constraint on the compensation order. The proposed
compensation is derived as a (matrix) Wiener filter [21], [22].
However, we point out in Section IV-C that, like the methods in
[15]–[17], it is equivalent to a filter-bank compensation. Since
the proposed method is designed for non-band-limited signals,
it obviously cannot achieve perfect reconstruction in general.
However, again, like the methods in [15]–[17], it does so in the
band-limited case, provided that the order of the compensator
is not restricted.

To carry out the proposed LMS design, we need to do some
assumption on the power spectrum of the input signal. In this
sense, there are three different scenarios in the following.

1) In some applications, this information is known a priori by
the user, e.g., digital communication applications, where
the signal is modulated data with a known stationary spec-
trum.

2) If the input power spectrum is time variant or unknown to
the user, it can be estimated online using a standard tech-
nique. These techniques are divided into indirect and di-
rect ones [23]. Indirect algorithms estimate a discrete-time
spectrum, which is then converted into continuous time
[24], while direct algorithms “directly” estimate the pa-
rameters of a continuous-time spectrum. A direct algo-
rithm for continuous-time autoregressive models can be

Fig. 1. Time-interleaved ADC scheme.

obtained by approximating the differentiation operation in
discrete time [25]. However, the extension of this technique
to continuous-time autoregressive moving average models
is nontrivial. In [26], this is done by fitting the parameters
of the continuous-time spectrum to match its estimate at
multiples of the sampling period obtained from the avail-
able samples. To reduce the amount of samples required to
achieve an accurate spectrum estimate, at the expense of
extra hardware, the method in [27] uses a continuous-time
multiple-output filter (called input-to-state filter) to gen-
erate a continuous-time vector signal whose covariance
matrix is used for estimation.

3) If the input spectrum is not known and an estimation algo-
rithm cannot be afforded, a nominal spectrum can be used.
Simulation results show that, while the proposed method
loses some performance when a rough estimate of the input
power spectrum is used, it still largely outperforms the
available methods. This shows that an accurate knowledge
of the input spectrum is not necessary.

The rest of this paper is organized as follows. We give an
overview of time-interleaved ADCs in Section II and of the
methods for timing-mismatch compensation in Section III. In
Section IV, we introduce the proposed method, and we show
how it is equivalent to a filter-bank compensation. We consider
two cases: The first one does not impose any constraint on
the order of the compensator, while the second one does. In
Section V, we state some properties of the proposed method
when the input power spectrum is assumed to be band limited.
Finally, some simulation results are presented in Section VI,
and concluding comments are given in Section VII.

II. TIME-INTERLEAVED ADCS

The time-interleaved ADC scheme is shown in Fig. 1. The
continuous-time input signal is sampled using slow-
rate channel ADCs, operating at sampling frequency ,
but having different sampling phases. The th ADC’s sampling
phase is denoted by , i.e., its output is given by

(1)

The outputs , , are then multiplexed to gen-
erate the time-interleaved ADC output , which has an av-
erage rate of .

Obviously, if the sampling phases ’s satisfy

(2)
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Fig. 2. Filter-bank-based timing-mismatch compensation scheme.

then equals the samples that would be obtained by
using a fast ADC of sampling frequency , i.e.,

(3)

However, (2) cannot be guaranteed always in practice, and there-
fore, an estimate of the regular samples needs to be
constructed from the available samples , .

III. METHODS FOR TIMING-MISMATCH COMPENSATION

As mentioned in Section I, a number of filter-bank-based
methods have been proposed to address the timing-mismatch
compensation problem described in Section II. A general
scheme describing all of them is shown in Fig. 2. In this
scheme, the arrangement of -channel ADCs, with its as-
sociated sampling phases, is considered as an analysis filter
bank with continuous-time input and discrete-time output,
formed by the filters , (with denoting the
Laplace variable), whose outputs are synchronously sampled
at frequency . The compensation is then done by using a
synthesis filter bank, which is implemented by an upsampling
operation (i.e., zero-valued samples are added between
every two samples), then filtering each component using the
array of filters , , and finally adding
together all the resulting signals.

The scheme in Fig. 2 is slightly more general than that in
Fig. 1 in the sense that it permits the use of oversampling (i.e.,

). Notice that, when using oversampling, while the av-
erage rate of the available samples , , is

, the samples are still reconstructed at the desired
rate . Therefore, this form of oversampling differs from the
usual form in which the samples are reconstructed at a rate that
is higher than the desired one. When , the choice of fil-
ters , , which produce some given samples

, is not unique. Hence, oversampling adds flexibility in the
compensation design. This can be used to reduce the order of
the compensation at the expense of a higher average sampling
rate [17].

Using the scheme in Fig. 2, we will give in the following
an overview of the available timing-mismatch compensation
methods.

A. EO Method [15]

Yao and Thomas stated in [28] that a band-limited contin-
uous-time signal , which is sampled using an irregular grid

with an average rate that is higher than or equal to
the Nyquist rate, can be reconstructed using the formula

(4)

where

(5)

is the derivative of , and the origin is shifted so that
.

It was shown in [15] that, if the sampling grid is periodic [i.e.,
it satisfies (2)] and the continuous-time signal needs only to be
reconstructed on the regular grid (as in a
time-interleaved ADC), then the reconstruction formula (4), (5)
is equivalent to a filter-bank-based reconstruction, such as the
one shown in Fig. 2. In the resulting scheme, and the
filters , , are given by

where denotes the Laplace transform of

evaluated at , and . Hence, the
proposed scheme achieves perfect reconstruction if the filters

are allowed to have infinite order and is band limited
to

B. JL Method [16]

Using the alias representation [29], the reconstructed samples
in Fig. 2 can be expressed in the frequency domain as

with

(6)

In [16], the synthesis filters are designed using digital
fractional delay filters. More precisely

(7)
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Fig. 3. Compensation scheme with discrete-time equivalent analysis filter
bank.

so (6) becomes

Then, the scaling coefficients , , are chosen
so that

(8)

with satisfying . It follows that, if the filters
are allowed to have infinite order (so that (7) is satisfied)

and the input signal is band limited to

(9)

then (8) holds, and therefore, the proposed scheme achieves per-
fect reconstruction.

Remark 1: In view of (9), the order of the decay rate of the
synthesis filters can be increased by requiring that (7)
holds only within the band .

C. PLH Method [17]

If is band limited to , we can write

It is straightforward to see that the low branch in Fig. 2 can
be replaced by the discrete-time equivalent scheme of Fig. 3,
where the continuous-time signal is replaced by its sam-
ples , and the continuous-time filters ,

, are replaced by the discrete-time filters
with the following frequency response:

(10)

Now, using the polyphase representation [29], the scheme in
Fig. 3 can be converted into that in Fig. 4, where the polyphase
representations and of and , respectively,
are given by

Fig. 4. Polyphase representation of Fig. 3.

with denoting transposition. Also, the th entry
of the polyphase representation of the analysis

filter bank has impulse response

(11)

and the th entry of the polyphase representa-
tion of the synthesis filter bank has impulse response

(12)

In view of Fig. 4, perfect reconstruction is guaranteed if

(13)

Then, for the given defining the support of by
, is designed as follows:

(14)

where denotes the Frobenius
norm of the matrix with entries . Now, from (10)
and (11), has infinite impulse response (IIR). Hence, in
view of (13) and (12), the proposed scheme achieves perfect
reconstruction if , the filters are allowed to have
infinite order, and is band limited to

Remark 2: If is not an integer, the frequency response
of in (10) has a discontinuity at . This results in

and the solution of (14) having very large impulse
responses and, therefore, the synthesis filters having very
high orders. Aiming at reducing the orders of , a Kaiser
window is used in [17] to increase the decay rate of the impulse
responses of , .

Remark 3: Notice that, if , there is only one choice of
that satisfies (13). Hence, in this case, and if additionally

, the Prendergast Levy Hurst (PLH) and Eldar
Oppenheim (EO) methods are equivalent.
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Fig. 5. Design scheme of the proposed compensation method.

IV. PROPOSED TIMING-MISMATCH COMPENSATION METHOD

The previously described EO, Johansson Lowenborg (JL),
and PLH methods are designed under the assumption that the
input signal is band limited. As mentioned in Section I, the
drawback of this assumption is that it results in synthesis fil-
ters having very high orders. To go around this issue, in
this section, we drop the band-limited assumption on the input
signal, and we assume instead that it has a stationary known
input spectrum (see the discussion in Section I about the prac-
tical implications of this assumption). We then design the com-
pensation using a statistically optimal LMS criterion.

The measured sampling grid
is irregular and periodic with period , while the

desired grid is regular with rate . Now, both
grids can be turned into regular sampling grids of rate
taken on the vector signals

Hence, we can restate the problem as that of estimating
from . We propose to do this es-

timation using a linear LMS criterion [21]. More precisely, the
estimate of is given by

where denotes the (matrix) impulse response of a filter,
which is calculated to minimize the power of the reconstruction
error signal , and denotes the support
of . The idea is shown in Fig. 5.

Since is assumed to be stationary, the signals and
are discrete-time stationary (vector) random processes,

and therefore, can be found by solving

(15)

where denotes the expected value. Now, the solution of
(15) requires that the estimation error is orthogonal to the the
data used in the estimation, i.e.,

or, equivalently

(16)

where and denote the correlation matrix of
and the cross-correlation matrix between and ,

respectively, i.e.,

(17)

(18)

To solve (16), we need to provide expressions for and
. To do so, let denote the autocorrelation of ,

i.e.,

Then, we have, for each ,

and for each

The solution of (16) depends on the support of the impulse
response . We solve (16) in the following by considering
two cases. In Section IV-A, we consider the case , which
is known as the Wiener smoother in the context of statistical
signal processing [21], [22]. This is obviously the best possible
solution, but it yields a noncausal IIR filter . In a practical
implementation, the support needs to be truncated. This can be
done by simply truncating the support of the Wiener smoother,
but this yields an unoptimal solution. We do this in an optimal
way in Section IV-B.

A. Unconstrained Case (IIR-LMS Method)

As mentioned earlier, if , the solution of (16) is known
as the Wiener smoother, and its derivation can be found in any
standard book on statistical signal processing (e.g., [21, Sec.
7.8]). The solution is given by

(19)

where

and

and denotes the (Moore–Penrose) pseudoinverse [30] of
the matrix .
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B. Constrained Case (FIR-LMS Method)

Let , with and . Also, let
and denote the -rows of and , respec-

tively. Then, we can write (16) as

(20)

for all and . Define the matrix
by

...
. . .

...

where, for each , , the submatrix
is given by

for all , . Also, for each , define the row
vectors and by

where, for each and , the subvectors
and are given by

Then, (20) can be written as

Now, defining the matrices and
by

...
...

the solution of (16) is obtained as follows:

C. Interpretation as a Filter-Bank-Based Compensation
Method

As mentioned in Section I, the proposed compensation
method is equivalent to a filter-bank-based method, such as
the one shown in Fig. 2. To see this, in view of (12), we can
interpret the transfer matrix as the polyphase

representation of a synthesis filter bank with upsampling factor
and filters

(21)

where denotes the th entry of the transfer
matrix .

V. BAND-LIMITED CASE

A common feature of the methods in Section III is that they
achieve perfect reconstruction if is band limited and that
the order of the compensator is not restricted. In this section,
we show that, under the same conditions, and if , the
proposed IIR-LMS design is independent of the input spectrum
and that it also enjoys the perfect-reconstruction property. Addi-
tionally, we show that, if has a flat spectrum within its pass-
band, then the proposed LMS method is equivalent to the PLH
method, even when the order of the compensator is restricted
(i.e., in the FIR case). Furthermore, in view of Remark 3, this
implies that, if the compensator order is not restricted (i.e., in
the IIR case), all three methods, namely, EO, PLH, and the pro-
posed LMS, are equivalent.

As described in Section IV-C, the proposed method can rep-
resented as in Fig. 2. If is band limited with support in

, as explained in Section III-C, we can represent
Fig. 2 in its polyphase form shown in Fig. 4. It follows that

, and therefore

(22)

(23)

where . We will use (22) and (23) in the fol-
lowing to show the aforementioned properties.

A. IIR-LMS Design Is Independent of the Input Spectrum

Equations (4) and (5) imply that the matrix has a left
inverse on the unit circle (i.e., there exists such that

for all ). This, in turn, implies that

(24)

and for all

(25)

From (22) and (25), it follows that

(26)

Then, putting (26) and (23) into (19) and using (24), we obtain

which, under the mild assumption that is nonsingular
almost everywhere on the unit circle, results in

which is independent of the input spectrum.
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B. IIR-LMS Design Achieves Perfect Reconstruction

We need the following lemma.
Lemma 1: If is band limited with support in

and , then

Proof: Combining (23), (26), and (24), we have

where the second equality follows from a property of pseudoin-
verses [30].

The -transform of the autocorrelation matrix of
the error signal is given by

(27)

Now, using (19) and Lemma 1, we have

(28)

and in a similar way

(29)

Also, we have

(30)

where the second equality follows from a property of pseudoin-
verses [30] and the third one follows from Lemma 1. Finally,
putting (28)–(30) in (27), we have

implying that the proposed compensation achieves perfect re-
construction.

C. Equivalence Between the PLH and LMS Methods Under a
Flat Band-Limited Input Spectrum

Let the input power spectrum be given by

otherwise.
(31)

Then, , and from (22) and (23), the LMS design
(16) can be written as

(32)

where, with some abuse of notation, and de-
note the inverse -transforms of and , respec-
tively. Now, the design (14) for the PLH method can be written
as

(33)

where , the norm , and

(34)

with being the trace operator of the
matrix with entries , and denoting the inverse

-transforms of . Then, we say that (33) is satisfied if and
only if, for all such that

In view of (34), this implies that

and comparing with (32), it follows that the PLH and LMS
methods are equivalent for any support .

VI. SIMULATIONS

In order to evaluate the proposed compensation method,
we compare its performance with those of the EO, JL, and
PLH methods described in Section III. To this end, we
consider the example used in [16] and [17], which uses
five-channel ADCs with no oversampling
and with sampling phases .
This corresponds to the following timing mismatches

. For simplicity, the sam-
pling period is . In order to quantify the performance, we
use the inverse of the SINAD, i.e.,

A. Known Input Spectrum

In this section, we generate the input signal using a random
process (instead of a sum of sinusoids, as done in [16] and [17]).
The filters , , in the EO, JL, and PLH
methods have, in theory, infinite order and therefore need to
be truncated. In the first simulation, we truncate the impulse
responses , , of the EO, JL, and PLH
methods to 1500 taps. Also, we design the FIR-LMS method
using and so that the equivalent synthesis
filter bank (21) has the same number (1500) of taps. We gen-
erate the input signal as filtered white noise using a Butterworth
low-pass filter (input filter) of 20th order and cutoff frequency



MARELLI et al.: LINEAR LMS COMPENSATION FOR TIMING MISMATCH IN TIME-INTERLEAVED ADCs 2483

Fig. 6. Frequency response of a family of 20th-order Butterworth low-pass
filter with different cutoff-frequency values.

Fig. 7. Performance comparison of the different compensation methods with a
compensator’s complexity constraint of 1500 mult./sample.

. The frequency response of a family of such filters with dif-
ferent values of is shown in Fig. 6. We compare the perfor-
mances of the different methods for several values of . The re-
sult is shown in Fig. 7. We see that, while the FIR-LMS method
outperforms the other methods, the PLH method still performs
satisfactorily over the whole cutoff-frequency range.

Notice that, for large cutoff-frequency values, the perfor-
mance of all methods is limited by the amount of signal power
above the Nyquist frequency, so all methods tend to perform
similarly. However, the FIR-LMS method performs slightly
better due to its optimal nature. Also, the performance of
the different methods improve as the cutoff-frequency value
decreases, until reaching a given threshold level of ,
from where the performance remains roughly constant (this is
better seen in Figs. 8 and 9 in the following). This threshold
results from the truncation of the synthesis filters ,

, and its level can be decreased by increasing
the truncation order.

The performance of the JL method is rather poor in the high
cutoff-frequency range. One reason for this is that, according to
(9), the method is suitable for signals with cutoff frequency that
is smaller than 0.3 Hz (instead of 0.5 Hz as for the EO and PLH
methods). However, notice that, even if we shift its performance
curve by 0.2 Hz to the right, its performance is still inferior to
that of the other methods. The reason for this is that the choice of
fractional delays for the synthesis filter bank (7) is not optimal.
On the other hand, as mentioned in Section I, this choice has the
advantage of permitting an efficient redesign when the sampling
pattern changes.

Fig. 8. Performance comparison of the different compensation methods with a
compensator’s complexity constraint of 150 mult./sample.

Fig. 9. Performance comparison of the different compensation methods with a
compensator’s complexity constraint of 15 mult./sample.

In the second simulation, following the design in [17], we
truncate the impulse responses , , of the
EO, JL, and PLH methods to 150 taps, and we use and

for the FIR-LMS method so that the equivalent synthesis
filter bank has the same number (150) of taps. We generate the
input signal as in the first simulation, and we show the result in
Fig. 8. We see that the FIR-LMS method clearly outperforms
the other methods for low cutoff-frequency values.

In the third simulation, we consider a very low compensa-
tion complexity. We truncate the impulse responses ,

, to 15 taps, and we use the FIR-LMS method with
and so that the equivalent synthesis filter bank

has 15 taps. The result is shown in Fig. 9. We see that, while the
performance of the EO, JL, and PLH methods has clearly de-
graded, the FIR-LMS method is still able to achieve an average

of about 90 dB for low cutoff-frequency values.

B. Unknown Input Spectrum

The design of the LMS method is optimum for a given power
spectrum of the input signal . In this section,
we evaluate the performance degradation of the LMS method
when there is a mismatch between the input-signal power spec-
trum, determined by the input filter, and the nominal power
spectrum used to design the LMS compensator, determined by
a nominal filter. We use a compensator order of 150 taps for all
methods, and a fixed nominal filter designed as a Butterworth
low-pass filter of tenth order and cutoff frequency of 0.4 Hz.
We use the same input filter used in Section VI-A, i.e., a But-
terworth low-pass input filter of 20th order and variable cutoff
(angular) frequency . The frequency responses of the nominal
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Fig. 10. Frequency response of the input filters with different cutoff-frequency
values and the nominal filter used to design the LMS method.

Fig. 11. Performance comparison of the different compensation methods
with input-power-spectrum mismatch ��������	
� ���
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 �
��� ���
��
������.
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and input filters are shown in Fig. 10, and the simulation result is
shown in Fig. 11, where we have also included the performance
obtained with the LMS method without spectral mismatch (i.e.,
when using the actual input power spectrum). We see that, while
losing some performance due to the spectral mismatch, the LMS
method clearly outperform the EO, JL, and PLH methods in the
low cutoff-frequency range.

C. Periodic Input Signal

In this section, we evaluate the performance of the different
methods when using a periodic input signal, as done in [16] and
[17]. We consider the same example used in those works, i.e.,
the input signal is given by

where and the phases , are random
variables uniformly distributed in the interval (0, ]. We use
a compensator order of 150 taps for all methods, and a Butter-
worth low-pass input filter of 20th order and cutoff frequency
of 0.4 Hz for the design of the FIR-LMS method. The resulting

values are given in Table I, showing the clear ad-
vantage of the FIR-LMS method.

Fig. 12. Comparison of the synthesis filter banks obtained using rectangular
and Butterworth input filters.

D. Band-Limited Versus Non-Band-Limited Input Spectrum

As mentioned previously, the computational advantage of
the proposed LMS method comes from the fact that doing
a band-limited assumption on the input spectrum results in
synthesis filters , , with a very slow decay
rate. To illustrate this point, we compare in Fig. 12 the mag-
nitude of the impulse response of the first channel synthesis
filter , which is obtained under two different assumptions
on the input spectrum. The first is the band-limited assumption
to the band . As pointed out in Section V-A, the
resulting synthesis filters are independent of the shape of the
input spectrum within the band , and as shown in
Section V-C, they equal those obtained using the PLH method.
The second assumption is that the input signal is filtered white
noise, using a Butterworth low-pass input filter of 20th order
and cutoff frequency of 0.4 Hz. Fig. 12 clearly shows the
faster decay rate obtained when the band-limited assumption is
dropped.

VII. CONCLUSION

We have proposed a compensation method for timing
mismatches in time-interleaved ADCs. As opposite to other
approaches, the proposed method does not assume that the
input signal is band limited but assumes instead that it has a
known stationary input power spectrum. The compensation is
then designed in a statistically optimal sense. This largely re-
duces the compensation order, and thus computing complexity,
required to achieve a given reconstruction accuracy. If the input
signal is not assumed to be band limited, perfect reconstruction
cannot be guaranteed. However, we have shown that, under the
band-limited assumption, the proposed method achieves perfect
reconstruction if no constraints are imposed on the order of
the compensation. Simulation results show that the proposed
compensation method clearly outperforms the other methods,
in terms of the SINAD, for a given fixed compensation order.
We have also shown that a rough estimate of the input spectrum
can be used without much performance loss, showing that an
accurate knowledge of the input spectrum is not necessarily
needed.
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