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KALMAN FILTERING OVER LOSSY NETWORKS UNDER
SWITCHING SENSORS

Keyou You, Tianju Sui, and Minyue Fu

ABSTRACT

In this paper, we study the mean square stability of Kalman filtering of a discrete-time stochastic system under
two periodically switching sensors. The sensor measurements are sent to a remote estimator over a lossy channel whose
packet loss process is independent and identically distributed. We prove that the problem can be converted into the sta-
bility analysis of Kalman filtering using two sensors at each time, and the measurements of each sensor are transmitted
to the estimator via an independent lossy channel of the same packet loss rate. Some necessary and/or sufficient condi-
tions for stability of the estimation error covariance matrices are derived. Moreover, the effect of the sensor switching
on the filter stability is revealed. Their implications and relationships with related results in the literature are discussed.
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I. INTRODUCTION

This work is a contribution to the stability anal-
ysis of Kalman filtering of a discrete-time stochastic
system under two periodically switching sensors with
random packet losses. In contrast to the current literature
[1–3], the striking difference lies in the use of periodically
switching sensors in the networked systems. Sensors of
different nature, bandwidth, accuracies and noise levels
usually have different performances in specific operating
and/or environmental conditions. Thus, the use of differ-
ent sensors may provide richer information to increase
the estimation/control performance. This is particularly
important in the situation where a single sensor may not
be able to provide sufficient information to estimate the
state of a dynamical system.

Specifically, we consider an estimation framework
of a stochastic system over a lossy network under two
periodically switching sensors. See the networked system
in Fig. 1 for an illustration. A motivating example is
given by sensors and the estimator communicating over a
wireless channel where the quality of the communication
network varies over time due to the random channel fad-
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ing and/or congestion. This happens in resource limited
wireless sensor networks where communications between
devices are power constrained and therefore limited in
range and reliability. As in [2,4], the packet loss process
in this work is modeled as an independent and identically
distributed (i.i.d.) Bernoulli process. Here the periodi-
cally switching sensors are used to observe the system,
and result in a switching system. It is well known that the
stability analysis of a switching system is usually more
involved than that of a time-invariant system [5]. From
this perspective, the problem of filter stability involv-
ing switching sensors for data transmission over a lossy
network is more complicated than that of a single sensor.

Kalman filtering is of great importance in the net-
worked systems due to its various applications ranging
from tracking, detection to control. The stability analy-
sis of Kalman filtering with intermittent measurements
under a single sensor can be dated back to the influential
work [2], which studies the optimal state estimation prob-
lem for a discrete-time linear stochastic system with the
raw measurements being randomly dropped. By model-
ing the packet loss process as an i.i.d. Bernoulli process,
it is proved that there exists a critical packet loss rate
above which the mean state estimation error covariance
matrices will diverge. This naturally raises a fundamen-
tal problem in quantifying the critical packet loss rate as
it is a basic requirement on the lossy network to achieve
filter stability. However, their approach for filter stability
depends on the use of upper and lower bounds of the esti-
mation error covariance matrices. Since both bounds typ-
ically do not coincide, they are unable to exactly quantify
the critical loss rate for general vector systems, and only
provide its lower and upper bounds, which are attainable
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Fig. 1. Networked systems over lossy channels under two
periodically switching sensors.

under some special cases, e.g., the lower bound is tight
if the observation matrix is invertible. To date, a large
amount of effort has been made toward finding the criti-
cal packet loss rate [1,3,6,7]. Recently, we investigated the
critical rate problem in [1] by developing a random down
sampling approach, and obtain an exact quantification
for a wider class of systems, including second-order sys-
tems and the so-called non-degenerate higher-order sys-
tems. A remarkable discovery in [8] is that there are
examples of second-order systems for which the lower
bound given by [2] is not tight. This approach extensively
exploits the system structure, especially the presence form
of the unstable open-loop pole [1,8].

In this paper, we extend this approach to the case
involving two periodically switching sensors. Note that
a periodically time-varying system can be transformed
to a time-invariant system. Our idea is based on con-
verting the original stability problem into the stability of
the Kalman filter of another dynamical system observed
by two sensors at each time, and each sensor’s mea-
surements are transmitted through an independent lossy
channel with the same statistical property on the packet
loss. Some sufficient conditions are given to guarantee
the stability of the mean of the state estimation error
covariance matrices. While for the second-order dynam-
ical system, we derive the necessary and sufficient con-
dition for the stability of the estimation error covariance
matrices. The result exactly characterizes how the sen-
sor switching affects the filter stability, and reveals an
interesting tradeoff between the sensor information and
network condition for the filter stability. In particular,
the more information sent to the estimator per transmis-
sion, the less stringent is the condition required for the
filter stability.

The rest of the paper is organized as follows. The
problem is formulated in Section II. We derive the sta-
bility condition for Kalman filtering using periodically
switching sensors without packet losses in Section III.
Then, the effect of the lossy network on stability of
the Kalman filter using two periodically switching sen-

sors is studied in Section IV. In Section V, we derive
the necessary and sufficient condition for the stabil-
ity of the Kalman filter for the second-order system.
Some conclusion remarks are drawn in Section VI. A
preliminary version of this paper has been reported
in [9].

II. PROBLEM FORMULATION

2.1 System description

Consider a linear discrete time-invariant stochastic
system as follows:

xk+1 = Axk + wk, (1)

where xk ∈ Rn denotes the system state at time k and
wk is a white Guassian noise with zero mean and posi-
tive definite covariance matrix Q. The initial state x0 is
a Gaussian random vector with mean x̄0 and covariance
matrix P0.

There are two switching sensors to cooperatively
monitor the system, and at each time, one of them takes
a noisy measurement from the system by

yk = C𝜎k
xk + v𝜎k

, (2)

where 𝜎k ∈ {1, 2} represents the index of which sensor
is activated to take a measurement at time k, and v𝜎k

is
white Gaussian noise with zero mean and positive def-
inite covariance matrix R𝜎k

. Both C1 and C2 are of full
row rank. The measurement yk is directly transmitted
to a remote estimator via an unreliable communication
channel, see Fig. 1. Due to random fading and/or con-
gestion of the communication channel, packets may be
lost while in transit inside the network, which happens
frequently in the wireless sensor networks. To examine
this phenomenon, we use a binary random process 𝛾k
to denote the packet loss process. Precisely, let 𝛾k = 1
indicate that the packet containing the information of
yk has been successfully delivered to the estimator while
𝛾k = 0 corresponds to the loss of the packet. In this
paper, an erasure channel is employed for date commu-
nication, which implies that the random process 𝛾k is an
i.i.d. process [10].

Different from [11,12], the present work ignores
other effects such as quantization, transmission errors
and data delays. In comparison with [1], the measurement
matrix C𝜎k

is now time-varying, which is used to allevi-
ate the working load of one sensor for the purpose of
prolonging the life time of the network or provide richer
information for the estimator.
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As an initial attempt, we consider a periodically
switching rule in this work. To be precise,

𝜎k =
{

1, if k is odd;
2, if k is even.

(3)

2.2 Intermittent Kalman filter

Since the switching rule is deterministic, the estima-
tor is able to decide which sensor is in use at each time and
whether the packet containing the measurement informa-
tion yk is received or not. Then, the information available
to the estimator at time k is given by

k =
{
𝜎i, 𝛾i, yi𝛾i, i ≤ k

}
.

Denote the minimum mean square error (MMSE)
predictor and estimator by x̂k|k−1 =E

[
xk|k−1

]
and x̂k|k=

E
[
xk|k

]
, respectively. Their corresponding estimation

error covariance matrices are given by Pk|k−1 = E

[ (
xk−

x̂k|k−1

) (
xk−x̂k|k−1

)T |k−1

]
and Pk|k−1 = E

[(
xk−x̂k|k)(

xk − x̂k|k)T |k

]
. In view of [2], the above quantities can

be computed via the following intermittent Kalman filter.

x̂k|k = x̂k|k−1 + 𝛾kKk

(
yk − C𝜎k

x̂k|k−1

)
; (4)

Pk|k = Pk|k−1 − 𝛾kKkC𝜎k
Pk|k−1, (5)

where the Kalman gain Kk = Pk|k−1CT
𝜎k

(
C𝜎k

Pk|k−1CT
𝜎k
+

R𝜎k

)−1
, x̂0|−1 = x̄0 and P0|−1 = P0. In addition, Pk+1|k =

Apk|kAT + Q and x̂k+1|k = Ax̂k|k.
Let Pk ∶= Pk|k−1, it follows that

Pk+1 = APkAT + Q − 𝛾kAPkCT
𝜎k

×
(

C𝜎k
PkCT

𝜎k
+ R𝜎k

)−1
C𝜎k

PkAT

∶= gk

(
Pk,R𝜎k

)
.

(6)

The goal of this paper is to derive the necessary
and/or sufficient condition on the packet loss process for
the mean square stability of the filter, i.e., supk∈N E[Pk] ≺
∞, where the mathematical expectation is taken with
respect to the packet loss process {𝛾k}k∈N. In particular,
there exists a positive definite matrix P̄ such that Pk ⪯ P̄
for all k ∈ N. The matrix inequality A ⪯ B means that
B − A is semi-positive definite. Similar notations will be
made for ≺,≻ and ⪰ in the remainder of the paper.

Remark 1. In the sequel, the notion of filter stability is
always in the sense that supk∈N E[Pk] ≺ ∞.

III. STABILITY OF THE KALMAN FILTER

In this section, we consider the stability of the
Kalman filter using two periodically switching sensors
without packet losses. This allows us to reveal the effect
of lossy channels on the stability of the Kalman filter in
the next section. We recall the following result [13].

Lemma 1. gk(⋅, ⋅) is monotonically increasing in the sense
that

gk(P1,R) ⪯ gk(P2,R), ∀P1 ⪯ P2; (7)

gk(P,R1) ⪯ gk(P,R2), ∀R1 ⪯ R2. (8)

For convenience, we show that the sensor noise lev-
els do not affect the stability of the Kalman filter under
two switching sensors. To this purpose, denote RM =
R1 + R2 and Rm = min

{
𝜆min

(
R1

)
, 𝜆min

(
R2

)}
⋅ I , where

𝜆min(Ri) > 0 is the minimum eigenvalue of Ri. Then, it
follows from the monotonicity of gk(⋅, ⋅) and Rm ⪯ R𝜎k

⪯
RM that

gk

(
Pk,Rm

)
⪯ gk

(
Pk,R𝜎k

)
⪯ gk

(
Pk,RM

)
,∀k ∈ N. (9)

This essentially implies that the time-varying prop-
erty of R𝜎k

does not affect the stability of Pk. It is also
known from [8] that the stability conditions of both
Pk+1 = gk

(
Pk,Rm

)
and Pk+1 = gk

(
Pk,RM

)
are the

same. Thus, there is no loss of generality to assume that
R1 = R2 = R. This implies that the new challenge solely
lies in the time-varying nature of the observation matrix
C𝜎k

.
It should be noted that the stability analysis of a

time-varying system is usually much more involved than
that of a time-invariant system. Since the focus of this
work is on quantifying the effect of the lossy network on
the stability of the Kalman filter, we first derive the stabil-
ity condition of the Kalman filter without packet losses,
which corresponds to 𝛾k = 1 for all k ∈ N.

By virtue of [14], a necessary and sufficient con-
dition for the stability of the Kalman filter without
packet losses is that

(
A,C𝜎k

)
is uniformly detectable.

This requires the unstable modes of the system uniformly
observable since all the state variables associated with the
stable modes of the system will be exponentially stable in
the mean square sense. For this purpose, we only need
to consider the state subspace corresponding to unsta-
ble modes. Hence, it is sensible to make the following
assumption.

Assumption 1. All the eigenvalues of A lie outside or on
the unit circle.
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Then,
(
A,C𝜎k

)
is required to be uniformly observ-

able under Assumption 1 for the stability of the Kalman
filter without packet losses, i.e., there exist a positive
integer h, and positive numbers 𝛽0 > 𝛼0 > 0 such that

𝛽0I ⪰
k+h∑
i=k

(
Ai−k)T

CT
𝜎i

C𝜎i
Ai−k ⪰ 𝛼0I ≻ 0,∀k ∈ N.

The above uniformly observability condition can be fur-
ther simplified as stated in the following result.

Lemma 2. The system
(
A,C𝜎k

)
with 𝜎k given in (3) is

uniformly observable if and only if both(
A2,

[
C1

C2A

])
and

(
A2,

[
C1A
C2

])
(10)

are observable.
Moreover, if A is nonsingular, the observability

property of the following systems(
A2,

[
C1

C2A

])
and

(
A2,

[
C1A
C2

])
(11)

are equivalent.

Proof. The first part directly follows from the defi-
nition of observability [15]. We only need to elabo-
rate the second part. For notational simplicity, denote[

C1
C2

]
as [C1;C2]. Let the observability test matrices

be 1 =
[
C1;C2A;… ;C1A2(n−1);C2A2n−1

]
and 2 =[

C1A;C2;… ;C1A2n−1;C2A2(n−1)]. Consider 1 and 2A,
it is clear that the rows of both matrices associated with
C2 are the same. By the Cayley-Hamilton theorem, there
exist ai ∈ R such that A2n = a0I +a1A2 +…+an−1A2(n−1).
Pre-multiply both sides of the equality by C1, it follows
that the last row of 2A associated with C1 can be lin-
early represented by the rows of 1. This further implies
that each row of 2A can be represented by the rows of
1. Hence, rank

(
2A

)
≤ rank

(
1

)
. Similarly, one can

argue that rank
(
1A

)
≤ rank

(
2

)
. Since A is nonsingu-

lar, it obviously holds that rank
(
1

)
= rank

(
1A

)
and

rank
(
2

)
= rank

(
2A

)
. Combing the above, we obtain

that rank
(
1

)
= rank

(
2

)
, which completes the proof.

Thus, the uniform observability property of the
periodically switching system is converted into that of
two time-invariant systems, each of which are observed
by two sensors at each time.

In general, the non-singularity assumption on A is
mild, e.g. it holds for all systems satisfying Assumption 1.
By Lemma 2, we focus on the system with the following

observability property in this paper since it is the basic
requirement for the stability of the Kalman filter without
packet losses under Assumption 1.

Assumption 2. Let C =
[
C1A;C2

]
, the system

(
A2,C

)
is

observable.

Remark 2. By the PBH test [15], the observability of(
A2,C

)
implies that (A,C) is observable while the observ-

ability of (A,C) usually does not imply that
(
A2,C

)
is

observable. For instance, A = diag(1,−1) and C = [1, 1].
This, together with Lemma 2, essentially implies that
using two sensors to observe the same system at each
time requires a weaker condition for the stability of the
Kalman filter than that of periodically switching sensor
at each time, which certainly is consistent with our intu-
ition as the former case supplies more information than
the later one. We also mention that the observability of
(A2, [C1;C2]) does not imply that of

(
A2,C

)
. For exam-

ple, A = diag(1,−1), C1 = [1 1] and C2 = [1 − 1].
It should be noted that both

(
A,C1

)
and

(
A,C2

)
are

observable.

IV. STABILITY OF THE INTERMITTENT
KALMAN FILTER

In this section, we establish the network condition
on the packet loss process 𝛾k for the stability of the
intermittent Kalman filter under two periodic sensors.

Denote the packet receival rate p = P{𝛾k = 1}. By
Theorem 4 in [1], one can easily establish the following
necessary condition.

Theorem 1. Consider the networked system in Fig. 1,
a necessary condition for supk∈N E[Pk] ≺ ∞ is that|𝜆max|2(1−p) < 1, where 𝜆max is the maximum eigenvalue
in magnitude of A.

In fact, the above necessary condition has been
derived by many authors [1,2,6,7] under a single sensor
case, and has been shown to be sufficient as well for some
special cases. It is interesting to investigate whether this
condition is sufficient under the present framework. For
a time-invariant observation matrix, i.e., C1 = C2, it
is shown that the condition in Theorem 1 is also suffi-
cient if C1 is invertible on the observable subspace [7] or
(A,C1) is a non-degenerate system [1]. Note that the peri-
odic switching between two stable subsystems may lead
to an unstable system due to the destabilizing effect of the
switching. For example, one can verify that the system
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K. You et al.: Kalman Filtering Over Lossy Networks 49

xk+1 = Akxk is internally unstable where

Ak = 1
8
⋅
[

0 9 + 7 ⋅ (−1)k

9 − 7 ⋅ (−1)k 0

]
,

although Ak has all eigenvalues inside the unit circle for
each k. This intuitively implies that the derivation of suf-
ficient condition for the filter stability is more involved
under the time-varying observation matrices.

In the previous section, the stability condition of
the Kalman filter using two periodically switching sen-
sors can be lifted into that of a time-invariant system with
two measurement sensors if there is no packet loss (cf.
Lemma 2). This motivates us to check whether, under
i.i.d. packet losses, the problem under consideration can
be converted into the stability analysis of the Kalman fil-
ter for a time-invariant system using two measurement
sensors simultaneously over two independent lossy chan-
nels, each of which is subject to an i.i.d. packet loss
process. It turns out to be positive. To elaborate it, we
recall a result in [1].

Lemma 3 [1]. Let  =
∑∞

i=1 𝛾i

(
A−i

)T
CT

𝜎i
C𝜎i

A−i. Under
Assumption 1, there exists two positive numbers 𝛼 and 𝛽

such that

𝛽 ⋅ E
[
−1] ⪰ sup

k∈N
E
[
Pk|k] ⪰ 𝛼 ⋅ E

[
−1] . (12)

Then, we obtain an interesting result on the equiv-
alent stability property of the networked systems.

Theorem 2. Consider the networked systems in Fig. 1 and
Fig. 2. If A is nonsingular, the necessary and sufficient
conditions for the stability of the corresponding MMSE
estimators are the same.

Proof. Note that Pk|k−1 ⪰ Pk|k and Pk+1|k = APk|kAT +
Q, it is obvious that supk∈N E[Pk] ≺ ∞ is equivalent to
supk∈N E[Pk|k] ≺ ∞. By Lemma 3, the filter stability of
the networked system in Fig. 1 is equivalent to that

E
[
−1] ≺ ∞. (13)

Since 𝛾k is an i.i.d. process,  can be rewritten by

 =
∞∑

i=1

(
A−2i)T [

𝛾2i−1AT CT
1 𝛾2iC

T
2

] [C1A

C2

]
A−2i

d
=

∞∑
i=1

(
A−2i)T [

𝛼iA
T CT

1 𝛽iC
T
2

] [C1A

C2

]
A−2i, (14)

where
d
= means the equivalence in distribution on both

sides, and 𝛼i, 𝛽i are two i.i.d. Bernoulli processes with the

Fig. 2. Networked systems over lossy channels. The
open-loop system and the sensor measurement
matrices are accordingly denoted above the blocks of
systems and sensors. All the lossy channels are subject
to the i.i.d. packet loss with the same statistical
properties and mutually independent.

same statistics with 𝛾i, i.e., E[𝛼i] = E[𝛽i] = p. Thus, the
filter stability of the networked systems in Fig. 1 is equiv-
alent to that of the first networked system in Fig. 2. The
rest of the proof is similarly established.

The above result can be immediately used to derive
a sufficient condition for filter stability.

Theorem 3. Consider the networked system in Fig. 1
satisfying Assumption 1, a sufficient condition for
supk∈N E[Pk] ≺ ∞ is that

E

(∞∑
i=0

𝜁i

(
A−2i)T [

AT CT
1 CT

2

] [C1A

C2

]
A−2i

)−1

≺ ∞, (15)

where 𝜁i is an i.i.d. process with P
{
𝜁i = 1

}
= p2.

Proof. By (14), define 𝜁i = min
{
𝛼i, 𝛽i

}
, which is again an

i.i.d. process with P
{
𝜁i = 1

}
= P

{
𝛼i = 1

}
P
{
𝛽i = 1

}
=

p2. Then, it follows that[
𝛼iA

T CT
1 𝛽iC

T
2

] [C1A

C2

]
≥ 𝜁i ⋅

[
AT CT

1 CT
2

] [C1A

C2

]
. (16)

Combing Lemma 3 and (14), the proof is completed.

By Theorem 1 and 3, a simple sufficient condition
for supk∈N E[Pk] ≺ ∞ of a certain class of systems is
obtained.
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Theorem 4. Consider the networked system in Fig. 1 sat-
isfying Assumption 1 and 2. If C =

[
C1;C2

]
is of full row

rank, a sufficient condition for supk∈N E[Pk] ≺ ∞ is that

|𝜆max|4 (1 − p2) < 1. (17)

Proof. Since |𝜆max|4 (1 − p2
)

< 1, there exists a suffi-

ciently small 𝜖 > 0 such that
(|𝜆max| + 𝜖‖A‖)4 (

1 − p2
)
<

1. Let 𝜌 = |𝜆max| + 𝜖‖A‖, it follows from Lemma 15 [1]
that ‖A‖k ≤ M𝜌k for any k ∈ N, where M =

√
n(1 +

2∕𝜖)n−1.
If C is of full rank, it holds that CT C ≻ 𝜆min

(
CT C

)
⋅

I , where 𝜆min

(
CT C

)
> 0 is the minimum eigenvalue of

CT C. This implies that

E

( ∞∑
i=0

𝜁i

(
A−2i)T

CT CA−2i

)−1

≺
1

𝜆min

(
CT C

)E( ∞∑
i=0

𝜁i

(
A−2i)T

A−2i

)−1
(18)

Note that P
{
𝜁1=0,… , 𝜁k =0,…

}
= limk→∞

(
1−p2

)k = 0.

Then, the sum
∑∞

i=0 𝜁i

(
A−2i

)T
A−2i is positive definite

with probability one.
Define a stopping time 𝜏 as follows, i.e.,

𝜏 ∶= inf{k ∈ N|𝜁k = 1}, (19)

whose probability mass distribution is given by P{𝜏 =
k + 1} = p2

(
1 − p2

)k
. Hence,

E

( ∞∑
i=0

𝜁i

(
A−2i)T

A−2i

)−1

≤ E

[
𝜁𝜏A2𝜏 (A2𝜏)T

]
≤
(
E
[‖A‖4𝜏]) I ≤

(
M ⋅ E

[
𝜌4𝜏]) I

= M𝜌4 (1 − p2) ∞∑
k=0

𝜌4k (1 − p2)k
⋅ I ,

which is finite since 𝜌4
(
1 − p2

)
< 1. The rest of the proof

follows from Theorem 3.

Remark 3. The main conservativeness of the sufficient
condition lies in the use of Theorem 3. We use a sim-
ple example to illustrate the conservativeness, where A =
diag

(
𝜆1,−𝜆1

)
, and C1 = C2 = [1, 1]. By [1], the nec-

essary and sufficient condition is that |𝜆1|2(1 − p) < 1,
which is still weaker than |𝜆1|4 (1 − p2

)
< 1. Note that

this approach does not fully exploit the system structure.

Similarly, the following result is straightforward.

Theorem 5. Consider the networked system in Fig. 1 sat-
isfying Assumption 1 and 2. If either C1 or C2 is of full
row rank, a sufficient condition for supk∈N E[Pk] ≺ ∞
is that

|𝜆max|4 (1 − p2) < 1. (20)

Remark 4. It should be noted that if C1 is of full row rank
and C2 is a zero matrix, it follows from [1] the condition
in Theorem 5 is also sufficient.

By Theorem 2, one obtains that E
[
−1

]
≺ ∞ is

equivalent to the stability of the Kalman filter of the
following networked system

xk+1 = A2xk + wk, (21)

which is observed by two sensors at each time with mea-
surement equations

yk,1 = C1Axk + vk,1,

yk,2 = C2xk + vk,2.
(22)

In the above,
(
A2,

[
C1A;C2

])
is observable. vk,1 and vk,1

are two independent white Gaussian noises. The sensor
measurements yk,1 and yk,2 are sent via two independent
lossy channels to the estimator. See Fig. 2 where packet
loss processes are modeled by two independent process
𝛼k and 𝛽k, respectively. Then, the corresponding Kalman
filters of the networked systems in Fig. 2 require the same
network condition for filter stability if A is nonsingular.
Thus, it is sufficient to establish the network condition for
the stability of the Kalman filter of the first networked
system in Fig. 2.

In general, it is challenging to establish the neces-
sary and sufficient condition for a general vector system.
Nonetheless, the following procedures can help to reduce
the complexity of the problem. Motivated by [1], we will
exploit the system structure under Assumption 2, which
is classified as follows.

1. Both
(
A2,C1A

)
and

(
A2,C2

)
are observable.

2. Only one of
(
A2,C1A

)
and

(
A2,C2

)
is observable.

3. Neither
(
A2,C1A

)
or

(
A2,C2

)
is observable but(

A2,
[
C1A;C2

])
is observable.

In fact, it only needs to consider Case 1 since the
other two cases can be converted into the combination of
Case 1 and that in [2,8]. We shall elaborate it in detail.

For Case 2, it does not lose generality to assume
that

(
A2,C1A

)
is observable but

(
A2,C2

)
is not observ-

able. By the Kalman canonical decomposition [15], there
exists a coordinate transformation such that

(
A2,C

)
is
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transformed into the following structure

A2 =
[

A1,1 A1,2
0 A2,2

]
,C1A =

[
C1,1 C1,2

]
,C2 = [0 C2,2], (23)

where
(
Ai,i,Ci,i

)
and

(
A2,2,C1,2

)
are observable. This

means that the state variables corresponding to A1,1 can
only be observed by the sensor associated with measure-
ment matrix C1A. Then, the filter stability analysis can be
further reduce to the case of using only one sensor as in
[1,2,8] and Case 1.

Theorem 6. Under Case 2, E
[
−1

]
≺ ∞ if and only if

E
[
−1

1

]
≺ ∞ and E

[
−1

2

]
≺ ∞ where

1 =
∞∑

i=1

𝛼i

(
A−i

1,1

)T
CT

1,1C1,1A−i
1,1

and

2 =
∞∑

i=1

(
A−i

2,2

)T (
𝛼iC

T
1,2C1,2 + 𝛽iC

T
2,2C2,2

)
A−i

2,2.

Proof. By E
[
−1

]
≺ ∞, one can easily verify that

E
[
−1

1

]
≺ ∞. Partition the state vector as xk =

[
xk,1; xk,2

]
in conformity with A2. It follows that

xk+1,2 = A2,2xk,2 + wk,2;
yk,1 = C1,2xk,2 + C1,1xk,1 + vk,1;
yk,2 = C2,2xk,2 + vk,2.

Since E
[
−1

1

]
≺ ∞, the estimation error covariance

matrix corresponding to the state variables xk,1 is stable.

In particular, let x̃k,i = xk,i − x̂k,i, then supk E

[
x̃k,1x̃T

k,1

]
≺

∞. Hence, we can use the following measurement to
replace yk,1 viz.

y′
k,1 = yk,1 − C1,1x̂k,1 = C1,2xk,2 + v′k,1

where v′
k,1

= C1,1x̃k,1 + vk,1. By E
[
−1

1

]
≺ ∞, it follows

that supk E

[
x̃k,2x̃T

k,2

]
≺ ∞. Thus, the state vector of the

following subsystems can be stably estimated

xk+1,2 = A2,2xk,2 + wk,2;
y′

k,1 = C1,2xk,2 + v′k,1;

yk,2 = C2,2xk,2 + vk,2.

By Lemma 3, we finally obtain that E
[
−1

2

]
≺ ∞.

The necessity can be similarly proved, and is there-
fore omitted.

For Case 3, it follows from proposition III.1 in [16]
that there exists a coordinate transformation such that

(
A2,C

)
has the structure either

A2 =
[

A1,1 A1,2
0 A2,2

]
,C1A =

[
0 C1,2

]
,C2 =

[
C2,1 0

]
(24)

or

A2 =
⎡⎢⎢⎣
A1,1 A1,2 A1,3

0 A2,2 A2,3
0 0 A3,3

⎤⎥⎥⎦ ,
C1A = [0 C1,2 C1,3],C2 = [C2,1 0 C2,3].

(25)

The first structure indicates that the measurement matrix
C1 can only be used to observe the state subspace corre-
sponding to A2,2 and C2 observes the complement state
subspace. While in the second structure, both sensors can
observe a common subspace corresponding to A3,3. The
decomposition in the first structure is very appealing as it
helps us to convert the problems under consideration into
the case with only an observation matrix, which has been
considered in [1,2,8]. In the second structure, the com-
mon observable subspace associated with A3,3 is observed
by both sensors, which is the same as Case 1.

Hence, we only need to derive the network condi-
tion for stability of the Kalman filter over two indepen-
dent lossy channels for the system satisfying that both(
A2,C1A

)
and

(
A2,C2

)
are observable, which jointly

with Assumption 1 implies that
(
A2,C1

)
and

(
A2,C2A

)
are observable. To sum up, it is sufficient to focus on the
systems satisfying that

Assumption 3. Both
(
A2,Ci

)
and

(
A2,CiA

)
are observ-

able for any i ∈ {1, 2}.

V. SECOND-ORDER SYSTEM

Together with [1], we are able to fully characterize
the necessary and sufficient condition for the stability of
the Kalman filter using two periodically switching sen-
sors over a lossy network for the second-order system, i.e.
A ∈ R2×2.

By [1], we only focus on the second-order system
satisfying the following condition.

Assumption 4. A = diag(𝜆1, 𝜆2) where 𝜆1 =
𝜆2 exp(2𝜋rI∕d), I2 = −1 and d > r > 0 are irreducible
integers.

Then, the necessary and sufficient condition on the
filter stability can be exactly given by single inequalities.
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Theorem 7. Consider the second-order networked system
in Fig. 1 satisfying Assumption 3 - 4. Then, a necessary
and sufficient condition for supk∈N E[Pk] ≺ ∞ is that

|𝜆1|2d∕(d−c)(1 − p) < 1, (26)

where c is determined by the number of invertible Ci, and
is given by

c =
⎧⎪⎨⎪⎩

1, if max
{

rank(C1), rank(C2)
}
= 1,

0, if min
{

rank(C1), rank(C2)
}
= 2,

0.5, otherwise.

(27)

Sketch of Proof.

1. Case c = 1. If C1 = a ⋅ C2 and consider the net-
worked systems in Fig. 1, it is equivalent to the
system observed by one sensor. This is because
the measurements from both sensors are the same
except for a scaling by a, which is equivalent to the
case without switching. Then, the rest of the proof
follows from [1].

If rank(C1) = rank(C2) = 1, and consider the
networked systems in Fig. 2. Let 𝜁i = max{𝛼i, 𝛽i},
define a stopping time as follows

𝜏1 = min{k|𝜁k = 1, k ≥ 1}.

Due to the independence of 𝛼i and 𝛽i, the probabil-
ity mass distribution of 𝜏 is given by

P{𝜏1 = k} =
{

1 − (1 − p)2, if k = 1;
(1 − p)2(k−1)(1 − (1 − p)2), if k > 1.

(28)

By Assumption 3, it follows that 𝜆2
1 ≠ 𝜆2

2. Together
with Assumption 4, it implies that 2r∕d is not an
integer. Then, there exists a positive integer r1 <

d such that 𝜆2
1 = 𝜆2

2 exp(2𝜋r1I∕d), and r1, d are
irreducible.

In view of the proof of Theorem 7 in [1],
the necessary and sufficient condition becomes that
E
[|𝜆1|4𝜏1 1{𝜏1∈d}

]
< 1, where d = {kd|∀k ∈ N}

and 1A is a standard indicator function for any set
A. By (30), one can easily compute that

E
[|𝜆1|4𝜏1 1{𝜏1∈d}

]
=

1 − (1 − p)2

(1 − p)2

×
(|𝜆1|2(1 − p)

)2d

1 −
(|𝜆1|2(1 − p)

)2d
< 1,

which is equivalent to that |𝜆1|2d∕(d−1)(1 − p) < 1.
2. Case c = 0. This is trivial, and the proof is omitted.
3. Case c = 0.5. Without loss of generality, we assume

that rank(C1) = 1 and rank(C2) = 2. Define a
stopping time

𝜏2 = min{k|𝛼k = 1, 𝛽k = 0, 𝜁i = 0,∀i ≤ k − 1} (29)

By the independence property of 𝛼i and 𝛽i, the
probability mass distribution of 𝜏2 is given by

P{𝜏2 = k} = p(1 − p)2k−1. (30)

Similarly, the necessary and sufficient condition
becomes that

E
[|𝜆1|4𝜏2 1{𝜏2∈d}

]
< 1.

Then, it follows that

E
[|𝜆1|4𝜏2 1{𝜏2∈d}

]
=

p
1 − p

×
(|𝜆1|2(1 − p)

)2d

1 −
(|𝜆1|2(1 − p)

)2d
< 1,

which is equivalent to that |𝜆1|2d∕(d−0.5)(1 − p) < 1.

Remark 5. As remarked in [1], it is very difficult to estab-
lish the necessary and sufficient condition for the filter
stability of the second order-system satisfying Assump-
tion 4. While for the other cases, the condition becomes
simple and is given by |𝜆max|2(1−p) < 1, where 𝜆max is the
largest open loop pole in magnitude, the proof of which
can be established by the same approach as in [1].

5.1 Extension to higher-order systems

It is known that the study of general vector systems
is very challenging and left to our future work. However,
if A is in a certain form, the necessary and sufficient con-
dition for the stability of the Kalman filter can be easily
established.
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Assumption 5. A−1 = diag(J1,… , Jm) and rank(C1) =
rank(C2) = 1, where Ji = 𝜆−1

i Ii + Ni ∈ Rni×ni and|𝜆i| > |𝜆i+1|. Ii is an identity matrix with a compatible
dimension and the (j, k)-th element of Ni is 1 if k = j + 1
and 0, otherwise.

Theorem 8. Consider the networked system in Fig. 1 satis-
fying Assumptions 1 - 4. Then, a necessary and sufficient
condition for supk∈N E[Pk] ≺ ∞ is that

|𝜆max|2(1 − p) < 1. (31)

Proof. It can be proved by following a similar line as that
of Theorem 13 in [1].

VI. CONCLUSION

Motivated by the necessity of using switching sen-
sors in the networked system, we have examined the sta-
bility of Kalman filtering with i.i.d. packet losses. Some
necessary and sufficient conditions have been derived,
which are able to characterize the effect of the period-
ically switching sensors on the stability. It is stressed
that the result of this work is very preliminary and the
problem deserves further investigation.
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