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TWO SCHEMES OF DATA DROPOUT COMPENSATION FOR LQG
CONTROL OF NETWORKED CONTROL SYSTEMS

Jinfeng Gao, Han Wu, and Minyue Fu

ABSTRACT

This paper investigates the LQG control problem for networked control systems (NCSs) with packet losses, where the
packet losses are considered to appear in both the sensor-to-controller channel and controller-to-actuator channel. Bernoulli
random processes are used to describe the packet losses in the two channels. Two simple compensation schemes are explored
for state estimation with missing measurements in which the input of the plant is set to zero if a packet is lost, and the hold-
input strategy, in which the previous input is used with packet dropout. The optimal static controller gains and the critical loss
probabilities for the two schemes are presented, and their performances are compared in terms of numerical simulations. The
conclusion is that neither of the two schemes can be claimed to be superior to the other, as the stability regions of the two
strategies are reversely complemented to each other whether for the scalar or vector example.

Key Words: LQG, packet dropout, networked control systems, Kalman filter, optimal control.
I. INTRODUCTION

Feedback control systems wherein the control loops are
closed through a real-time network are called networked con-
trol systems (NCSs) [1]. When sensors, actuators, and control-
lers are connected with information over a real-time network
medium, data packet loss often occurs [2], especially in awire-
less NCS. The reasons for packet dropout are due to communi-
cation noise, interference, or congestion both from sensors to
controllers (S/C) and from controllers to actuators (C/A).

Many researchers in past decades have analyzed state
estimator and filter design under lossy links without packet
loss compensator in S/C [3–5]. There are several works that
studied these problems with packet loss in both S/C and
C/A [3,6,8–10,19], which are modeled by Bernoulli pro-
cesses [11]. Nevertheless, Sinopoli et al. [3] doesn’t consider
optimal control. The optimal controllers are presented in [6,8]
using the state feedback method. Han et al. designed a piece-
wise state feedback controller for optimal H∞ performance
[7]. Zhao et al. [23] provides a design procedure for con-
structing a controller with the maximum possibleH∞ consen-
sus performance region in multi-agent systems. Since the
packet losses in the control loop often render the closed loop
system unstable, Schenato uses an intermittent Kalman filter
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to handle packet losses to ensure the statistical convergence
properties of the estimation error covariance [3]. Further-
more, Sahebsara et al. deal with these packet losses with H∞
filtering to control the convergence of the estimation error
covariance [7] leading to an optimal H∞ performance
[12,13]. There are some other methods, for example, Zhao
et al. [14] presents distributed finite-time tracking control
for multi-agent systems under a time-invariant communica-
tion topology via an observer-based approach. Wang et al.
[15] proposes a one-step prediction-based packet dropout
compensation method, and the NCS is modeled as a discrete
switched system with parametric uncertainties [16]. Overall,
most works in the literature consider two different schemes
for handling the problem of packet loss: one is zero-input
strategy, where the actuator input to the plant is set to zero
when the control packet from the controller to the actuator
is lost [8,16,17] with no computational resources in actuators,
as shown in Fig. 1. The other is hold-input strategy, where the
latest control input stored in the actuator buffer is used
when a packet loss occurs [1,4,18], as shown in Fig. 2.

However, there are few studies in the literature that
simultaneously discuss the zero-input scheme and hold-input
scheme except [6] and [22], where Schenato only considers
the LQ-like performance in [6]. And Zhang et al. present a
generalized compensation scheme which involves the above
two schemes to design the optimal linear filters for networked
systems with communication constraints [22], where control-
ler design is not considered. Motivated by these consider-
ations, the purpose of this work is to design the LQG
controller for NCSs with packet losses compensation by
using a state estimator. The packet dropouts are considered
for the case with both S/C and C/A channels, which are
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Fig. 2. Diagram of NCS with packet loss: hold-input strategy.

Fig. 1. Diagram of NCS with packet loss: zero-input strategy.
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modeled as two independent Bernoulli processes. We will
explore two simple compensation schemes: zero-input strategy,
where the input to the plant is set to zero if a packet is lost, and
hold-input strategy, where the previous stored value in the
buffer is used if the packet fails to transmit. The optimal static
gains and the critical loss probabilities are calculated using lin-
ear matrix inequalities (LMIs) for the two compensation
schemes. Moreover, the performances of these two schemes
are compared using numerical cases. Coincidentally, the stabil-
ity regions of the two strategies relatively complement each
other for both scalar feedback and vector feedback examples.

Notations. Throughout this paper, R denotes the set of real
numbers, Rn denotes the n-dimensional Euclidean space, and
An ×m refers to the set of all n×m real matrices. AT represents
the transpose of the matrix A, while A-1 denotes the inverse of
A. For real symmetric matrices X and Y, the notation X ≥Y
(respectively, X>Y) means that the matrix X�Y is positive
semi-definite, (respectively, positive-definite). I is the identity
matrix with appropriate dimensions.
II. PROBLEM FORMULATION

Consider the following discrete-time linear dynamic
system

xkþ1 ¼ Axk þ Buak þ wk (1)
© 2014 Chin
uak ¼ νkuck (2)

yk ¼ γkCxk þ vk (3)

where uak is the control input, uck is the controller output,
(x0,wk, vk) are Gaussian, uncorrelated, white noises, with
means x0; 0; 0ð Þ and covariances (P0,Q,R), respectively, and
Q≥ 0,R≥ 0. wk is independent of ws for s≠ t. (γk, νk) are i.i.d
Bernoulli random variables with Prob[γk=0]= γ and Prob
[νk=0]= ν. We assume that the full state estimator x̂kjk is avail-
able to a remote controller that adopts the linear feedback rule

uck ¼ Lx̂kjk

¼ Lzx̂kjk; when zero-input strategy applied

Lhx̂kjk; when hold-input strategy applied

(

where L is the controller gain matrix. The subscripts z and h in
gains Lz and Lh indicate the zero-input and the hold-input
strategy, respectively. The links between in both S/C and C/A
are lossy, and the stochastic binary variables (γk, νk)∈{0, 1}
describe the packet dropouts in both S/C and C/A, re-
spectively. We consider two control compensation strate-
gies. In the zero-input strategy, the closed loop system is
described by (4)

xkþ1 ¼ Axk þ Bνkuck þ wk

yk ¼ γkCxk þ vk
(4)
ese Automatic Control Society and Wiley Publishing Asia Pty Ltd
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In the case of the hold-input strategy shown in Fig. 2,
the closed loop dynamics system is expressed as follows

xkþ1 ¼ Axk þ B νkuck þ 1� νkð Þuak�1

� �þ wk

yk ¼ γkCxk þ vk
(5)

Define the following information sets Γk≜
{yk, γk, νk� 1}, where yk= (yk, yk� 1,…, y1), γk= (γk, γk� 1,
…, γ1), and νk= (νk, νk� 1,…, ν1). The following cost function
is considered

JN uN�1x0;P0
� �

¼ E xTNWNxN þ ∑
N�1

k¼0
xTk Wkxk þ νkuTk Ukuk
� �juN�1; x0;P0

� �
(6)

where uN� 1 = (uN� 1,uN� 2,…,u1). By applying the Kalman
filter, the state estimate is given by

x̂kjk ≜ Ε xkjΓk½ �
ekjk ≜ xk � x̂kjk

Pkjk ≜ Ε ekjkeTkjkjΓk

h i (7)

The following facts are required in the derivation of
the estimator.

Lemma 2.1 [8]. The following facts are true

(a) E xk � x̂kð Þx̂Tk jΓk

� � ¼ E ekjkx̂Tk jΓk

� � ¼ 0;

(b) E x̂Tk SxkjΓk

� � ¼ x̂Tk Sxk þ trace SPkjk
� �

; ∀S ≥ 0;

(c) E E g xkþ1ð ÞjΓkþ1½ �jΓk½ � ¼ E g xkþ1ð ÞjΓk½ �; ∀g �ð Þ:
III. ESTIMATOR DESIGN

According to system (4), equations for the optimal
estimator are derived by using arguments similar to those
used in Standard Kalman filtering, and it follows that

x̂kþ1jk ≜ AE xkjΓk½ � þ νkBuck (8)

ekþ1jk ≜ xkþ1 � x̂kþ1jk ¼ Aekjk þ wk (9)

Pkþ1jk ≜ E ekþ1jkeTkþ1jkjΓk

h i
¼ APkjkAT þ Q (10)

where the independence of the wk and Гk, and the require-
ment that uk is a deterministic function of Гk, are used. As
© 2014 Chinese Automatic Control Society and Wiley Publishing Asia
yk + 1, γk + 1,wk and Гk are independent, the correction step
is given by

x̂kþ1jkþ1 ¼ x̂kþ1jk þ γkþ1Kkþ1 ykþ1 � Cx̂kþ1jk
� �

(11)

ekþ1jkþ1 ¼ I � γkþ1Kkþ1C
� �

ekþ1jk � γkþ1Kkþ1vkþ1

(12)

Pkþ1jkþ1 ¼ Pkþ1jk � γkþ1Kkþ1CPkþ1jk (13)

Kkþ1 ¼ Pkþ1jkCT CPkþ1jkCT þ R
� ��1

(14)

For hold-input strategy, we derive the equations for the
optimal estimator using similar arguments to zero-input
strategy. The innovation step of state is given by

x̂kþ1jk ≜ Aþ νkBLð Þx̂kjk þ 1� νkð ÞBuak�1 (15)

Thus, the innovation step of hold-input strategy is
obtained by (15), (9), and (10). The correction step is the
same as for the zero-input strategy (11)–(14). And we get

x̂kþ1jkþ1 ¼ x̂kþ1jk þ γkþ1Kkþ1 ykþ1 � Cx̂kþ1jk
� �

¼ A� νkBL� γkþ1Kkþ1CA
� �

x̂kjk
þγkþ1Kkþ1CAxk þ 1� νkð ÞBuak�1

þγkþ1Kkþ1vkþ1 þ γkþ1Kkþ1Cwk

By using a modified Kalman filter formulation, it is
easy to infer

Pkþ1jk ¼ APkjk�1A
T

þQ� γkAPkjk�1C
T CPkjk�1C

T þ R
� ��1

CPkjk�1A
T

(16)

The error covariance matrices Pk + 1|k are the same
through the two strategies. Note that (13) indicates that the

error covariance matrices Pkjk
� 	N

k¼0 are stochastic since they
depend on the sequence {γk}. Moreover, as the matrix Pk + 1|

k + 1 is a nonlinear function of the previous covariance Pk|k,
the accurate forecast of these matrices cannot be computed
directly. Nevertheless, they can be bounded by computable
deterministic quantities, from which we can derive the
following lemma.

Lemma 3.1. The expected error covariance matrix E
[Pk|k] satisfied the following bounds [3]

ePkjk ≤ E Pkjk
� �

≤ P̂kjk; ∀k ≥ 0 (17)
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where the matrices P̂kjk and ePkjk can be computed as
follows

P̂kþ1jk ¼ AP̂kjk�1A
T

þQ� γAP̂kjk�1C
T CP̂kjk�1C

T þ R
� ��1

CP̂kjk�1A
T

(18)

P̂kjk ¼ P̂kjk�1 � γP̂kjk�1C
T CP̂kjk�1C

T þ R
� ��1

CP̂kjk�1

(19)

ePkþ1jk ¼ 1� γð ÞAePkjk�1A
T þ Q (20)

ePkjk ¼ 1� γð ÞePkjk�1 (21)

where the initial conditions are P̂0j0 ¼ eP0j0 ¼ P0.

Proof. The argument is based on the observation that the
matrices Pk + 1|k and Pk|k are concave and monotonic func-
tions of Pk|k� 1. The proof is the same as [3] and is thus
omitted. The above results can be summarized as follows.

Theorem 3.2. Consider the system (1)–(3) and the prob-
lem of minimizing the cost function (6) within the class of
admissible policies uk= f (Γk), where Гk is the information
available under two strategies as shown in Figs 1 and 2.
Thus the following results hold.

(a) The optimal estimator, given by (8)–(15), is indepen-
dent of the control input uk.

(b) The optimal estimator gain Kk is time-varying and
stochastic since it depends on the past observation
loss sequence γif gki¼1.

While the standard LQG optimal regulator always
stabilizes the original system, in the case of observation
losses, the stability can be lost if the arrival probabilities
γ are below a certain threshold. This observation comes
from the Modified Riccati Algebraic Equation (MARE),
Pk + 1 =Π(Pk,A,C,Q,R, γ), as described in (16). The
results about the MARE are summarized in the follow-
ing theorem.

Theorem 3.3. Assume that A;Q
1

2= Þ



is controllable, (A,C)

is detectable, and A is unstable. Consider the MARE as
defined in (16), then the following results hold.

(a) The MARE has a unique strictly positive definite
solution P∞ when γ> γc , where γc is the critical loss
probability.

(b) The critical probability γc satisfies the following
analytical bounds
© 2014 Chin
γm ≤ γc ≤ γM ; γm ≜ 1� 1

maxi λui Að Þ�� ��2 ; γM≜1�
1

Πi λui Að Þ�� ��2
where λui Að Þ are the unstable eigenvalues of A. In particu-
lar, γc= γm if C is square and invertible, and γc= γM if C is
rank one.

The proof of this theorem can be found in [3]. The
proof γc= γm when C is square and invertible can be found
in [20], and the proof γc= γM if C is rank one in [21].
IV. OPTIMAL CONTROL

Derivation of the optimal feedback control law and the
corresponding value for the objective function will follow
the dynamic programming approach based on the cost-to-
go iterative procedure. Define the optimal value function
Vk(xk) as follows

VN xNð Þ≜ E xTNWNxN jΓk

� �
;

Vk xkð Þ≜ minuk E½xTk Wkxk þ νkuTk Ukuk
þVkþ1 xkþ1ð ÞjΓk�; k ¼ N � 1;…; 1

(22)

Now make the following computations, which we use
to derive the optimal LQG controller

E xTkþ1Sxkþ1jΓk

� � ¼ E xTk A
TSAxkjΓk

� �þ νuTk B
TSBuk

þ2νuTk B
TSAx̂kjk þ trace SQð Þ

E eTkjkTekjkjΓk

h i
¼ trace TE ekjkeTkjkjΓk

h i
 �
¼ trace TPkjk

� �
; ∀T ≥ 0

(23)

where both the independence of νk, wk, xk, and the zero
mean property of wk are exploited.
4.1 Zero-input strategy

Under zero-input strategy the following theorem holds.

Theorem 4.1. The value function Vk(xk) defined in (22)
for the system dynamics of (1)–(3) can be written as

Vk xkð Þ ¼ E xTk SkxkjΓk

� �þ ck; k ¼ N;…; 0 (24)

where the matrix Sk and the scalar ck can be computed recur-
sively as follows

Sk ¼ ATSkþ1AþWk � νATSkþ1B BTSkþ1Bþ Uk

� �
BTSkþ1A

(25)

ck ¼ trace ATSkþ1AþWk � Sk
� �

Pkjk
� �þ trace Skþ1Qð Þ

þE ckþ1jΓk½ �
(26)
ese Automatic Control Society and Wiley Publishing Asia Pty Ltd
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with initial values SN=WN, cN=0. Moreover, the opti-
mal control input is given by

uk ¼ � BTSkþ1Bþ Uk

� ��1
BTSkþ1Ax̂kjk ¼ LZx̂kjk

(27)

Proof. The proof employs an induction argument. The
claim is clearly true for k=N with the choice of parameters
SN=WN, cN=0. Suppose now that the claim is true for k+1,
i.e. Vkþ1 xkþ1ð Þ ¼ E xTkþ1Skþ1xkþ1jΓkþ1

� �þ ckþ1 . The value
function at time step k is the following

Vk xkð Þ ¼ minuk E xTk Wkxk þ νkuTk Ukuk þ Vkþ1 xkþ1ð ÞjΓk

� �
¼ minuk E xTk Wkxk þ νkuTk UkukjΓk

� �
þE E xTkþ1Skþ1xkþ1 þ ckþ1jΓkþ1

� �jΓk

� �
¼ minuk E½xTk Wkxk þ νkuTk Ukuk þ xTkþ1Skþ1xkþ1

þckþ1jΓk�
¼ E xTk Wkxk þ xTk A

TWkþ1AxkjΓk

� �þ trace Skþ1Qð Þ
þE ckþ1jΓk½ �
þνminuk uTk Uk þ BTSkþ1Bð Þuk þ 2uTk B

TSkþ1Ax̂kjk
� �

(28)
νc ¼ argminνΨν Y ; Zð Þ > 0; 0 ≤ Y ≤ I:

Ψν Y ; Zð Þ ¼

Y Y
ffiffiffi
ν

p
ZU

1
2

ffiffiffi
ν

p
YAT þ ZBT
� � ffiffiffiffiffiffiffiffiffiffiffi

1� ν
p

YAT

Y W�1 0 0 0

ffiffiffi
ν

p
U

1
2ZHT 0 I 0 0ffiffiffi

ν
p

AY þ BZTð Þ 0 0 Y 0ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p
AY 0 0 0 Y

26666666666664

37777777777775
where we use Lemma 2.1(c) to get the third equality, and
(23) to obtain the last equality. The value function is a
quadratic function of the input, therefore, the minimizer
can be simply obtained by solving ∂Vk/∂uk=0, which gives
(27). The optimal feedback controller is, thus, a simple
linear function of the estimated state. If we substitute the
minimizer back into (21) and use Lemma 2.1(b) we get

Vk xkð Þ ¼ E
�
xTk Wkxk þ xTk A

TWkþ1Axk

�νxTk A
TSkþ1B Uk þ BTSkþ1Bð Þ�1

BTSkþ1AxkjΓk

�
þtrace Skþ1Qð Þ þ E ckþ1jΓk½ �
þνtrace ATSkþ1B Uk þ BTSkþ1Bð Þ�1

BTSkþ1Ax̂kjk

 �
© 2014 Chinese Automatic Control Society and Wiley Publishing Asia
Therefore, the claim given by (24) is also satisfied
for time step k for all xk if and only if (25) and (26)
are satisfied.

Theorem 4.2. Consider the modified Riccati equation,

which is defined in (25). Assuming A;W
1
2


 �
is controllable,

(A,B) is detectable, and A is unstable, then the following hold.

(a) The MARE has a unique strictly positive definite so-
lution S∞ if and only if ν> νc, where νc is the critical
loss probability.

(b) The critical probability νc satisfies the following ana-
lytical bounds

νm≤νc≤νM ; νm≜
1

maxi λui Að Þ�� ��2 ; νM ¼ 1

Πi λui Að Þ�� ��2
where λui Að Þ are the unstable eigenvalues of A. In particular,
νc= νm if B is invertible, andνc= νM if B is rank one.

(c) The critical probability can be numerically computed
via the solution for the following quasi-convex LMIs
optimization problem
(d) If ν> νc, then limk→∞Sk= S∞ for all initial conditions
S0≥ 0,where Sk + 1 =Π(Sk,A,B,W,U, ν).
Proof of the previous theorems can be found in [8].
Using the above results, we can prove the following

theorem for the infinite horizon optimal LQG under zero-
input strategy.

Theorem 4.3. Consider the same system in the previous
theorem, let WN=Wk=W and Uk=U. Moreover, let (A,B)
and (A,Q1/2) be controllable, and let (A,C) and (A,W1/2)
be observable. Assume that ν> νc and γ> γc, where νc and
γc are defined in Theorem 4.2 and Theorem 3.3, respec-
tively. Then the following results are gained.
Pty Ltd
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(a) The infinite horizon optimal controller gain is constant

lim
k→∞

Lk ¼ L∞ ¼ � BTS∞Bþ U
� ��1

BTS∞A: (29)

(b) The matrices are the positive definite solutions of the
following equation

S∞ ¼ ATS∞AþW � νATS∞B BTS∞Bþ U
� ��1

BTS∞A:

Proof. (a) Since ν> νc, from Theorem 4.2(d) it follows that
limk→∞Sk=S∞. Therefore, (29) follows from (27). (b) (25)
can be written in the terms of MARE as Sk + 1=Π(Sk,A,B,
W,U, ν), thus, as ν> νc from Theorem 4.2(d) it follows that
limk→∞Sk + 1= limk→∞Sk=S∞.

4.2 Hold-input strategy

Under hold-input strategy the following lemma holds true:

Lemma 4.4. The value function Vk(xk) defined in (22) for
the system dynamics of (1)–(3) can be written as

Vk xkð Þ ¼ E xTk SkxkjΓk

� �þ ck; k ¼ N;…; 0 (30)

where the matrix Sk and the scalar ck can be computed recur-
sively as follows

Sk ¼ ATSkþ1AþWk

� 1� νð ÞATSkþ1B BTSkþ1Bþ Uk

� ��1
BTSkþ1A

(31)

ck ¼ trace ATSkþ1AþWk � Sk
� �

Pkjk
� �

þtrace Skþ1Qð Þ þ E ckþ1jΓk½ �
þν uak�1

� �T
Uk þ BTSkþ1B
� �

uak�1

(32)

with initial values SN=WN, cN=0. Furthermore the optimal
control input is given by

uk ¼ � BTSkþ1Bþ Uk

� ��1
BTSkþ1Ax̂kjk ¼ Lhx̂kjk

(33)

Proof. The proof uses the familiar way in (28),therefore it
is omitted. The value function at time step k is the following
νc ¼ argmaxνΨν Y ; Zð Þ > 0; 0 ≤ Y ≤ I:

Ψν Y ;Zð Þ ¼

Y Y
ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p
ZU

1
2

ffiffiffiffiffiffiffiffiffi
1� ν

p

Y W�1 0

ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p
U

1
2ZT 0 Iffiffiffiffiffiffiffiffiffiffiffi

1� ν
p

AY þ BZTð Þ 0 0ffiffiffi
ν

p
AY 0 0

26666666666664
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Vk xkð Þ ¼ minuck E xTk Wkxk þ νkuaTk Ukuak þ Vkþ1 xkþ1ð ÞjΓk

� �
¼ E½xTk Wkxk þ xTk A

TSkþ1Axk
þ 1� νkð Þ2uaTk�1 Uk þ BTSkþ1Bð Þuak�1jΓk�
þtrace Skþ1Qð Þ
þE ckþ1jΓk½ � þ 1� νð ÞminuckðucTk Uk þ BTSkþ1Bð Þuck
þ2ucTk BTSkþ1Ax̂kjkÞ

(34)

where uck is independent of uak�1 and xk. By solving
∂Vk=∂uck ¼ 0, we get (32) and the same controller gain Lh
with that of zero-input strategy. If we substitute the mini-
mizer back into (33) we get

Vk xkð Þ ¼ E
�
xTk ðWk þ ATSkþ1A� 1� νð ÞATSkþ1BðUk

þBTSkþ1BÞ � 1BTSkþ1AÞxkÞ þ trace Skþ1Qð Þ
þE ckþ1jΓk½ � þ trace Wk þ ATSkþ1A� Sk

� �
Pkjk

� �
þνuaTk�1 Uk þ BTSkþ1Bð Þuak�1

Therefore, the claim given by (30) is satisfied for time
step k for all xk when (31) and (32) are satisfied.

Theorem 4.5. Consider the modified Riccati equation

defined in (31). Assuming A;W
1

2= Þ



is controllable, (A,B)

is detectable, and A is unstable, then the following hold.

(a) The MARE has a unique strictly positive definite
solution S∞ if and only if ν< νc, where νc is the crit-
ical loss probability.

(b) The critical probability νc satisfies the following ana-
lytical bounds

νm≤νc≤νM ; νm≜
1

Πi λui Að Þ�� ��2 ; νM ¼ 1

maxi λui Að Þ�� ��2
where λui Að Þ are the unstable eigenvalues of A. In particular,
νc= νM if B is invertible, and νc= νm if B is rank one.

(c) The critical probability can be numerically computed
via the solution of the following quasi-convex LMIs
optimization problem
ffiffi
YAT þ ZBT
� � ffiffiffi

ν
p

YAT

0 0

0 0

Y 0

0 Y

37777777777775
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(d) If ν< νc, then limk→∞Sk= S∞ for all initial condi-
tions S0≥ 0,where Sk + 1 =Π (Sk,A,B,W,U, ν).
U

3

4

5

6

7

8

9

Zero-input

Hold-input

10
The proof is similar to Theorem 4.2.
From the results above, we can prove the following

theorem for the infinite horizon optimal LQG under hold-
input strategy.

Theorem 4.6. Consider the same system in the previous
theorem, let WN=Wk=W and Uk=U. Moreover, (A,B) and
(A,Q1/2) are controllable, (A,C) and (A,W1/2) are observ-
able. Assume that ν< νc and γ> γc, where νc and γc are
defined in Theorem 4.2 and Theorem 3.3, respectively.
Then we have the following results.

(a) The infinite horizon optimal controller gain is constant

lim
k→∞

Lk ¼ L∞ ¼ � BTS∞Bþ U
� ��1

BTS∞A:

(b) The matrices are the positive definite solutions of the
following equation

S∞ ¼ ATS∞AþW � 1� νð ÞATS∞B BTS∞Bþ U
� ��1

BTS∞A

The proof is similar to Theorem 4.3, thus it is omitted.

Remark 1. From Theorem 4.1 and Lemma 4.4, the matri-
ces S in the different compensator strategy are different.
Also the critical loss probability bounds νc are not the same.
These results will be further illustrated in the following
numerical examples in Section V.
0.306 0.69 1 c
0

1

2

Fig. 3. Regions of loss probability νc and weight U.

1

2

cz ch 1

Zero-input
Hold-input

S

0

Fig. 4. Transition to instability in the scalar case.
V. NUMERICAL EXAMPLES

In this section, we present some cases to compare
the performance under zero-input and hold-input con-
trol architectures.

Example 1. Consider a scalar unstable system (1)–(3)
with parameters A=1.2, B=C=1, W=U= x0 = 1, and no
process and measurement noise, i.e. R=Q=0.

From Theorem 3.3, we get γc=0.3056, so we assume
γ=0.4> γc to ensure the closed loop system is stable only
if the critical loss probability νc satisfies the conditions of
the two strategies, respectively. After calculating from the
above theorems, the critical loss probability νcz=0.306 for
the zero-input strategy and νch=0.69 for the hold-input
strategy. Suppose ν=0.4, which meets the stability condi-
tions for the two strategies simultaneously, then in zero-
input strategy, the matrix S∞=1.3286 and the optimal
controller gain L∞=�0.6847. However, the matrix
S∞=1.5213 and the optimal controller gain L∞=�0.7241
© 2014 Chinese Automatic Control Society and Wiley Publishing Asia
in hold-input strategy. And the figures of relations between
loss probability νc and weight U, and performance S are
presented in Figs 3 and 4, respectively.

Remark 2. Regions in Fig. 3 indicate the best performing
strategy in the space (ν,U) for hold-input and zero-input
control case 1. The stability region for zero-input is
ν∈ (νcz, 1], where νcz=0.306, for hold-input ν∈ [0, νch),
νch=0.69. Compared with the result in Schenato’s paper
[6], the difference is that U∈ [0, 10] if νcz∈ (0.306, 1]
when the networked system stabilizes using zero-input
strategy, and also U∈ [0, 10] if νcz∈ [0, 0.69) using hold-
input strategy. Stability regions for the two strategies are
block diagrams; they have a common stability area
(0.306, 0.69). While in [6], the stability packet loss proba-
bility regions are the same as [0, 0.694), whether in the
hold-input or in the zero-input strategy and the regions are
divided into the form of a curve according of U.

Remark 3. Fig. 4 shows a plot of the transition to insta-
bility in the scalar case, the dashed-dotted line shows the
Pty Ltd
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asymptotic value of the zero-input strategy, the solid line for
the asymptotic value of the hold-input strategy, and the
dashed line shows the asymptote. Compared with Sinopoli’s
result [4], in which the transition curve is concave, in this
paper it is convex.

Example 2. Consider another unstable vector system (1)–(3)

with parametersA ¼ 1:25 0

1 1:1

� �
,B ¼ 1

1

� �
,W ¼ 1 0

0 1

� �
,

U=2.5, C ¼ 1 1½ �, R=2.5, Q=20* I.
We get 0.36≤ γc≤ 0.472 calculated by Theorem 3.3, let

γ=0.5> γc to guarantee the stability of the closed loop
system when the critical loss probability νc satisfies the
conditions of the two control architectures, respectively.

In zero-input strategy, the calculations are νm=0.36,
νM=0.482, and νcz=0.47 by Theorem 4.2, but
0.528≤ νc≤ 0.64 and νch=0.528 from Theorem 4.5 for
hold-input strategy.

To meet the diverse stability conditions, we as-
sume ν= 0.5; coincidentally, the optimal controller gain
is equal, L∞ ¼ �0:7248 �0:3183½ � , and the matrix

S∞ ¼ 2:0528 0:3505

0:3505 1:6465

� �
.

We can intuitively compare the optimality regions
from the above examples. Interestingly, the sum of the crit-
ical packet loss probabilities of the two strategies is coinci-
dentally 1. For small packet loss probability rates ν if ν≤ νch
the hold-input strategy provides a better performance than
the zero-input one, but for packet loss probability νcz≤ ν≤ 1,
zero-input strategy has a better expression. However, for
νch≤ ν≤ νcz the two strategies will cause the system to create
overshooting or oscillations, which means it is not possible
to judge which is superior by packet loss compensator using
the state estimation.
VI. CONCLUSION

This paper considers LQG controller design based on
zero-input strategy and hold-input strategy for NCSs where
the control packets are subject to loss. The packet dropouts
are modeled by Bernoulli processes, which consider both
S/C and C/A channels. The packet losses compensator uses
the state estimator for NCSs. We study the zero-input strat-
egy in which the input of the actuator is set to zero if a
packet is lost and the hold-input strategy in which the previ-
ous value is used with packet dropout. The optimal static
gains and the critical loss probabilities for the two schemes
are obtained, and their performances on numerical cases are
compared. Neither of the two schemes can be claimed supe-
rior to the other using the method in this paper, while the
stability regions of the two strategies are relatively
© 2014 Chin
complementary to each other for either a simple scalar
system or vector one. Nevertheless, the algorithms in this
paper can be used to compute which scheme performs
better once the packet loss probability and systems
parameters are known.
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