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DISTRIBUTED CONSENSUS OF THIRD-ORDER MULTI-AGENT
SYSTEMS WITH COMMUNICATION DELAY

Wenying Hou, Minyue Fu, and Huanshui Zhang

ABSTRACT

This paper studies the consensus problem for a class of general third-order multi-agent systems on an undirected
connected network. By employing a variables transformation, the consensus control problem can be turned into a
asymptotical stability problem. Then we present a necessary and sufficient condition for guaranteeing consensus by
using Routh-Hurwitz stability criterion. And this result can be applied to a special case of third-order integrator systems.
Also we will present a tolerable communication time delay for third-order integrator systems under the assumption that
multi-agent systems can reach consensus without communication delay.
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I. INTRODUCTION

With the development of the network, consensus
control problems become a hotspot. It was derived from
distributed computation [1], and then it started to have
wide applications in areas, including multi-agent coordi-
nation (such as vehicle formations [2] and flocking [3]),
biological group behavioral analysis [4]. Network con-
sensus problem is that, each agent needs to update its
state on the basis of its local neighbours’ state infor-
mation such that all the agents’ states agree upon a
common value. The key to the consensus problem is
how to design an appropriate consensus control protocol
such that multi-agent systems (MASs) reach consensus
or how to choose some parameters in a fixed form of
consensus protocol.

The pioneering work of Olfati-Saber and Murray [5]
solved an average consensus problem for first-order inte-
grator system by using the algebraic graph theory and
frequency-domain analysis. Since then, there has been a
large number of results on consensus, e.g., [6–10]. Most of
these results focus on the first-order or second-order sys-
tems, and the consensus conditions listed in these papers
are general only sufficient conditions.
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However, some problems, in reality, can be modeled
by third-order differential equation, such as [11]: Con-
sider a group of N vehicles (i = 1, 2,… ,N) and a leader
moving along a single lane. The longitudinal dynamics
can be modeled according to the following approximated
drivetrain model: ṙi(t) = vi(t), v̇i(t) = ai(t), ȧi(t) =
− 1

Ti
ai(t) +

1
Ti

ui(t), where ri, vi and ai are the ith vehicle

position, velocity and acceleration, respectively, Ti is the
time constant of the drivetrain (typically, the time con-
stant of the drive train Ti > 0 depends upon specific
vehicle features), and ui is the desired acceleration to be
imposed to the ith vehicle within the platoon. Further-
more, from [12–14] we know that chaotic jerk circuit is
with third-order dynamics, and consensus of this system
and its application in secure communication has received
increasing attention. So it is significant to consider the
consensus problem of general third-order dynamics, since
it can represent a class of the physical system.

The conditions given by reference [15] are only
focused on third-order integrator system without time
delay. In the actual network, systems are always subjected
to time delay as a result of some constraints, such as the
limitation of bandwidth. However, few authors consid-
ered the influence of the delay on the result of consensus
for third-order systems.

In this paper, we consider a consensus problem
for a general third-order linear dynamic model in an
undirected connected network. Like the method used
in [16], we can turn the consensus problem into a syn-
chronous stability problem. The first contribution of
this paper is that it presents a necessary and sufficient
consensus condition for general third-order consen-
sus problem by analyzing the roots’ distribution for its

© 2017 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

http://orcid.org/0000-0003-2776-4695


W. Hou et al.: Consensus of Third-order Multi-agent Systems 957

corresponding closed-loop systems’ characteristic
equation. The second contribution of this paper is that
it provides a method of computing tolerable communi-
cation time delay for third-order integrator systems with
the assumption that MASs can reach consensus without
communication delay.

II. PRELIMINARIES

A multi-agent network is assumed to have N agents.
The communication topology between agents is denoted
by an undirected graph G = {V ,E,A}, where V =
{1, 2, · · · ,N} is the set of agents, E ⊂ {(i, j) ∶ i, j ∈ V}
is the edge set, and A = [aij] ∈ RN×N is the so-called
weighted adjacency matrix (or adjacency matrix, for
short). Each edge (i, j) denotes that agent j obtains infor-
mation from agent i. And if (i, j) ∈  , then (j, i) ∈ E
in undirected graph G. The neighbouring set of agent i
is denoted by Ni = {j ∈ V ∶ (i, j) ∈ E}. aij > 0
if and only if j ∈ Ni. The degree of agent i is denoted
by di =

∑
j∈Ni

aij =
∑N

j=1 aij and the degree matrix
D = diag{d1, d2,… , dN}. The Laplacian matrix L of G
is defined by L = D − A. Note that A is a symmet-
ric matrix if G is an undirected graph. It is well known
[17] that for an undirected graph, L is a symmetric, pos-
itive semi-definite matrix and all of its eigenvalues are
non-negative. Note that L𝟏N = 𝟎N . The eigenvalues of L
are denoted by 𝜆i, i = 1, 2,… ,N. For an undirected graph
G, 0 = 𝜆1 < 𝜆2 ≤ … ≤ 𝜆N if and only if G is connected.
Notation. We use the following notations and conven-
tions in this paper: R denotes the real number field; 𝟏m
denotes the m-dimensional column vector with all com-
ponents 1; Im denotes the m-dimensional identity matrix;
𝟎 denotes the zero matrix of appropriate dimension.

According to Routh-Hurwitz stability criterion, we
present a stability criterion without giving proof.

Lemma 1. For a third-order real polynomial f (s) = s3 +
𝛼1s2 +𝛼2s+𝛼3, f (s) is Hurwitz stable if and only if 𝛼i > 0,
i = 1, 2, 3, 𝛼1𝛼2 > 𝛼3.

We consider the following general third-order linear
dynamic model for each agent i ∈ V in an undirected
connected graph G:

ṡi(t) = vi(t),
v̇i(t) = ai(t),
ȧi(t) = cai(t) + ui(t).

(1)

Here xi(t) ∈ R, yi(t) ∈ R, zi(t) ∈ R and ui(t) ∈ R denote
the position, velocity and accelerated velocity, control
input of agent i, respectively. And c ∈ R is a real constant.

Next, we give the definition of third-order
consensus.

Definition 1 (Third-order consensus). A multi-agent sys-
tem with agent model (1) is said to achieve third-order
consensus if, for any initial conditions and i ≠ j, i, j ∈
V , limt→∞(si(t) − sj(t)) = 0,limt→∞(vi(t) − vj(t)) = 0,
limt→∞(ai(t) − aj(t)) = 0.

III. CONSENSUS CONDITIONS ANALYSIS
WITHOUT TIME DELAY

For each agent i, we deploy a consensus control
protocol without communication delay given as the fol-
lowing form:

ui(t) = k1

N∑
j=1

aij

[
sj(t) − si(t)

]

+ k2

N∑
j=1

aij

[
vj(t) − vi(t)

]

+ k3

N∑
j=1

aij

[
aj(t) − ai(t)

]
,

(2)

where kl ∈ R, l = 1, 2, 3 are gain coefficients to be
designed. Set ŝi(t) = si(t) − s1(t), v̂i(t) = vi(t) − v1(t),
âi(t) = ai(t) − a1(t), i = 2, 3,… ,N, and the state
error vector as ŝ(t) = [ŝ2(t), ŝ3(t),… , ŝN(t)]T , v̂(t) =
[v̂2(t), v̂3(t),… , v̂N(t)]T , â(t) = [â2(t), â3(t),… , âN(t)]T ,
and M̂(t) = [ŝT (t), v̂T (t), âT (t)]T . We obtain the following
error dynamics:

̇̂M(t) = Φ̂M̂(t), (3)

where

Φ̂ =
⎡⎢⎢⎣

0N−1 IN−1 0N−1
0N−1 0N−1 IN−1

−k1L̂ −k2L̂ −k3L̂ + cIN−1

⎤⎥⎥⎦ ,
with L̂ = L22 + 𝟏N−1𝛼

T , 𝛼 = [a12, a13,… , a1N]T ,

L22 =
⎡⎢⎢⎢⎣

d2 −a23 · · · −a2N
−a32 d3 · · · −a3N
⋮ ⋮ ⋱ ⋮

−aN2 −aN3 · · · dN

⎤⎥⎥⎥⎦
.

Apparently, system (1)–(2) achieves consensus if
and only if the error system (3) is asymptotically stable,
in other words, the eigenvalues of Φ̂ are all in the open
left half plane. From [14] we know that the eigenvalues of
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L̂ are 𝜆2, 𝜆3,… , 𝜆N . And there exists an invertible matrix
T such that T−1L̂T = J = diag (J1, J2,… , Js), where Jk,
k = 1, 2,… , s are upper triangular Jordan blocks, whose
principal diagonal elements consist of 𝜆i, i = 2, 3,… ,N.
Note that

(T−1 ⊗ I3)Φ̂(T ⊗ I3)

=
⎡⎢⎢⎣

0N−1 IN−1 0N−1
0N−1 0N−1 IN−1
−k1J −k2J −k3J + cIN−1

⎤⎥⎥⎦ ,
which implies that the eigenvalues of Φ̂ are given as the
roots of

∏N
i=2 fi(s) = 0, where

fi(s) = s3 + (k3𝜆i − c)s2 + k2𝜆is + k1𝜆i. (4)

Thus based on the above analysis, we can obtain the
following result.

Lemma 2. The control protocol (2) makes system (1)
achieve consensus if and only if all fi(s), i = 2, 3,… ,N,
defined by (4), are all Hurwitz stable.

By using Lemma 1 to the stability analysis of fi(s),
we can obtain a consensus condition as follows.

Theorem 1. The control protocol (2) makes system (1)
achieve consensus if and only if

k1 > 0, k2 > 0, k3 >

(
k1

k2
+ c

)
1
𝜆2

. (5)

Proof. From Lemma 1 we know that fi(s) is Hurwitz sta-
ble if and only if k3𝜆i − c > 0, k2𝜆i > 0, k1𝜆i > 0,

(k3𝜆i −c)k2𝜆i > k1𝜆i, i.e, k1 > 0, k2 > 0, k3 >

(
k1

k2
+ c

)
1
𝜆i

,

Thus, (5) holds.

Remark 1. Theorem 1 gives a necessary and sufficient
consensus condition for a class of general third-order
MASs.

If we take c = 0, then system (1) becomes the
following third-order integrator model:

ṡi(t) = vi(t), v̇i(t) = ai(t), ȧi(t) = ui(t). (6)

Then from Theorem 1 we can obtain the following con-
sensus conditions for system (6) under the same consen-
sus protocol (2).

Corollary 1. The control protocol (2) makes the
third-order integrator system (6) achieve consensus if
and only if

k1 > 0, k2 > 0, k3 >
k1

k2𝜆2
. (7)

Proof. From Theorem 1 we know that system (6) with
protocol (2) can achieve consensus if and only if (7) holds
by taking c = 0.

Remark 2. The result of Corollary 1 is consistent
with [15].

IV. CONSENSUS CONDITIONS ANALYSIS
WITH TIME DELAY

In this section, for system (6), we consider the fol-
lowing control protocol with constant communication
delay 𝜏:

ui(t) = k1

N∑
j=1

aij

[
sj(t − 𝜏) − si(t − 𝜏)

]

+ k2

N∑
j=1

aij

[
vj(t − 𝜏) − vi(t − 𝜏)

]

+ k3

N∑
j=1

aij

[
aj(t − 𝜏) − ai(t − 𝜏)

]
.

(8)

Similarly, we have the following error dynamics

̇̂M(t) =
⎡⎢⎢⎣

0N−1 IN−1 0N−1
0N−1 0N−1 IN−1
0N−1 0N−1 0N−1

⎤⎥⎥⎦ M̂(t)

−
⎡⎢⎢⎣

0N−1 0N−1 0N−1
0N−1 0N−1 0N−1

−k1L̂ −k2L̂ −k3L̂

⎤⎥⎥⎦ M̂(t − 𝜏).

(9)

It is clear that the control protocol (8) can makes system
(6) achieve consensus if and only if the error system (9) is
asymptotically stable.

Similar to the delay-free case, we need to analyze
the characteristic equation for the error system (9). To do
this, we take the Laplace transform on (9) and obtain its
characteristic equation given by

∏N
i=2 fi(s, 𝜏) = 0, where

fi(s, 𝜏), i = 2, 3,… ,N are quasi-polynomials given by

fi(s, 𝜏) = s3 + k3𝜆ie
−𝜏ss2 + k2𝜆ie

−𝜏ss

+ k1𝜆ie
−𝜏s.

(10)

As we all know that a time-delay system is asymp-
totically stable if and only if the roots of its characteristic
equation are all in the left-open half plane. So we can
obtain a bound of time delay by analyzing the distri-
bution of characteristic roots of the closed-loop system,
then we can present the following result of delay margin
for this consensus control problem.
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Theorem 2. Suppose that condition (7) holds. For r ∈
{2, 3,… ,N}, let 𝜇r >

k1

k3
be the root of the following

equation:

𝜇3
r − k2

3𝜆
2
r𝜇

2
r + (2k1k3 − k2

2)𝜆
2
r𝜇r − k2

1𝜆
2
r = 0.

Take 𝜏r = arctanΨr√
𝜇r

, where Ψr = k3𝜇r−k1

k2
√
𝜇r

. Set 𝜏∗ = minr 𝜏r,

then the control protocol (8) makes (6) achieve consensus
if and only if 𝜏 ∈ [0, 𝜏∗).

Proof. From Corollary 2.4 of [18] we know that for a
quasi-polynomial of the form f (s, e−𝜏s) = f0(s) + f1(s)e−𝜏s

with f0(s) = sn + a1sn−1 +…+ an, f1(s) = b1sn−1 +…+ bn,
ai ∈ R, bi ∈ R, i = 1, 2,… , n, if f (s, e−𝜏s) is Hurwitz sta-
ble for 𝜏 = 0 and f (s, e−𝜏s) is unstable for some 𝜏 > 0,
then there must exist some 𝜏∗ ∈ (0, 𝜏) such that f (s, e−𝜏∗s)
has a root on the imaginary axis, and f (s, e−𝜏0s) is stable
for all 𝜏0 ∈ [0, 𝜏∗).

Here since the condition (7) holds, so (8) can makes
system (6) achieve consensus when 𝜏 = 0, thus the
corresponding characteristic polynomial, s3 + k3𝜆is

2 +
k2𝜆is + k1𝜆i, is Hurwitz stable. According to the contin-
uous dependence of root to time delay, we know that 𝜏∗

is delay margin of consensus if and only if all the roots
of (10) will still be in the open left half-plane for all 𝜏 ∈
(0, 𝜏∗) and at least one of the quasi-polynomials fi(s, 𝜏∗),
i ∈ {2, 3,… ,N} has an imaginary root.

Next, we will only need to examine the imaginary
roots of the quasi-polynomials of (10) for 𝜏 = 𝜏∗. Let
sr = 𝜄𝜔r, 𝜔r ∈ R, 𝜔r ≠ 0, r ∈ {2, 3,… ,N}. Then
fr(sr, 𝜏) = 0 means both of its real and imaginary parts
are zero, which are given by mr(𝜔r) = −k3𝜆r cos(𝜔r𝜏)𝜔2

r +
k2𝜆r sin(𝜔r𝜏)𝜔r + k1𝜆r cos(𝜔r𝜏) = 0, nr(𝜔r) = −𝜔3

r +
k3𝜆r sin(𝜔r𝜏)𝜔2

r + k2𝜆r cos(𝜔r𝜏)𝜔r − k1𝜆r sin(𝜔r𝜏) = 0.
Re-arranging the above equations gives

[
sin(𝜏r𝜔r)
cos(𝜏r𝜔r)

]
=

𝜔3
r

[
k3𝜔

2
r − k1

k2𝜔r

]
[
k2

2𝜔
2
r +

(
k3𝜔

2
r − k1

)2
]
𝜆r

.

From sin2(𝜏r𝜔r) + cos2(𝜏r𝜔r) = 1 we can obtain that

𝜔6
r − 𝜆2

r

[
k2

2𝜔
2
r +

(
k3𝜔

2
r − k1

)2
]
= 0. (11)

Also we can obtain that tan(𝜏r𝜔r) = Ψr =
k3𝜔

2
r−k1

k2𝜔r
, which

yields 𝜏r = arctanΨr+k𝜋
𝜔r

, where k ∈ {0, 1} is an minimum

integer such that 𝜏r > 0.
It is obvious that if 𝜔 is a root of (11), then −𝜔

is also a root of (11), and vice versa. Let 𝜔r1 > 0 and
𝜔r2 = −𝜔r1 be the roots of (11), then we have Ψr1 = −Ψr2.
Thus, tan(𝜏r1𝜔r1) = − tan(𝜏r2𝜔r2), and we can simply take

𝜏r1 = 𝜏r2. That is to say, we only need to consider the
corresponding time delay 𝜏r for 𝜔r > 0. Finally, the min-
imum value of 𝜏 is thus given by 𝜏∗ = minr 𝜏r over all
possible roots 𝜔r > 0 and r ∈ 2, 3,… ,N.

Set 𝜇r = 𝜔2
r , then (11) turns to

𝜇3
r − k2

3𝜆
2
r𝜇

2
r + (2k1k3 − k2

2)𝜆
2
r𝜇r − k2

1𝜆
2
r = 0. (12)

Apparently, equation (12) is a cubic equation about 𝜇r, so
it has three roots, and we only need to consider the case
of 𝜇r > 0. Then we will analyze of the monotonicity of 𝜏
on 𝜆r.

(i) If 𝜇r1 < 𝜇r2 are two positive roots of equation (12)
for the same 𝜆r, and we assume that k3𝜇r1 − k1 < 0,
k3𝜇r2 − k1 > 0, so Ψr1 < 0, Ψr2 > 0, thus we have
𝜏r1 = arctanΨr1+𝜋

𝜔r1
>

𝜋

2𝜔r1
, 𝜏r2 = arctanΨr2

𝜔r2
<

𝜋

2𝜔r2
<

𝜋

2𝜔r1
,

that is to say, 𝜏r1 > 𝜏r2.
(ii) If 𝜇m, 𝜇n are two positive roots of equation (12)

for r = m and r = n, respectively. And we also
assume that k3𝜇m − k1 < 0, k3𝜇n − k1 > 0, then
𝜇m < 𝜇n. Similarly we have Ψm < 0, Ψn > 0, thus
we have 𝜏m = arctanΨm+𝜋

𝜔m
>

𝜋

2𝜔m
= 𝜋

2
√
𝜇m

>
𝜋

2
√
𝜇n

,

𝜏n = arctanΨn

𝜔n
<

𝜋

2
√
𝜇n

, that is to say, 𝜏m > 𝜏n.

From (i) and (ii) we can see that for any two positive roots
of (12), p and q, the corresponding time delay of p is big-
ger than q if only k3p − k1 < 0 and k3q − k1 > 0. So we
only need to consider the case of 𝜇r >

k1

k3
to deduce the

minimum tolerable time delay 𝜏∗.

Remark 3. The proof of Theorem 2 presents us a method
of computing the delay margin for consensus problem of
third-order integrator system.

Fig. 1. The network topology. [Color figure can be viewed at
wileyonlinelibrary.com]
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Fig. 2. The error system without time delay. [Color figure can
be viewed at wileyonlinelibrary.com]
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Fig. 3. The error system with 𝜏 = 0.096. [Color figure can be
viewed at wileyonlinelibrary.com]

V. SIMULATIONS

We consider an undirected connected network pre-
sented as Fig. 1 with four third-order integrator agents.
By computing we can obtain the eigenvalues of L are
𝜆2 = 1, 𝜆3 = 3, 𝜆4 = 8. We take k1 = k2 = 1, k3 = 2,
and from Theorem 2 we know that this system can reach
consensus under protocol (6). Fig. 2 presents the error
system without time delay.

Also for the case of constant communication delay,
from Theorem 2 we only need to consider the roots of𝜇3−
4𝜆2

i 𝜇
2 + 3𝜆2

i 𝜇 − 𝜆2
i = 0 satisfying 𝜇 >

k1

k2
= 0.5, and there

are 𝜇2 = 3.1479, 𝜇3 = 35.2411, 𝜇4 = 255.25, so we can
get 𝜏∗ = min{𝜏2, 𝜏3, 𝜏4} = min{0.7031, 0.2502, 0.0964} =
0.0964. So protocol (8) can makes this system reach con-
sensus if and only if 𝜏 ∈ [0, 𝜏∗). Figs 3 and 4 display the
error system with time delay 𝜏 = 0.096, 𝜏 = 0.097, respec-
tively. Apparently, these simulations are consistent with
our main results of Theorem 2.

0 5 10 15 20 25 30 35 40 45 50
10

5

0

5

10

15

t

Fig. 4. The error system with 𝜏 = 0.097. [Color figure can be
viewed at wileyonlinelibrary.com]

VI. CONCLUSION

In this paper, we considered a consensus problem
for a class of general third-order multi-agent systems on
an undirected connected network. The consensus con-
trol problem can be turned into a synchronous stabil-
ity problem by using variables transformation. Then we
presented a necessary and sufficient condition for guar-
anteeing consensus. And this result can be applied to a
special case of third-order integrator systems. Also we
presented a method of computing tolerable communica-
tion time delay for third-order integrator systems under
the assumption that MASs can reach consensus without
communication delay.
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