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A FILTER-BASED CLOCK SYNCHRONIZATION PROTOCOL FOR
WIRELESS SENSOR NETWORKS

Wenlun Yang and Minyue Fu

ABSTRACT

Clock parameters in wireless sensors experience slow changes due to low-cost construction and environmental
conditions. In this paper, a filter-based distributed protocol, called FBP, is proposed to dynamically achieve clock
synchronization for wireless sensor networks. The idea of FBP is derived from a first-order filter which is robust to
environmental noises. The proposed protocol is fully distributed, meaning that each node relies only on its local clock
readings and reading announcements from its neighbouring sensor nodes. This will allow the proposed protocol appli-
cable to large sensor networks. By applying FBP, the compensated clock skews can be bounded into a small steady-state
error. Numerical simulations show that the proposed protocol yields better performances in both convergence property
and synchronization accuracy.
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I. INTRODUCTION

Sensor networks are widely used for applications
such as remote environmental monitoring, target track-
ing and genetic networks [1] where a common reference
of time is often required [2,3]. Clock synchronization is
a critical and rather basic requirement in mobile sensor
networks for providing accurate time information of data
collections and for energy conservation purposes. Syn-
chronization protocols aim to synchronize local clocks
and achieve a common reference of timescale among sen-
sors in the network. Finding effective protocols with low
overhead in communication and computation aspects
still remains challenging.

Two kinds of clock synchronization protocols are
commonly applied: tree-based and distributed [4]. A
tree-based protocol establishes a hierarchical structure in
the network, for example, assigns one node as a server
(or master) and other nodes as clients. Typical exam-
ples include Reference Broadcast Synchronization (RBS)
[5], Timing-sync Protocol for Sensor Networks (TPSN)
[6] and Flooding Time Synchronization Protocol (FTSP)
[7]. Due to high dependence on a specific predefined
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structure, tree-based protocols are often fragile to node
failure and packet losses.

In contrast, distributed protocols do not require
a master node and hence avoid a hierarchy structure.
By adopting a fully distributed way, distributed pro-
tocols are robust to dynamic topology changes and
become more scalable, especially for large networks. Typ-
ical examples include [8–11]. Consensus, which typically
belongs to distributed protocols, has been widely used
to design synchronization protocols as it can drive all
agents finally reach a state of agreement based on locally
available information [12]. We classify consensus-based
synchronization algorithms into two categories: one is
synchronous protocol with pseudo-synchronous imple-
mentation, e.g.[13–17]; the other is asynchronous pro-
tocol, also known as gossip-based protocol, e.g.[18–22].
Asynchronous protocol has faster convergence rate than
synchronous ones. On the other hand, synchronous pro-
tocol can realize higher synchronization accuracy espe-
cially when physical clock parameters are time-varying
[23]. Compared with asynchronous ones, synchronous
protocols require concurrent updating process for every
local node which is unrealistic before a common ref-
erence of time is reached. To tackle this problem, [15]
proposes a realistic pseudo-synchronous implementa-
tion. Based upon proportional-integral controller, [16]
comes up with an on-line adaptive strategy for the control
parameters of the integral gain which could improve both
steady state error and scalability. Reference [17] gives
further analysis of the convergence result of [15] under
three different communication scenarios: broadcast com-
munication corresponding with pseudo-synchronous
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implementation, gossip communication corresponding
with asynchronous implementation and hierarchical
communication in wireless sensor networks.

However, most distributed protocols assume that
the clock skews are either constant or they drift as a
zero mean-noise [16], which is unrealistic in real appli-
cations. Typical sensor nodes are equipped with exter-
nal crystal oscillators that are used as clock source for
a counter register. These oscillators exhibit drift which
is gradually changing depending on the environmental
conditions such as ambient temperature, battery voltage
and on oscillator aging. It is well known that typically
an oscillator can drift up to 30–100 parts per million
(ppm) [13], equating to 8.64s in 24 hours, assuming 1
MHz crystal frequancy [13]. As the clocks are subject
to drift, adjusting the clock reading values only once
is not enough as the clocks will be drifting away again
later. Hence, one needs to apply the synchronization
repeatedly [24].

In this paper, we study the clock synchroniza-
tion problem with the focus on handling slow drift of
time-varying clock parameters. We consider a fully dis-
tributed approach and develop a filter-based protocol
(FBP) in both delay-free and random-delay cases. The
main contributions of the proposed protocol are summa-
rized as follows:

1. Improved synchronization precision under slowly
time-varying clock parameters. The proposed FBP
is in a synchronous form with pseudo-synchronous
implementation. Comparison results between other
two consensus-based algorithms indicate that FBP
has improved the synchronization precision under
slowly time-varying clock parameters.

2. Robustness to both multiplicative and additive
noises. Synchronization protocols generally suf-
fer from the noises (due to delays, measurements
noises, quantization, etc) that enter the updating
rules in both additive and multiplicative ways. By
applying a filter-based approach, the proposed FBP
has the advantage of being robust to both forms of
noises. The convergence curve of skew compensa-
tion is smoother, resulting in a better performance
in convergence rate.

3. Fully distributed property. FBP is fully distributed,
meaning that each node relies only on its local clock
readings, reading announcements from its neigh-
bours and information that exchanges between
neighbours. Due to its fully distributed property,
it requires no global information. This property
enlarges the scalability of the proposed protocol,
thus suitable for large networks.

The remainder of this paper is organized as fol-
lows. In Section II, graph theory and a time-varying
clock model for WSNs are introduced, together with
the final goal of synchronization protocol. Section III
mainly composes of three parts. Firstly, a low-pass
filtering-based algorithm to estimate the relative clock
skew is presented following the works in [18] and [19].
Secondly, a filter-based protocol for clock skew com-
pensation is proposed. Thirdly the clock reading com-
pensation protocol is put forward. Finally, we combine
these three parts together and present the implementa-
tion of the proposed FBP. Simulation results are shown
in Section IV. The conclusion of our work is given
in Section V. The detailed proofs of Lemma 3.3 and
Theorem 3.1 are given in the Appendix.

II. PRELIMINARIES

2.1 Notation

R denotes the set of real numbers and Z denotes
the set of nonnegative integer numbers; r denotes
n-dimensional vector of real numbers; 1 repre-
sents n-dimensional vector of ones and 0 represents
n-dimensional vector of zeros; In indicates identity matrix
with order n and On indicates zero matrix with order n.

2.2 Algebraic graph theory

An undirected graph  = ( , ) consists of a
non-empty node set  = {1, 2, · · · , n} and an edge set
 ⊆  ×  . The neighbourhood i ∈  of the vertex
vi is the set {vj ∈ |vivj ∈ }, i.e, the set of all ver-
tices that are adjacent to vi. If vj ∈ i, it follows that
vi ∈ j, since they are mutually adjacent to each other
in a (undirected) graph. di denotes the cardinality of i.
dmax = max di,∀i ∈  . A path of length m in  is given
by a sequence of distinct vertices:

vi0
, vi1

,… , vim
,

such that for k = 0, 1,… ,m − 1, the vertices vik
and vik+1

are adjacent. In this case, vi0
and vim

are called the end
vertices of the path; the vertices vi1

,… , vim−1
are the inner

vertices.
An undirected graph is called connected if for every

pair of vertices in, there is a path that has them as its end
vertices. For a connected undirected graph , the degree
matrix D() is defined as follows:

D()ij =
{

di i = j,
0 otherwise.

(1)
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The adjacency matrix A() is defined as follows:

A()ij =
{

1 i ≠ j, j ∈ i,

0 otherwise.

The associated Laplacian matrix L() is defined as
follows:

L()ij = D()ij − A()ij =
⎧⎪⎨⎪⎩
−1 i ≠ j, j ∈ i,

0 i ≠ j, j ∉ i,

di i = j.

We now introduce a lemma in regard to the eigenvalue
set of Laplacian matrices corresponding to a connected
undirected graph  [25].

Lemma 2.1. For a connected undirected graph , the
associated Laplacian matrix L() is symmetric and pos-
itive semi-definite, and its eigenvalues can be ordered
as

0 = 𝜆1() < 𝜆2() ≤ ... ≤ 𝜆n().

2.3 Clock model

We start by modelling a physically time-varying
clock model and stating the objective of a distributed
synchronization protocol. Considering an integral clock
model [26] for each local clock i:

𝜏i(t) = ∫
t

0
𝛼i(t′)dt′ + 𝛽i, 𝜏i(0) = 𝛽i, (2)

where 𝜏i(t) is local clock reading of node i; 𝛼i(t) is
local clock skew (i.e, rate); 𝛽i is local clock offset and t
indicates absolute reference time. In practice, 𝛼i(t) is a
slowly time-varying variable. Assume that 𝛼i(t) satisfies
Assumption 2.1.

Assumption 2.1. Each local clock skew 𝛼i(t) has an upper
bound and lower bound:

1 − 𝜌1 ≤ 𝛼i(t) ≤ 1 + 𝜌1, ∀ i ∈  , (3)

where 0 < 𝜌1 ≪ 1 indicates the maximum drift of the
skew.

Our distributed synchronization protocol will be in
discrete-time form. Hence the synchronization period is
introduced and denoted by T . For the sake of simplic-
ity, 𝛼i(kT) = 𝛼i(k), ∀ k ∈ Z. Define Δ𝛼i(k) = 𝛼i(kT +
1) − 𝛼i(kT) as the variation of 𝛼i over one synchroniza-
tion period. Another assumption concerning with Δ𝛼i(k)
is proposed:

Assumption 2.2. For any k ∈ Z,

|Δ𝛼i(k)| ≤ 𝜌2, (4)

where 0 < 𝜌2 ≪ 1 is the bound of 𝛼i’s variation in one
sampling period.

Assume a WSN composed of n sensor nodes, each
of them equipped with its local clocks. The communica-
tion topology is modeled as a connected and undirected
graph . i denotes the set of one-hop neighbours of
node i in WSNs. An edge between node i and j in 
indicates that they can communicate with each other by
exchanging their information mutually.

The common virtual clock reading can be inter-
preted as:

𝜏(t) = ∫
t

0
𝛼(t′)dt′ + 𝛽. (5)

Since 𝛼i(t) experiences slow drift, it is unrealistic to
let both virtual skew and offset converge exactly to cer-
tain values. Indeed, we try to bound the synchronization
error of clock skew and the virtual clock reading as close
as possible. As a result, the objective of a fully distributed
synchronization protocol is to synchronize n local clocks
with respect to a common virtual reference time as close
as possible, namely, both synchronization errors of vir-
tual clock skew and clock reading are within acceptable
error range.

We consider a distributed linear updating protocol
and each node i periodically keeps an update of its virtual
clock reading 𝜏i(t) based only on its own information and
its neighbours’ information

𝜏i(t) = Gi(𝛼̂i(t)𝜏i(t), 𝜏j(t)),

where Gi(.) is a linear function depended on the informa-
tion available at node i and from node j ∈ i, that is,
the local clock readings of clock i itself and its neighbour
nodes j ∈ i. 𝛼̂i(t) is the virtual clock skew compensa-
tion quantity. Node i’s clock skew can be compensated
by multiplying 𝛼̂i(t) with physical clock reading 𝜏i(t). Two
cases are demonstrated to illustrate the final goals of
synchronization protocol. By mentioning the goals of
synchronization, we refers to synchronization rather than
ordering of events, that is, to s et all clock displays to
agreement and acquire a common notion of time [27].

Case 1. If 𝛼i is constant, running synchronization pro-
tocol can drive the virtual clock skew and virtual clock
reading for node i asymptotically converge to 𝛼 and 𝜏(t):

(i) limt→∞ 𝛼̂i(t)𝛼i = 𝛼, ∀i ∈  .
© 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
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(ii) limt→∞(𝜏i(t) − 𝜏(t)) = 0, ∀i ∈  .
Case 2. Define 𝜀i(t) = 𝛼̂i(t)𝛼i(t)−𝛼(t) where 𝜀i(t) is called
skew synchronization error for node i. If 𝛼i(t) is slowly
time-varying, the objective of synchronization protocol is
to bound the synchronization error of compensated clock
skews as

lim
t→∞

|𝜀i(t)| ≤ 𝜌3,

where 0 < 𝜌3 < 𝜌1 is the synchronization precision
parameter of clock skew compensation, and it needs to
be made as small as possible.

III. CLOCK SYNCHRONIZATION
PROTOCOL

The proposed distributed protocol mainly includes
three parts: relative clock skew estimation, clock skew
compensation and clock reading compensation.

3.1 Relative clock skew estimation

Relative clock skew estimation aims to derive an
algorithm to estimate the relative clock skew of each
node i with respect to its neighbour node j ∈ i. Some
definitions are listed as follows.

Definition 3.1. The definition of relative clock skew for
node i at time t is as follows:

𝛼ij(t) =
𝛼j(t)
𝛼i(t)

. (6)

The estimation of relative clock skew will be dis-
cussed in both delay-free and random-delay cases.

3.1.1 Relative clock skew estimation in delay-free case

We first consider the case without communication
delays.

Assumption 3.1. Communication delays at all time
instants are negligible.

Definition 3.2. tj(k) indicates the global time at which
node j’s clock reading 𝜏j(tj(k)) just reaches kT , where T
is a common sampling period set as a default value.

Definition 3.3. 𝜏i(tj(k)) (k ∈ Z, ∀j ∈ i) indicates node
i’s local clock reading when node j announces that its
local clock reading just reaches kT .

One thing to note is that local clock skew 𝛼i(t) is
neither known nor measurable by node i [18]. However,
node i can acquire its relative clock skew estimation.
Specifically, every node i tries to estimate relative clock
skew 𝛼ij(tj(k)) with respect to its neighbours j ∈ i at
time instant tj(k). In delay-free case, if we take unavoid-
able measurement, quantization errors and small drift of
clock skews into consideration, a low-pass filter intro-
duced by [18] is as follows.

Initialization. 𝛼̂ij(0) = 1.

Main Loop. At t = tj(k), k ∈ Z, the updating step of
𝛼̂ij(t+) is

𝛼̂ij(t+) = 𝜌𝛼̂ij(t−) + (1 − 𝜌) T
𝜏i(tj(k)) − 𝜏i(tj(k − 1))

,

(7)

where 𝜌 ∈ (0, 1) is a tuning parameter. t+ and t− repre-
sent, respectively, the right-hand limit and left-hand limit
of t.

Lemma 3.1. [18]. For constant 𝛼i, applying (7) yields the
following convergence result in delay-free case

lim
t→∞

𝛼̂ij(t) = 𝛼ij (8)

for any initial condition 𝛼̂ij(t).

3.1.2 Relative clock skew estimation in random-delay
case

Now, we consider the case with communication
delays.

Assumption 3.2. The communication delays at different
time instants are now assumed to be positive random
variables with constant mean 𝜇 and variance 𝜎2 and they
are identically and independently distributed (i.i.d).

Some notation is listed as follows:

1. t′j(k) is the real broadcasting time at which node
j’s clock reading 𝜏j(t′j(k)) just reaches kT . At
t′j(k), node j broadcasts its hardware clock reading
𝜏j(t′j(k)) to node i.

2. tj(k) indicates the real receiving time for node i. At
tj(k), node i receives packets from node j and imme-
diately records its hardware clock reading 𝜏i(tj(k)).

3. dj →i
k

= tj(k) − t′j(k), k ∈ Z is the communication

delay from node j to node i. For different dj →i
k

s, they
are mutually independent to each other.
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In random-delay case, if we take unavoidable mea-
surement, quantization errors and small drift of clock
skews into consideration, a low-pass filter-based algo-
rithm introduced by [19] is presented as follows.

Initialization. 𝛼̂ij(0) = 1. Set a common broadcast T
to each node.

Main Loop. At t = tj(k), k ∈ Z, the updating step of
𝛼̂ij(t+) is

⎧⎪⎨⎪⎩
𝛽ij(t) =

T
𝜏i(tj(k))−𝜏i(tj(k−1))

,

𝛼̂ij(t+) =
𝛽ij(t)+(k−1)𝛼̂ij((t−1)+)

k
, k ∈ Z.

(9)

Lemma 3.2. [19]. For the case of constant clock skew
𝛼i, applying (9) yields the following mean square conver-
gence result in random-delay case

E{𝛼̂ij(k)} = 𝛼ij (10)

and

lim
k→∞

Var{𝛼̂ij(k)} = 0. (11)

The relative skew 𝛼ij(t) is also slowly time-varying.
As a result, (7) and (9) hold approximately under slowly
time-varying clock skew. In the following we put forward
a clock skew compensation protocol using relative skew
algorithm proposed in (7) and (9).

3.2 Clock skew compensation

Clock skew compensation is the preliminary step
of synchronization protocol. It constrains the syn-
chronization error of compensated clock skew into a
bounded range, which can guarantee long-term reli-
ability of synchronization and reduce the number of
re-synchronization frequencies. Consider a WSN of n
sensors carrying their own local clocks. At time instant
k ∈ Z each sensor node i ∈  updates its own clock skew
compensation quantity 𝛼̂i(k) using only the local infor-
mation of their neighbouring sensor nodes. We propose
the filter-based clock synchronization protocol of skew
compensation as follows.

Initialization. 𝛼̂i(0) = 1, 𝜔i(0) = 0, ∀i ∈  .

Main Loop. At t = tj(k), k ∈ Z, 𝛼̂i(t+) is updated as
follows:

⎧⎪⎪⎨⎪⎪⎩
𝛼̂i(t+) = 𝛼̂i(t−) − T

∑
j∈i

(𝜔i(t−) − 𝜔j(t−)𝛼̂ji(t−)),

𝜔i(t+) = (1 − T𝛾)𝜔i(t−) + T
∑

j∈i

(𝛼̂i(t−) − 𝛼̂j(t−)

𝛼̂ij(t−)),

(12)

where 𝜔i(t−) ∈ R is called intermediate estimator state;
𝛼̂ij(t−) is calculated in (7) or (9); 𝛾 is the information rate
that measures the proportion of how much new informa-
tion is introduced; T is discrete-time sampling period as
discussed before; certain conditions of 𝛾 and T should be
met to guarantee stability and convergence of the whole
system, as depicted in Theorem 3.1.

By replacing t+ or t− with a common discrete time
point k from a perspective of global clock, we get the
algorithm for the protocol of (12) as follows:

Algorithm 1 (Clock skew compensation Protocol)
Input: 𝛼̂ij(k) for i ∈  .
Output: 𝛼̂i(k) for i ∈  and j ∈ i.

1: Initialize 𝛼̂i(0) = 1, 𝜔i(0) = 0, ∀i ∈  .
2: while 1 do
3: 𝛼̂i(k) ⇐ 𝛼̂i(k) − T

∑
j∈i

(𝜔i(k) − 𝜔j(k)𝛼̂ji(k)) at t =
t(k).

4: 𝜔i(k) ⇐ (1−T𝛾)𝜔i(k)+T
∑

j∈i
(𝛼̂i(k)− 𝛼̂j(k)𝛼̂ij(k))

at t = t(k).
5: 𝜔i(t) = 𝜔i(k), 𝛼̂i(t) = 𝛼̂i(k), t ∈ [k, k + 1).
6: 𝜔i(k + 1) = 𝜔i(k), 𝛼̂i(k + 1) = 𝛼̂i(k) at t = t(k + 1).
7: end while

Lemma 3.3 gives the upper bounds for both 𝛼̂i(k)
and 𝜔i(k) when applying Algorithm 1.

Lemma 3.3. Under Assumptions 3.1, protocol (12) leads
to the boundedness of limk→∞ 𝛼̂i(k) and limk→∞ 𝜔i(k) by
choosing:

(i) 0 < T <
−2
𝜆2bn

,

(ii) 𝛾 > 0,

where 𝜆2bn is defined as the minimum eigenvalue of B0
and

B0 =
[

On −(D() − Λ(k)T )
D() − Λ(k) −𝛾In

]
.

Λ(k) is defined as

Λ(k)ij =
{

𝛼̂ij(k) i ≠ j, j ∈ i,

0 otherwise.

Moreover, 𝛼̂i(k) and 𝜔i(k) are uniformly bounded
for all k ∈ Z, that is:

© 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
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|𝛼̂i(k)| ≤ 𝛼̂sup, |𝜔i(k)| ≤ 𝜔sup, ∀k ∈ Z,

where 𝛼̂sup > 0 and 𝜔sup > 0 respectively denote the upper
bounds for 𝛼̂i(k) and 𝜔i(k).

Proof. The proof is given in the Appendix.

Our main result for delay free case is presented in
Theorem 3.1. It shows that (12) will lead to the bounded-
ness of limk→∞ |𝜀i(k)|.
Theorem 3.1. Consider the communication topology of
WSNs to be a connected and undirected graph . If
Assumptions 2.1, 2.2, 3.1 hold, (12) leads to the bound-
edness of 𝜀i(k) as

lim
k→∞

|𝜀i(k)| ≤ 𝜌3 =
||||1 + T𝜆i

T𝜆i

||||
(4𝜌1T𝜔supdmax

1 + 𝜌1
+ 𝜌2𝛼̂sup

)
by choosing:

(i) 0 < T < min
{

−2
𝜆2n

,
−2
𝜆2bn

}
,

(ii) 𝛾 > 0,

where 𝜆i is defined as the ith eigenvalue of A0 where

A0 =
[

On −L()
L() −𝛾In

]
,

and 𝜆2n is defined as the minimum eigenvalue of A0. 𝜆2bn
is defined as the minimum eigenvalue of B0 defined in
Lemma 3.3.

Proof. The proof is given in Appendix.

Remark 3.1. As shown in the proof, even in the pres-
ence of both multiplicative and additive but exponentially
decaying noises, synchronization error of virtual clock
skew will eventually converge to a certain bound 𝜌3 expo-
nentially fast.

This protocol design is inspired by a continuous
filter-based approach which is initially presented in the
formation maneuvering control [28]. The introduction of
auxiliary variable 𝜔i is to construct the first-order filter
in order to enhance the robustness to noises. Drawn from
the error form of 𝜀i(k), under constant clock skew 𝛼i, 𝜀i(k)
converges exponentially to zero as k → ∞.

In the random-delay case, a similar result can be
obtained.

Theorem 3.2. Consider the communication topology of
WSNs to be a connected and undirected graph . If

Assumption 3.2, 2.1, 2.2 hold, by applying (12) |𝜀i(k)|
converges to exponentially to a ball at the origin of radius
𝜌3 in mean square sense:

1. 𝜌3 = ||| 1+T𝜆i

T𝜆i

||| ( 4𝜌1T𝜔supdmax

1+𝜌1
+ 𝜌2𝛼̂sup

)
,

2. limk→∞ E{|𝜀i(k)|} ≤ 𝜌3,
3. limk→∞ Var{|𝜀i(k)|} = 0,

by choosing:

(i) 0 < T min{ −2
𝜆2n

,
−2
𝜆2bn

},
(ii) 𝛾 > 0,

where 𝜆i is defined as the ith eigenvalue of A0 where

A0 =
[

On −L()
L() −𝛾In

]
,

and 𝜆2n is defined as the minimum eigenvalue of A0. 𝜆2bn
is defined as the minimum eigenvalue of B0 defined in
Lemma 3.3.

The proof of Theorem 3.2 follows similar to that of
Theorem 3.1 and it is thus omitted.

Remark 3.2. As the proposed protocol (12) is in
a synchronous form which is unrealistic, we use a
pseudo-synchronous implementation [15] to implement
(12).

3.3 Clock reading compensation

At the end of clock skew compensation procedure,
the synchronization errors of virtual clock skews are
bounded by 𝜌3 under slowly time-varying input 𝛼i(t)s.
The next step is to compensate for possible clock read-
ing errors. Clock reading compensation mainly focuses
on reducing possible errors of virtual clock reading 𝜏i(t).
The clock reading compensation protocol presented in
Algorithm 2 can be integrated into skew compensation.

Algorithm 2 Clock reading compensation protocol
Input: 𝛼̂i(k) for i ∈  .
Output: 𝜏i(k) for i ∈  .

1: Initialize 𝜏i(0) = 𝛼̂i(0)𝜏i(0), ∀i ∈  .
2: while 1 do
3: 𝜏i(k) ⇐

𝜏i(k)+
∑

j∈i
𝜏j(k)

di+1
at t = t(k).

4: 𝜏i(t) ⇐ 𝜏i(k)+ 𝛼̂i(k)(𝜏i(t)−𝜏i(k)), t ∈ [t(k), t(k+1)).
5: 𝜏i(k + 1) ⇐ 𝜏i(k) + 𝛼̂i(k)(𝜏i(k + 1) − 𝜏i(k)) ∀i ∈  at

t = t(k + 1).
6: end while
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At t = t(k), node i updates its virtual clock read-
ing 𝜏i(k) by taking the average of the sum of 𝜏i(k) and
𝜏j(k), j ∈ i and then it is added by 𝛼̂i(k)(𝜏i(t)−𝜏i(k)), t ∈
(t(k), t(k+1)) as time moves until the next round of clock
reading compensation.

Remark 3.3. This approach is inspired by standard
consensus algorithm [29] but uses pseudo-synchronous
implementation. The stability analysis is similar to [29]
and it is not repeated. As the clock reading compensa-
tion protocol is integrated into skew compensation, every
node i in WSNs can achieve clock skew compensation
and clock reading compensation simultaneously.

Remark 3.4. Under slowly time-varying input 𝛼i(t)s, syn-
chronization error of clock reading always exists. As
time moves, clock reading errors can be increased and
exceed the accuracy requirement. In this case, Algorithm
2 should be performed again. This operation is called
re-synchronization.

After introducing the details of clock reading com-
pensation, notations of the transmission and updating
time instants should be specified in order to illustrate
the pseudo-synchronous implementation of the proposed
protocol.

The transmission time instants of j ∈ i are defined
by

tj
tr(k) = tj(k), where 𝜏j(tj(k)) = kT . (13)

Hence the receiving time instants of i ∈ j are
defined by

ti
re(k) = tj

tr(k), ∀ i ∈ j. (14)

The updating time instants of node i are defined by

ti
up(k) = max{tj

tr(k)|j ∈ i ∪ {i}}, (15)

namely the ith clock updates its state right after all
its neighbour nodes finish their transmission actions,
included its own transmission. ti

tr(k) and ti
up(k) can

be determined by node i relying only on its local
information.

We then combine relative clock skew estimation,
clock skew compensation and clock reading compensa-
tion of the proposed protocol together and propose the
combined filter-based protocol as Algorithm 3.

IV. SIMULATION

This section provides some examples to illustrate
the performances of the proposed filter-based protocol.

Algorithm 3 Combined filter-based protocol
Input: 𝜏i(t), 𝜏j(t) for i ∈  and j ∈ i.
Output: 𝜏i(t) for i ∈  and j ∈ i.

1: Set a common T to each node i ∈  .
2: 𝛼̂i(ti

tr(0)) = 1, 𝜔i(ti
tr(0)) = 0, 𝜏i(ti

tr(0)) =
𝜏i(ti

tr(0)), 𝛼̂ij(ti
tr(0)) = 1, ∀i ∈  .

3: Node i broadcasts 𝜔i(ti
tr(k)), 𝛼̂i(ti

tr(k)) and 𝜏i(ti
tr(k)) to

its neighbours j ∈ i at t = ti
tr(k).

4: Node i broadcasts 𝜏i(ti
up(k)) to its neighbours j ∈ i

at t = ti
up(k).

5: while 1 do
6: Node i receives 𝜔j(t

j
tr(k)), 𝛼̂j(t

j
tr(k)) from its neigh-

bours j ∈ i at t = tj
tr(k) and immediately records

𝜏i(t
j
tr(k)).

7: 𝛼̂ij(t
j
tr(k)) = 𝜌𝛼̂ij(t

j
tr(k)) + (1−𝜌)T

Δ𝜏i(t
j
tr(k))

, 𝜌 ∈

(0, 1),Δ𝜏i(t
j
tr(k)) = 𝜏i(t

j
tr(k)) − 𝜏i(t

j
tr(k − 1)).

8: 𝛼̂i(t
j
up(k)) = 𝛼̂i(t

j
tr(k)) −

T
∑

j∈i

(
𝜔i(t

j
tr(k)) −

𝜔j(t
j
tr(k))

𝛼̂ij(t
j
tr(k))

)
at t = tj

up(k).

9: 𝜔i(t
j
up(k)) = 𝜔i(t

j
tr(k)) − 𝜖𝛾𝜔i(t

j
tr(k)) +

T
∑

j∈i
(𝛼̂i(t

j
tr(k)) − 𝛼̂j(t

j
tr(k))𝛼̂ij(t

j
tr(k)) at t = tj

up(k).
10: Node i receives 𝜏j(t

j
up(k)) from its neighbours j ∈

i at t = tj
up(k).

11: 𝜏i(t
j
up(k)) =

𝜏i(t
j
up(k))+𝜏j(t

j
up(k))

2
at t = tj

up(k).
12: 𝜏i(t) = 𝜏i(t

j
up(k)) + 𝛼̂i(t

j
tr(k))(𝜏i(t) − 𝜏i(t

j
up(k))), t ∈

(tj
up(k), t

j
up(k + 1)].

13: 𝛼̂i(t) = 𝛼̂i(t
j
up(k)), 𝜔i(t) = 𝜔i(t

j
up(k)), 𝛼̂ij(t) =

𝛼̂ij(t
j
tr(k)), t ∈ (tj

up(k), t
j
tr(k + 1)].

14: end while

We test the performances of FBP in delay-free and
random-delay cases and give a simulated case study
to prove the usefulness of the proposed protocol.
Finally, a comparative analysis with the proposed
FBP and other two representative algorithms: A
Maximum-Value-Based Consensus Synchroniza-
tion (MTS)[19] and Second-order Linear Consensus
Algorithm (SLCA) [15] is proposed in two aspects:
synchronization accuracy and convergence rate.

4.1 Convergence performance of skew compensation in
delay-free case

Consider a network topology in Fig. 1 composed of
10 labelled nodes.

The performance of clock skew compensation pro-
tocol is performed under different 𝜌2s in delay-free case.
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Fig. 1. Network topology composed of 10 labelled nodes.
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Fig. 2. Convergence performance of skew compensation in
delay-free case. [Color figure can be viewed at
wileyonlinelibrary.com]

Based on the topology shown in Fig. 1, 𝜆2n = −4 and
𝜆2bn ≃ −4. As 0 < T min{ −2

𝜆2n
,

−2
𝜆2bn

} = 0.5, the parameter

set is chosen as: T = 0.1s, 𝛾 = 3.5, Ki = 1.5, Kp = 1.5.
The initialization values of 𝛼i(0) are assumed

to be randomly selected from [0.9999, 0.99997] ∪
[1.00003, 1.0001] since Crystal oscillators exhibit drift 𝜌1
as 100𝜇s in one second [13]. As each local clock skew
experiences small drift, during one sampling period the
local clock skew is added by a Gaussian random noise
𝜌2 with its values respective as 0.01 ticks/s, 0.05 ticks/s,
0.1 ticks/s. It can be seen from Fig. 2 that it takes nearly
50 iterations to reduce the maximum difference of skew
below 1 tick/s (1 tick/s=1/32768 Hz=30.5𝜇s), i.e., the
individual clock resolution.

The performances of compensated clock readings
are also tested as the compensated clock readings are
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Fig. 3. Convergence performance of compensated clock
readings in delay-free case. [Color figure can be viewed
at wileyonlinelibrary.com]

the main focus of synchronization protocol. The ran-
dom noises 𝜌2s are respectively chosen as 0.01 ticks/s,
0.05 ticks/s, 0.1 ticks/s. It can be seen from Fig. 3 that
the proposed FBP performs well in both convergence
rate and synchronization accuracy under different 𝜌2s,
which demonstrates stronger robustness against slowly
time-varying clock skew 𝛼i(t).

4.2 Convergence performance of clock reading
compensation in random-delay case

When calculating the estimate of relative clock skew
𝛼ij, the communication delay can not be ignored. In this
section, we evaluate how the skew compensation perfor-
mances degrade when adding the presence of random
delays. Based on the empirical results in [19], we assume
that in the simulation dj →i

k
∼ N(2.5 × 10−4, 10−8), which

means that the delay is in the range of [0,550]𝜇s with
99.97% confidence. The introduction of random delay
dj →i

k
degrades the accuracy of relative clock skew esti-

mation 𝛼ij and hence affects the performance of skew
compensation.

Fig. 4 illustrates the convergence performance of
clock reading compensation in delay-free case and
random-delay case with 𝜌2 = 0.03 ticks/s.

Drawn from the convergence result of clock read-
ing compensation in Fig. 4, the steady-state error bound
of random-delay case is larger compared with the error
of delay-free case, but within the range of 1 ticks/s, just
below the clock resolution.
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Fig. 4. Convergence performances of clock reading
compensation in delay-free case and random-delay
case with 𝜌2 = 0.03 ticks∕s. [Color figure can be viewed
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4.3 Comparison between other techniques under
time-varying clock parameters

Next we compare the proposed FBP with two
existing state-of-the-art synchronization protocols: the
second-order linear consensus algorithm (SCLA) pro-
posed in [15] and a maximum-value-based consensus
synchronization (MTS) proposed in [19]. Note that
both SCLA and our FBP are synchronous proto-
cols with pseudo-synchronous implementation, whereas
MTS is asynchronous protocol with asynchronous
implementation.

4.3.1 Comparison between FBP and SCLA under
time-varying clock parameters

The second-order linear consensus algorithm
applies standard consensus protocol to simultaneously
compensate both clock skews and clock readings and it
is an accurate-oriented protocol, meaning its synchro-
nization precision is better compared with other existing
protocols.

The sampling period of SCLA is chosen as T =
0.2, the same as FBP. The performances of skew com-
pensation and clock reading compensation are shown
respectively in Fig. 5 and Fig. 6. Fig. 5 shows that the
proposed protocol FBP has faster convergence rate in
skew compensation compared with SCLA. This results
in a slightly better performance of clock reading com-
pensation of FBP under slowly time-varying skew 𝛼i(t),
as shown in Fig. 6. On the whole, the proposed FBP
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Fig. 5. Comparison in terms of skew compensation between
FBP and SCLA under slowly time-varying 𝛼i(t) with
𝜌2 = 0.03 ticks∕s. [Color figure can be viewed at
wileyonlinelibrary.com]
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Fig. 6. Comparison in terms of compensated clock readings
between FBP and SCLA under slowly time-varying
𝛼i(t) with 𝜌2 = 0.03 ticks∕s. [Color figure can be viewed
at wileyonlinelibrary.com]

shows better robustness in both convergence speed and
synchronization precision compared with SCLA under
time-varying clock parameters.

The second-order linear consensus algorithm
mainly uses an iterative dynamics as follows:

x′
i(k

+) = x′
i(k) + u′

i(k),
x′′

i (k
+) = x′′

i (k) + u′′
i (k),

(16)
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where x′
i(k) represents the compensated clock reading

for node i at time kT , and x′′
i (k) represents the estimate

of physical clock skew. T is the sampling period. The
second-order linear feedback control law u′

i(k) and u′′
i (k)

is given by

u′
i(k) = −0.5 ∗

∑
j∈i

Kij[x′
j(k) − x′

i(k)],

u′′
i (k) = − 1

T maxi 𝛼i

∑
j∈i

Kij[x′
j(k) − x′

i(k)].
(17)

where Kijs are elements of a Laplacian matrix based on
the communication topology.

Drawn from the equation above, the second-order
linear consensus algorithm mainly uses a relative clock
reading difference x′

j(k) − x′
i(k) as its control input. As

the second-order linear consensus algorithm is in syn-
chronous form, relative clock reading difference can also
be treated as relative clock skew difference. This implies
that the second-order linear consensus algorithm applies

relative clock skew difference
x′

j (k)−x′
i (k)

T
as its kind of

feedback information.
The clock skew compensation part of FBP applies

the following dynamic:

𝛼̂i(t+) = 𝛼̂i(t−) − T
∑
j∈i

(𝜔i(t−) − 𝜔j(t−)𝛼̂ji(t−)),

𝜔i(t+) = (1 − T𝛾)𝜔i(t−) + T
∑
j∈i

(𝛼̂i(t−) − 𝛼̂j(t−)

𝛼̂ij(t−)),

.

(18)

By introducing the estimation of relative skew
𝛼̂ij(t−), the proposed FBP also uses relative clock skew
difference 𝛼i(t−)−𝛼j(t−) as its feedback information. This
fact can be verified by multiplying 𝛼i(t−) to both sides of
equations (18). Unlike the second-order linear consen-
sus algorithm, as we bring in an auxiliary variable 𝜔i(k)
into FBP, the proposed form of FBP has the functionality
of a first-order filter. This contributes to better perfor-
mances in both skew compensation and clock reading
compensation.

4.3.2 Comparison between FBP and MTS under
time-varying clock skew

The maximum-value-based consensus synchroniza-
tion(MTS), which is initially proposed in [19], has its
advantage of finite time convergence. The proposed FBP
is then compared with MTS according to their perfor-
mances in both convergence rate and synchronization
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Fig. 7. Comparison in terms of compensated clock readings
between FBP and MTS under time-varying 𝛼i(t) with
𝜌2 = 0.5 ticks∕s. [Color figure can be viewed at
wileyonlinelibrary.com]

accuracy. The comparison result of compensated clock
readings is shown in Fig. 7.

Drawn from Fig. 7, FBP is inferior to MTS as MTS
is a fast-convergent-oriented algorithm. However, after
convergence, the the synchronization accuracy of FBP
is more precise than MTS, indicating that the proposed
FBP has smaller steady-state synchronization error.

In conclusion, the proposed FBP is shown to be
more robust to noises, resulting in better convergence rate
when compared with SCLA and better synchronization
precision when compared with both SCLA and MTS.

V. CONCLUSION

This paper studies clock synchronization in wire-
less sensor network under time-varying clock param-
eters and proposes a fully distributed synchronization
protocol called FBP. By applying FBP, a network of
sensors can bound the synchronization error of com-
pensated clock skews into a small steady-state range.
The proposed protocol uses a first-order filter design
method which shows better robustness against slowly
time-varying clock parameters. We provide theoretical
analysis as well as simulation results of the protocol and
show that the proposed FBP achieves clock synchro-
nization with better performances in both synchroniza-
tion precision and convergence property. Future work
includes extending the proposed protocol to the case
of totally asynchronous form and checking whether the
properties of FBP are still remained.
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VI. APPENDIX

6.1 Proof of Lemma 3.3

The aggregated synchronous form of (12) is[
𝜶̂(k + 1)
𝝎(k + 1)

]
= B1

[
𝜶̂(k)
𝝎(k)

]
=

[
𝜶̂(k)
𝝎(k)

]
+TB0

[
𝜶̂(k)
𝝎(k)

]
,

(19)

where

B1 = I + TB0, B0 =
[

On −(D() − Λ(k)T )
D() − Λ(k) −𝛾In

]
,

Λ(k)ij =
{

𝛼̂ij(k) i ≠ j, j ∈ i,

0 otherwise.

(20)

It can be seen that {(𝜶̂,𝝎) ∶ limk→∞(𝛼̂i(k) −
𝛼̂j(k)𝛼ij(k)) = 0 and limk→∞ 𝜔i(k) = 0, ∀k ∈ Z, {i, j} ∈
} is the equilibrium point of (19).

Assume that the set of eigenvalues of B0 is 𝜋 =
{𝜆b1, 𝜆b2, ... 𝜆b2n} while B1 has eigenvalue set as 𝜋̂ =
{𝜆̂b1, 𝜆̂b2, ... 𝜆̂b2n} where 𝜆̂bi = 1+T𝜆bi. Let [𝜇, 𝜈]T be the
associated eigenvector of B0 corresponding to 𝜆bi, where
𝜇, 𝜈 ∈ R. Then we have(

𝜆biI2n −
[

On − (D() − Λ(k)T )
D() − Λ(k) − 𝛾In

])[
𝜇

𝜈

]
= 0.

(21)

or equivalently,(
[𝜆biIn On] −

[
On − (D() − Λ(k)T )

]) [ 𝜇
𝜈

]
= 0

(22)

and (
[On 𝜆biIn] −

[
D() − Λ(k) − 𝛾In

]) [ 𝜇
𝜈

]
= 0. (23)

Combining (22)–(23) together yields the following
result:

−(D()−Λ(k))T (D()−Λ(k))𝜇 = 𝜆bi(𝜆bi+𝛾)𝜇, (24)

indicating that 𝜆bi(𝜆bi + 𝛾) is an eigenvalue of −(D() −
Λ(k))T (D() −Λ(k)) with 𝜇 being its associated eigenvec-
tor. Let Π = {𝜌1,… , 𝜌n} be an eigenvalue of the matrix
(D()−Λ(k))T (D()−Λ(k)). The roots of the polynomial
equation

𝜆2
bi + 𝛾𝜆bi + 𝜌i = 0, i = 1,… , n (25)

are the eigenvalues of B0. (25) leads to the following
explicit expression of root solution

𝜆bi =
−𝛾 ±

√
𝛾2 − 4𝜌i

2
, i = 1,… , n. (26)

The matrix (D() − Λ(k))T (D() − Λ(k)) is sym-
metric and positive definite and its spectrum satisfies the
following inequality

0 < 𝜌1 ≤ 𝜌2 ≤ ... ≤ 𝜌n, (27)

which means its eigenvalue are all positive. Hence the
eigenvalues of B0 can be negative and lie in the negative
half plane if and only if

𝛾 > 0. (28)

Assume that the eigenvalues of B0 satisfy the follow-
ing relationship:

0 > 𝜆b1 ≥ 𝜆b2 ≥ ... ≥ 𝜆b2n. (29)

To guarantee that 𝜋̂ = {𝜆̂b1, 𝜆̂b2, ... 𝜆̂b2n} lie strictly
in the unit circle, the following condition should be
satisfied:

|1 + T𝜆bi| < 1, i = 1, 2,… , 2n. (30)

Hence T should be bounded by

0 < T <
−2
𝜆b2n

. (31)

Consequently, if (28) and (31) are satisfied, B1 is
Schur-stable, which means system (19) is BIBO stable.
This guarantees the bounded output of 𝛼̂i(k) and 𝜔i(k)
∀ k ∈ Z as the initial inputs of 𝜶̂(k) = span{1} and
𝝎(k) = 0 are bounded.
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6.2 Proof of Theorem 3.1

Let 𝛼i(k)𝜔i(k) = 𝜔i(k), 𝛼i(k)𝛼̂i(k) = 𝛼i(k). Mul-
tiplying (12) with 𝛼i(k) yields the following state space
equation

⎧⎪⎪⎨⎪⎪⎩

𝛼i(k + 1) = 𝛼i(k) − T
∑

j∈i
(𝜔i(k) − 𝜔j(k)) + Δ𝛼

i (k)+
Δ𝛼i(k)𝛼i(k + 1),
𝜔i(k + 1) = (1 − 𝜖𝛾)𝜔i(k) + T

∑
j∈i

(𝛼i(k) − 𝛼j(k))+
Δ𝜔

i (k) + Δ𝛼i(k)𝜔i(k + 1),

(32)

where Δ𝛼
i (k) and Δ𝛽

i (k) are:

Δ𝛼
i (k) = −T

∑
j∈i

𝜔j(k)
(

1 −
𝛼i(k)
𝛼j(k)

𝛼̂ji(k)
)
,

Δ𝜔
i (k) = T

∑
j∈i

𝛼j(k)
(

1 −
𝛼i(k)
𝛼j(k)

𝛼̂ij(k)
)
.

(33)

The synchronous form of (32) becomes[
𝜶(k + 1)
𝝎(k + 1)

]
= (A1 + Δ(k))

[
𝜶(k)
𝝎(k)

]
+ v(k), (34)

where

A1 = I2n + TA0,A0 =
[

On −L()
L() −𝛾In

]
,

Δ(k) =
[

On −T(A() − Π1(k))
T(A() − Π2(k)) On

]
,

Π1(k)ij =

{
𝛼j(k)
𝛼i(k)

𝛼̂ij(k) i ≠ j, j ∈ i,

0 otherwise.

Π2(k)ij =

{
𝛼i(k)
𝛼j(k)

𝛼̂ij(k) i ≠ j, j ∈ i,

0 otherwise.

𝚫𝜶(k) = [Δ𝛼1(k)𝛼̂1(k + 1),… ,Δ𝛼n(k)𝛼̂n(k + 1)]T ,
𝚫𝝎(k) = [Δ𝛼1(k)𝜔̂1(k + 1),… ,Δ𝛼n(k)𝜔̂n(k + 1)]T ,

v(k) =
[
𝚫𝜶(k)
𝚫𝝎(k)

]
.

L() is a Laplacian matrix with zero as its simple eigen-
value; 𝝎(k) = [𝜔1(k),… , 𝜔n(k)]T is vector form of aggre-
gated auxiliary variables; 𝜶(k) = [𝛼1(k),… , 𝛼n(k)]T is
vector form of aggregated virtual clock skew while𝜶(k) =
[𝛼1(k),… , 𝛼n(k)]T is vector form of aggregated physi-

cal clock skew. Without external input Δ
[
𝜶(k)
𝝎(k)

]
and[

𝚫𝜶(k)
𝚫𝝎(k)

]
, {(𝛼, 𝜔) ∶ 𝛼 ∈ span{1} and 𝜔 = 0} is the

equilibrium subspace of system (34).

According to Assumption 2.2 and Lemma 3.3, as
long as 0 < T <

−2
𝜆2bn

and 𝛾 > 0 are satisfied, Δ𝛼i𝛼i(k +
1), Δ𝛼i𝜔i(k + 1) are uniformly bounded:

|Δ𝛼i𝛼i(k+1)| ≤ 𝜌2𝛼̂sup, |Δ𝛼i𝜔i(k+1)| ≤ 𝜌2𝜔sup. (35)

On the other hand, according to (7), 𝛼ij(k) ∈
( 1−𝜌1

1+𝜌1
,

1+𝜌1

1−𝜌1
). Hence the bound of Δ𝛼

i (k), Δ
𝜔
i (k) are given

as

|Δ𝛼
i (k)| ≤ T𝜔sup(1 + 𝜌1)

∑
j∈i

(
1 −

(1 − 𝜌1)2

(1 + 𝜌1)2

)
≤ Δ1,

|Δ𝜔
i (k)| ≤ T 𝛼̂sup(1 + 𝜌1)

∑
j∈i

(
1 −

(1 − 𝜌1)2

(1 + 𝜌1)2

)
≤ Δ2,

Δ1 =
4𝜌1T𝜔supdmax

1 + 𝜌1
, Δ2 =

4𝜌1T 𝛼̂supdmax

1 + 𝜌1
.

(36)

The external inputs Δ𝛼
i (k), Δ𝜔

i (k), Δ𝛼i(k)𝛼̂i(k +
1), Δ𝛼i(k)𝜔̂i(k + 1) are bounded. As long as A1 is
Schur-stable, system (34) is input-to-state stable.

A1 can be divided into the sum of A0 and I2n.
Assumes that the set of eigenvalues of A0 is 𝜎 =
{𝜆1, 𝜆2, ... 𝜆2n} while A1 has eigenvalue set as 𝜎̂ =
{𝜆̂1, 𝜆̂2, ... 𝜆̂2n}where 𝜆̂i = 1+T𝜆i. Let [𝜁, 𝜂]T be an asso-
ciated eigenvector corresponding to 𝜆i, where 𝜁, 𝜂 ∈ r.
Then we have(

𝜆iI2n −
[

On − L()
L() − 𝛾In

])[
𝜁

𝜂

]
= 0 (37)

or equivalently,

(
[𝜆iIn On] −

[
On − L() ]) [ 𝜁

𝜂

]
= 0 (38)

and

(
[On 𝜆iIn] −

[
L() − 𝛾In

]) [ 𝜁
𝜂

]
= 0. (39)

Drawn from (38)–(39), 𝜂 can be eliminated:

− L()2𝜁 = 𝜆i(𝜆i + 𝛾)𝜁, (40)

which means 𝜆i(𝜆i + 𝛾) is an eigenvalue of −L()2 with 𝜁

being its associated eigenvector. Let 𝜎i be an eigenvalue
of the matrix L()2. The roots of the polynomial equation

𝜆i
2 + 𝛾𝜆i + 𝜎i = 0, i = 1,… , n (41)
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are the eigenvalues of A0. (41) leads to the following
explicit expression of root solution

𝜆i =
−𝛾 ±

√
𝛾2 − 4𝜎i

2
, i = 1,… , n. (42)

As  is a connected and undirected graph, L()2
is symmetric and positive semi-definite with its rank the
same as L(). By Lemma 2.1, the spectrum of matrix L()
satisfies the following inequality

0 = 𝜆1() < 𝜆2() ≤ ... ≤ 𝜆n(). (43)

Hence the spectrum of matrix L()2 satisfies the
following inequality

0 = 𝜎1() < 𝜎2() ≤ ... ≤ 𝜎n(). (44)

Therefore it has one zero eigenvalue and all other
eigenvalues are positive and real. Hence the eigenvalues
of A0 can be negative and lie in the negative half plane
except for one zero eigenvalue if and only if

𝛾 > 0. (45)

Assume that the eigenvalues of A0 satisfy the follow-
ing relationship:

0 = 𝜆1() > 𝜆2() ≥ ... ≥ 𝜆2n(). (46)

To guarantee that 𝜎̂ = {𝜆̂2, ... 𝜆̂2n} lie strictly in the
unit circle, the following condition should be satisfied:

|1 + T𝜆i| < 1, i = 2...n. (47)

Hence T should be bounded by

0 < T < min
{

−2
𝜆2n

,
−2
𝜆2bn

}
. (48)

When (45) and (48) are satisfied, A1 is Schur-stable
with only one eigenvalue on the unit circle. Although cal-
culation of 𝜆2() and 𝜆2n() require 𝜎2() and 𝜎n() that
are global information, 𝜎2() and 𝜎2() can be solved in
a distributed way proposed in [30] or [31] due to sym-
metric nature of L()2. This guarantees (12) being fully
distributed.

As the eigenvalues of A1 lie strictly inside the
unit circle except for one eigenvalue, system (34) is
input-to-state stable as A1 is proven to be Schur-stable.

Consider the state coordinate transformation

V−1

[
𝜶(k)
𝝎(k)

]
=

[
𝜶
′(k)

𝝎
′(k)

]
, (49)

where V is the similar transformation matrix with

its first column being
[

1
0

]
and V−1A1V = Λ =

diag{1, 𝜆̂2,… , 𝜆̂2n}. By similar transformation V , system
(34) is transformed into

[
𝜶
′(k + 1)

𝝎
′(k + 1)

]
= Λ

[
𝜶
′(k)

𝝎
′(k)

]
+ V−1Δ(k)

[
𝜶(k)
𝝎(k)

]
+ V−1

[
𝚫𝜶(k)
𝚫𝝎(k)

]
.

(50)

Let 𝜼1(k) = [𝛼′
2(k),… , 𝛼

′
n(k)] and 𝜼2(k) =

[𝜔′
1(k),… , 𝜔

′
n(k)]. An equivalent form of system (50) is

⎡⎢⎢⎣
𝛼
′
1(k + 1)

𝜼1(k + 1)
𝜼2(k + 1)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1 0 0
0 Λ1 0
0 0 Λ2

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛼
′
1(k)

𝜼1(k)
𝜼2(k)

⎤⎥⎥⎦ + V−1Δ(k)

[
𝜶(k)
𝝎(k)

]
+ V−1

[
𝚫𝜶(k)
𝚫𝝎(k)

]
,

(51)

where

Λ1 = diag{𝜆̂2,… , 𝜆̂n}, Λ2 = diag{𝜆̂n+1,… , 𝜆̂2n}.
(52)

The zero input response of system (51) is

R′
1 = lim

k→∞
Λk

⎡⎢⎢⎣
𝛼
′
1(0)

𝜼1(0)
𝜼2(0)

⎤⎥⎥⎦ . (53)

As {(𝛼, 𝜔) ∶ 𝛼 ∈ span{1} and 𝜔 = 0} is the
equilibrium subspace of system (34),

lim
k→∞

Λk
⎡⎢⎢⎣
𝛼
′
1(0)

𝜼1(0)
𝜼2(0)

⎤⎥⎥⎦ = lim
k→∞

Λk

[
𝜶(k)
𝝎(k)

]
= 𝛼

′
1(0)

⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ .
(54)
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From (54), it follows that 𝛼
′
1(0) = 𝛼

′
1(k), and

𝜼1(k), 𝜼2(k) globally asymptotically converges to 0 as
k → ∞. By the coordinate transformation, the zero-input
response of (34) globally asymptotically converges to

R1 = 𝛼
′
1(0)

[
1
0

]
as k → ∞.

The zero state response of system (34) is

R2 = lim
k→∞

n−1∑
i=0

Λk−i−1(Δ(k)
[
𝜶(k)
𝝎(k)

]
+
[
𝚫𝜶(k)
𝚫𝝎(k)

]
). (55)

By Lemma 3.1, the multiplicative part of noise Δ(k)
is time-decaying:

lim
k→∞

Δ(k)
[
𝜶(k)
𝝎(k)

]
= lim

k→∞

[
−T(A() − Π1(k))𝜶(k)

0

]
.

(56)

In view of (35) and (36), the zero state response is
bounded by

|R2| ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

||| 𝜆̂1

1−𝜆̂1

||| ( 4𝜌1T𝜔supdmax

1+𝜌1
+ 𝜌2𝛼̂sup

)
.

.|||| 𝜆̂n

1−𝜆̂n

|||| ( 4𝜌1T𝜔supdmax

1+𝜌1
+ 𝜌2𝛼̂sup

)
|||| 𝜆̂n+1

1−𝜆̂n+1

|||| 𝜌2𝜔sup

.

.|||| 𝜆̂2n

1−𝜆̂2n

|||| 𝜌2𝜔sup

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (57)

Finally,

lim
k→∞

|𝜀i(k)|≤𝜌3=
||||| 𝜆̂i

1 − 𝜆̂i

|||||
(4𝜌1T𝜔supdmax

1 + 𝜌1
+𝜌2𝛼̂sup

)
=

||||1 + 𝜖𝜆i

𝜖𝜆i

||||
(4𝜌1T𝜔supdmax

1 + 𝜌1
+ 𝜌2𝛼̂sup

)
.

(58)

This completes the proof of Theorem 3.1.
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