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II. SHORT-TERM/LONG-TERM MODEL

dzx,tdz~,t == px~dt, Px~ E (-1, 1) (4)

and that both parts are driven by a first-order linear stochastic
process. More specifically,

We denote the state and output of the model by Xt ==

[Xt ~t]'. Without loss of generality, it is assumed that the price
sampling interval Dt == 1. Then the continuous-time model
(2) and (3) can be converted into a discrete-time model as
follows:

(5)

(6)

(1)

(2)

(3)

o
1o

C+GXt-l +Wt,

d+F'Xt+Vt,

lnS, == Xt + ~t,

-( 1CXt +Ax)dt + C5xdZx,t

(J.1~ - A~ )dt + C5~ dz~ ,t

Yt

XI = [ t ], c = [ :s ], G = [

where

into two subsets, one sovlable directly using least-suqares
and one solvable using nonlinear optimization. As a result,
very accurate parameter estimates can be given without
heavy computation. A numerical test is given to illustrate
its reliability.

where 1C> 0 is the mean-reverting parameter representing the
time constant of the transient response to price disturbances,
J.1~ > 0 represents the expected (linear) growth rate of the log
price In(St), Ax and A~ present the investment risks due to
interest costs for borrowing, both of which equal to zero in
the spot price case, dzx,t and dz~ ,t are increments of standard
Brownian motions representing fluctuations in the spot price,
and the two are allowed to correlate with

The two-factor model proposed by Schwartz and Smith [5]
assumes that the logarithm of the price S, (including spot and
futures prices) is separated into two components: a short-term
deviation (known as mean-reverting) part Xt and a long-term
equilibrium part ~t, i.e.,

I. INTRODUCTION

Dynamic behaviors of commodities prices are important
determinants of economic fundamentals. Hence, modeling
and analysis of commodity price dynamics receive a great
amount of attention by both academics and practitioners, and
have become an important area of financial economics. Since
the Black-Scholes model proposed in 1973 [1], many alter­
native models have been developed for modeling commodity
prices.

Brennan and Schwartz [2] proposed in 1985 a one-factor
model to describe the behavior of copper prices, and the
optimal decisions for managing the exploration of a mine
was analyzed based on this model. Gibson and Schwartz
[3] proposed the first two-factor model in commodities in
1990 to analyze oil prices, in which stochastic factors were
used to describe the convenience yield and the spot price.
In 1997, Schwartz [4] used a set of models including one­
, two- and three-factor model to analyze the behavior of
commodity prices. Schwartz and Smith [5] proposed an
alternative two-factor model, which becomes very popular.
Cortazar and Naranjo [6] proposed an N-factor Gaussian
model to analyze the oil futures prices in 2006. However,
how to estimate the model parameters becomes an important
problem in this modeling technique. This has been studied
by many researchers, e.g. [7] and [8].

In this paper we propose a simplified method to estimate
the parameters in the short-termllong-term model based
on the maximum likelihood criterion. Our method has the
advantage of giving the true maximum likelihood but having
low computational complexity. We first reparameterize the
model parameters and then separate the new parameters
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Abstract- The short-termllong-term model proposed by
Schwartz and Smith in 2000 is widely used in modeling
commodity prices. A key and nontrivial problem in this
modeling technique is how to estimate the model parameters.
This paper considers the parameter estimation problem based
on the maximum likelihood criterion and proposes a method
to simplify the task. Two components are contained in the
proposed method: one to do with re-parametrization and one
to do with separating the parameter set so that one part
can be solved directly using least-squares and another part
using nonlinear optimization. The effectiveness of the proposed
method is demonstrated via numerical tests.
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L(B,Y) == Probiy, == Yt,t == 1,2,··· ,N) (11)

where O'x, O'~ 'P~x and si, i == 1,2, ... ,n are the parameters
related to the noise variances. There are n + 8 parameters
in this model. All of them need to be estimated before the
short-termllong-term model is used.

solution is readily available. The second part is parameter
estimation which aims to optimize the model parameters,
which is the focus of this paper.

A. Kalman Filtering

The solution to the optimal one-step-ahead prediction is
given by a recursive Kalman filter as follows:

Xtlt-l c +GXt-l

Yt d +F'xtlt-l

s, cc;.,G' +W

o. F'RtF+V

At RtFQ;l

Xt Xtlt-l +At(Yt -Yt)

c, Rt -AtQtA~ (12)

where Xtlt-l is the one-step-ahead prediction of Xt with R,
being the covariance of the corresponding prediction error, Yt
is the one-head prediction of Yt with Qt being the covariance
of the corresponding prediction error, At is the Kalman gain,
Xt is the updated estimate of Xt with C, being the covariance
of the corresponding estimation error.

One important feature of recursive Kalman filtering is that
the recursion of Ct and R, is independent of the observation
data. Indeed, from (12), we get

Rt+l == G(Rt -RtF(F'RtF +vr'F'Rt)G' +W

Using the fact that

Rt -RtF(F'RtF +V)-l F'Rt == (R;l +FV-1F,)-l

(the well-known matrix inversion lemma), the above be­
comes

Rt+l == G(R;l +FV-1F,)-lG' +W (13)

It is also straightforward to show that At can be rewritten as

At == (R;l +FV-1F,)-l FV- 1 (14)

which also implies that

I -AtF' == (R;l +FV-1F')-lR;1 (15)

Using (13)-(15), the recursion in (12) can be simplified to

Xt (R;l +FV-1F,)-1

.{R;l (c+GXt-l) +FV- 1(Yt - d)}

Yt d+F'(c+GXt-l)

Rt+l G(R;l +FV-1F,)-lG' +W (16)

with R, == GCoG' +W, t == 1,2,,·· ,N.
Since G is a marginally stable matrix (with eigenvalues at

e: K and 1), R, converges asymptotically to some constant R
which is positive definite. So the recursion in (12) can be
simplified to the following steady-state Kalman filter:

Xt (R- 1+FV-1F,)-1

.{R-1(c+GXt-l) +FV- 1(Yt - d)}

Yt d+F'(c+GXt-l) (17)

where R is the solution of the following nonlinear equation:

R == G(R- 1+FV-1F,)-lG' +W (18)

(7)

(9)

(1 - e- K
) Px~ ~x(J~ ]

0'2
~

(10)

d==,

InE{STn }

e- KT1 1
e- KT2 1

InE{STI}
InE{ST2}

Yt

F'

a(T)

COV{Vt}

COV{Wt}

III. MAXIMUM LIKELIHOOD ESTIMATION

The parameters in short-term/long-term model need to
be estimated from a sequence of given observations (past
spot and futures prices) Y == [Yl Y2 ... YN]'. Schwartz and
Smith [5] suggests to use maximum likelihood estimation.
The likelihood function used by Schwartz and Smith is not
explicitly given in their paper. This, however, can be worked
out from the estimation algorithm used in the paper. Indeed,
the initial state Xo is assumed to have a Gaussian distribution
with mean xo and covariance Co, then the likelihood function
can be computed as:

A 0'2
/.l;T - (1 - e- KT

) ---I + (1 - e-2 KT )--.I
~ I( 41(

P 0' 0' 0'
2

+(I_e-KT ) x~ x ~ +--.5...T (8)
I( 2

The mean of the state variables can be obtained as:

where B == {I(, Ax,f.1~, f.1g, O'x, O'~ 'Px~ ,Sl, S2,·· . ,sn,XO, Co}
denotes the set of model parameters, Y== [Yl Y2 ... YN]',
and Yt is the one-step-ahead estimate of Yt based on the
observations Yl ,Y2,··· ,Yt-l as well as xo and Co.

The resulting maximum likelihood estimation problem
involves two parts. The first part is about optimal prediction
where the set of model parameters B is assumed to be known
and the task is to maximize the likelihood function L(B,Y).
This is the well-known Kalman filtering problem and the

[

e-KtXo ]
m, == ~o + f.1~t

where Xo and ~o are initial values of the state variables.
The output variable Yt is the vector of observed (log) futures
prices with time maturities T; i == 1,2, ... ,n, where n is the
number of futures prices, and T == 0 for spot price. Wt and
Vt are zero-mean Gaussian white noises with covariances
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B. Parameter Estimation

We now consider the parameter estimation problem. We
will take the assumption that the data set is sufficiently long
so that the recursive Kalman filter can be approximated using
the steady-state Kalman filter.

The proposed method contains two components: one to
do with re-parametrization and one to do with separating the
parameter set so that one part can be solved directly using
least-squares and another part using nonlinear optimization.
As a result, the parameter estimation problem is much more
manageable.

Before we proceed further, we need to work out the
likelihood function after Kalman filtering. It is a well-known
property of the recursive Kalman filter that the prediction
error

is a zero-mean Gaussian white noise sequence with covari­
ance Qt == F'RtF +V which becomes Q == F'RF +V at steady
state. Therefore, the probability of Y == Y is proportional to

g~exp (-~(YI-Yt)Q;I(YI-Yt)) (20)

Taking the log of the above, maximizing the likelihood
function is the same as minimizing

N

E{In(det(Qt)) + (Yt - Yt)'Q-;1 (Yt - Yt)} (21)
t=1

To account for the potential errors in the transient period
when a steady-state Kalman filter is used, we can truncate the
sequence of {Ct} to start from some No > O. We also replace
Qt by Q, so the resulting maximum likelihood estimation
problem becomes

(30)

(25)

(26)

(31)

(29)

GXt-l +Wt, XO == 0

rL +F'Xt +Vt

(R- 1+FV-1F,)-IR-I G
(R- 1+FV-1F,)-1 FV- 1

F'G

Yt

K

A

D

where

where

(

N ) -1 N

et = I~O t/J:Q~ I t/JI I~O t/J:Q~ I (YI - \fit)

and the resulting J (8) is given by

and the new state Xt == Lit ~d'. Then, the discrete-time two­
factor model (5) becomes

rL ==d+(e-lCtXo+~o+J.1~t)h (27)

with h == [1 1··· 1]'. The corresponding steady-state Kalman
filter is further simplified to

Xt Kit- 1+A(Yt -rL), i o == 0,

Yt rL+Dit- 1 (28)

where ept is a n x 5 matrix and lJIt is a n x 1 vector. The exact
expressions for ept and lJIt can be worked out from (28), but
omitted here.

The least-squares solution to the minimization of J(8)
with respect to 81 is then given by

3) Partial Parameter Estimation via Least-Squares: We
now separate the set of parameters into two subsets: 81 ==

[J.1~ J.1g Ax XO ~o]' and 82 == {lC,R,V}. It turns out that 81
can be efficiently optimized via least-squares. To see this,
we note that 81 enters only into rL and do so linearly (see
(7), (10) and (27)), the filter (28) operates linearly on rL.
Therefore, Yt is linear in 81. In computing Yt, we can easily
express it as

(22)

(19)

(N - No+ 1) In(det(Q))

N

+ E (Yt -Yt)'Q-l(Yt -Yt)
t=No

minJ(8)
B

We caution that the parameters Xo and ~o can not be
estimated accurately using the method above. The reason is
that the effect of the initial condition Xo on the estimate Yt is
transient and will decay exponentially. When the number of
samples N becomes large, the cost function J (8) becomes
insensitive to xo, which makes the accurate estimate of Xo
difficult. More precisely, we first see from (27) that the effect

is unique and positive definite.
The observation above means that we can use R instead

of W as parameters. This has the advantage that instead of
solving the nonlinear equation (18), we only need to solve
(23), which is much easier.

2) Re-parametrization of Xt: Recall from (9) that Yt has
the mean of e:"Xo + ~o + J.1~t. To bring this term out
explicitly in Yb we define

1) Re-parametrization of W: Examining (18) shows that
Rand W form a one-one mapping in the set of 2 x 2 positive
definite matrices. Indeed, for any W > 0, there is a unique where
solution R > 0 to (18), as explained before. On the other
hand, for any R > 0, (R- 1+FV-1F,)-1 < R, which means Y(Q)
that the solution to W in (18), which is given by

W ==R-G(R-1+FV-1F,)-I G, (23)

N

E (Yt -lJIt)'c' (Yt -lJIt)
t=No

-(~O (YI -1JI1)'Q~It/J:) (~O t/J:Q~I t/J) ~1

.(~/IQ~I(YI-\fIt)) (33)

(32)J(82) == (N - No+ 1) In(det(Q)) +Y(Q)

(24)

x. -e-lCtxo

~t - ~o - J.1~t
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TABLE I

PARAM ETERS' VAL UES OF G ENERATIO N MODEL.

of Xo on tL diminishes exponentially. Then, we see from (28)
that the effect of d~ on YI +'!" also diminishes exponentially
(because K has eigenvalues strictly within the unit circle).
The two facts above together mean that the effect of Xo to YI
diminishes exponentially. To see that the effect of ;0 on YI
also diminishes exponentially, we note that the component of
;0 in tL is a constant vector h;o. At steady state, the response
of YI to this component is

Parameters Values
1.49

0.157
0.145
0.300

2.5

Paramete rs

ax
J1;
J1E
zo

si,i = 1,2 , ... ,n

Values
0.286

-0.0 125
0.0115

0.5
0.005

Y~o = (I - D(I - K) -IA)h;o

which can be obtained from (28) by setting i l = i I-I. Using
(29) and the fact that h;o = P'G [O ;0]', it is straightforward
to verify that Y~o = 0 for any ;0. This confirms the claim that
the effect of ;0 on YI diminishes exponentially.

Inaccurate estimation of Xo is typically not problematic
because its effect on YI (and hence YI) is transient only . This
difficulty is also inherent because its effect is transient only.
The difficulty in estimating ;0 is not inherent, it is due to
the use of the Kalman filter based method. In other words,
accurate estimation of ;0 is possible because its information
is permanently present in YI' Despite the fact that Xo are ;0
can be inaccurately estimated, it does not affect computing
the minimum of J(8) over 81.

4) Recursive Partial Parameter Estimation: The solution
to 81 in (31) can be computed recursively using a standard
recursive least-squares method, as explained below.

Defining the recursion

(34)

with PNo = yI for some large y, it is straightforward to verify
that

Pt = Pt - I- Pt - I cf': (Q+ cf'IPt - Icf': )- I cf'IPt - 1 (35)

(which follows the matrix inversion lemma) and that

P,~ (t."~;Q-I~,) - I , a, r~ 00 (36)

when t is large . Defining

Step 3: Express tL = f...181 + 8 using (7) and (27), then
compute f...1 and 8 .

Step 4: Run the steady-state Kalman filter (28) to compute
cf'1 and lfIt in (30) for t = No,2" " ,N (where No can be chosen
to be, say 10% of N) .

Step 5: Compute the optimal 8\ and J(82) using (31) and
(32) .

Step 6: Tune IC,R and V using any nonlinear optimization
method (e.g., Newton Gradient search) until further reduction
of J( 82) is negligible.

IV. NUM ERICAL T ESTS

In this section some simulation results will be given to
illuminate how this method works. We frist test the method
on a set of artificially generated data using a known two­
factor model. The purpose of this exercise is to see how
well the method estimated the paremeters. We then apply the
proposed method on the NYMEX crude oil futures contract
data which were used in [5], and we show that our method
gives somewhat better estimates than those given in [5].

A. Generation of Artifical Data

A set of artifical data are generated using the two-factor
model (equation (5)), with the values of parameters as
in Table I. Fig. 1 shows the state variables, and Fig . 2
shows the outputs of the futures contracts with maturities
(0 ,1 ,5,9,13,17) months (Obviously, the first one is the spot
price). We generate 500 data samples (i.e ., N = 500).

I

81 ,1 = Pt L cf'~Q-I (y" - 0/,,) (37)
"=No

It is clear that as y -. 00, 81,N -. 8j in (31) .

C. Parameter Estimation Algorithm

The proposed parameter estimation method is summarised
in the algorithm below:

Step 1: Initialize 82, i.e ., initialize IC,R and V.
Step 2: Compute F,G,W,K,A and Dusing (6), (7), (23)

and (29). Also compute Q= P'RF +V .

Fig. I. Generated States of the Two-Factor Model.

Long- term
--- Short- term

-V~r<: ...
,\I '" ,J'I

T

.... ........
,

00 50 100 150 200 250 300 350 400 450 500
Weeks

4

8

6

10

12

14

(38)

(39)

with 8\ ,No = 0, where

a; = Pt-Icf':(Q +cf'IPt-Icf':) -1

and using (35), we have

81,1 = (I - alcf'1)e1 ,1- 1+ al(YI - lfIt )
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1.50
31.39%
12.17%
-1.72%
14.45%
0.94%
0.227
0.158
2.99

0.00181
0.00003
0.00001
0.00000
0.00002

- 1.0626 x 104

Estimated Values
1.49

28.6%
15.7%

-1.25%
14.5%
1.15%
0.300
0.117
3.01

0.042
0.006
0.003
0.000
0.004

- 6.8853 x 103

Values given in [5]Parameters
K'

ax
Ax
J.!~

a~

J.!~*
P~x
zo
~o
SI
S2

S3

S4

Ss
cost function J(8)

TABLE 111

PARAM ETER ESTIMATIO N R ES ULTS BAS ED ON NYMEX DATA

500150 200 250
Weeks

2cJ 50

41- ,..... ................. . , " I ""'I

20
- spot

18
- 1m
- 5m
- 9m

16 - 13m
- 17m

61- ' . ,

Fig. 2. Generated Outputs of the Two-Factor Model.

Size of Data

B. Testing Estimation of 81

We first want to see how the estimation of 81 works . For
this purpose, we choose 82 to be the correct values and
apply the least squares method to estimate 81. The results
are shown in Fig. 3 to Fig. 7, from which we can see that
the estimated values converge well as time evolves.

TABLE II

E STI MATI ON RESULTS OF th.

5

.....J.........-.../\.. ~
•. ./.":':.:':':':.............. .. ....................... _....

0 r-: "'"
I~computed value l
....-correctvalue

5

1

5

5

3

Fig. 4. Estimation of J.!E .

- 0. 0 50 100 150 200 250 300 350 400 450 500
Weeks

00

- 0.

-0.2

- 0.1

-0.0

- 0.2

2000
1.4924
0.3002
0.1329
0.2761
0.00497

1000
1.4629
0.2551
0.1296
0.5059
0.00494

500
1.4625
0.2551
0.1296
0.5058

0.00494

1.49
0.286
0.145
0.300
0.005

Correct Value

- 4

Fig. 3. Estimation of J.!~ .

-50 50 100 150 200 250 300 350 400 450 500
Weeks

C. Testing Estimation of ~

With some initial values, the parameters in 82 were
estimated via Newton Graident method. From the results in
Table II, we can see that, when the size of the data increases,

the estimated values of 82 also approach their correct values.
However, it should be noted that in this table we give the
results of ax , a~ , P~x directly instead of R or W.

D. Application to NYMEX Crude Oil Prices

Now we apply the proposed method to the NYMEX
crude oil futures contracts with maturities in 1,5,9,13 and
17 months, from 1/2/90 to 2/17/95. This is the same set of
data used in [5]. The purpose of our exercise is to see how
well we can estimate the parameters in a two-factor model.

We note that [5] gives a set of estimated parameters
using a numerical method. However, their extimates do not
contain the values for Xo and ~o. In order to see how our
method works, we first apply our method to estimate all
the paremeters. We then take the parameter values given in
[5] and use the least-squares method to obtain the optimal
values for Xo and ~o. Finally, the cost function 1(8) is
compared using the two sets of parameters. The results are
shown in Table Ill, from which we see that the second set of
parameters has a less value of the likelihood function, which
means it can let the model to be more likely to the actual
data. (i.e., a smaller value for the cost function).

I: estimated value
....-cor rect value

..... ................ - .......... __ ................ .... _......... _.............. _.......................

\.y"

,~

=>.

- 3

o

-1

-2
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•5

3

2 ---;;-
._-

1 lf
0

1

4

6

I:· · correct value

---

f

8

- 2

4

o

6

Fig. 5. Estimation of Ax. Fig. 7. Estimation of ';0.
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Fig. 6. Estimation of Xo .

V. CONCLUSIONS

This paper proposes a method to simplify the parameter
estimation problem in the short-term/long-term model of
Schwartz and Smith. The resulting optimization problem is
still nonlinear, but with much less number of parameters to
search. Some numerical tests are given to show this method
works. The proposed method is tested on a set of NYMEX
oil data used in [5] and favorable comparison is shown.
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