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Distributed Consensus of Multi-Agent Systems with Finite-Level
Quantization

Tao Li, Minyue Fu, Lihua Xie and Ji-Feng Zhang

Abstract— This paper is concerned with consensus control of
undirected networks of discrete-time first-order agents under
quantized communication. A distributed protocol is proposed
based on dynamic encoding and decoding with finite level uni-
form quantizers. It is shown that under the protocol designed,
for a connected network, average-consensus can be achieved
with an exponential convergence rate based on a single-bit
information exchange between each pair of adjacent nodes at
each time step. As the number of agents increases, the explicit
form of the asymptotic convergence rate is given in relation to
the number of nodes, the number of the quantization levels and
the ratio between the algebraic connectivity and the spectral
radius of the Laplacian of the communication graph.

I. INTRODUCTION

Recently distributed consensus and average-consensus
problems have been paid much attention to by the control
community ([1]-[6]). Many effective distributed control and
estimation algorithms are proposed based on consensus al-
gorithms ([7]-[8]). However, most of the works in the above
literature use an ideal communication model between agents.
When agents have real-valued states, this assumption is
equivalent to the requirement that the communication chan-
nels between agents have unlimited capacity (bandwidth). It
is well known that in real digital networks, communication
channels have a finite channel capacity, and quantization
plays an important role. Therefore, consensus problems un-
der quantized communication become interesting and more
meaningful.

In [9]-[11], average-consensus algorithms were designed
with each agent having an integer-valued state. These algo-
rithms can drive each agent to some interger approximation
of the average of the initial states. In [12]-[14], quantized
average-consensus problems were studied with real-valued
states. In [12]-[13], algorithms with an uniform quantizer
of infinite levels were proposed to ensure the boundness
of the consensus error. Furthermore, an algorithm based on
dynamic quantization was proposed in [14]. The number of
quantization levels, however, will diverge as the number of
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agents increases. In [15], random dither was used to make
the quantization error a “white” noise. Then the distributed
stochastic approximation method ([16]-[18]) was applied to
achieve approximate average-consensus.

It is well known that for feedback stabilization of linear
time-invariant systems with communication constraints, the
minimal bit rate (channel capacity) was given in [19] and
[20] and the case with logarithmic quantizers was considered
in [21] and [22]. Naturally, one may ask, for distributed
cooperative control problems of multiagent systems with
finite communication data rate, how many bits of information
does each pair of adjacent agents need to exchange at each
time step to achieve consensus of the whole network?

In this paper, we consider the average-consensus control
for discrete-time first-order undirected networks with a finite
communication date rate. Each agent has a real-valued state
but can only exchange symbolic data with its neighbors.
The communication between agents is based on dynamic
encoding and decoding with finite-level quantization. We
design a distributed protocol with error compensation. The
protocol is characterized by three parameters: the control
gain, the scaling function, and the number of quantization
levels.

We show that if the network is connected, then for any
given number of quantization levels, the control gain and
the scaling function can be chosen properly such that average
consensus can be asymptotically achieved. In particular, the
control parameters can be properly chosen such that average-
consensus can be achieved by using a single-bit quantizer.
This indicates that no matter how large a network is, as
long as it is connected, one can always design a distributed
protocol to ensure average-consensus with merely one bit
information exchange between each pair of adjacent agents
at each time step. We also give the relationship between the
convergence rate and the number of quantization levels. We
show that under the protocol designed, the consensus error
vanishes exponentially, and faster convergence requires more
bits for quantization.

Our proposed consensus algorithm may be applied to
the distributed estimation over large scale sensor networks,
where the number of nodes is often large. This give rise
to investigating the asymptotic property of the closed-loop
system as the number N of nodes approaches infinity. We
show that in some sense, the asymptotic optimal convergence
rate is O(exp{—%—#t}) when using a (2K +1)-level quan-
tizer, where (Q, an important physical quantity reflecting
the synchronizability of a network, is the ratio between the
second smallest eigenvalue (algebraic connectivity) and the
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largest eigenvalue (spectral radius) of the Laplacian matrix
of the topology graph. Our result shows that when the
communication data rate is limited, the convergence rate of
distributed consensus not only depends on the connectivity
but also the synchronizability of the communication graph.

The remainder of this paper is organized as follows. In
Section II, we present the model of the network, design
the distributed protocol, and formulate the problem to be
investigated. In Section III, we prove that under the protocol
designed and mild conditions, average-consensus can be
achieved with an exponential convergence rate. Then we
analyze the asymptotic performance as N — oo and give an
explicit form of the asymptotic convergence rate. In Section
IV, we give a numerical example to demenstrate our results.
In Section V, we give some concluding remarks.

The following notation will be used throughout this paper:
1 denotes a column vector with all ones. I denotes the
identity matrix with an appropriate size. For a given set S, the
number of its elements is denoted by |S| . For a given vector
or matrix A, its transpose is denoted by A7, its Euclidean
norm is denoted by || A||2. For a given positive number z, the
maximum integer less than or equal to x is denoted by |z |;
the minimum integer greater than or equal to x is denoted

by [z].
II. PROBLEM FORMULATION
A. Average-consensus problem

In this paper, the dynamics of each agent is modeled as a
discrete-time first-order integrator:

ZL’i(t + 1) = .’I,'z(t) + hui(t), t= 0, 1, veey 1= 1,2, ...,N, (1)

where z;(t) € R is the ith agent’s state, u;(t) € R is the
ith agent’s control input, and A is the control gain. The
information flow among agents are modeled as an undirected
graph G = {V, &, A}, where V = {1,2,..., N} is the set of
nodes with 4 representing the ith agent, £ is the set of edges
and A=[a;;]eRV*N is the weighted adjacency matrix of
G. An edge denoted by the unordered pair (j,) represents
a communication channel from j to 7. Note that A is a
symmetric matrix. For any ¢,7 € V, a;;=a; > 0, and
a;; > 0 if and only if j € N;. Also, deg;, = Z;V=1
is called the degree of ¢, and d*=max; deg; is called the
degree of G. The Laplacian matrix of G is defined as £ =
D — A, where D = diag(deg,,...,degy). A sequence of
edges (i1,%2), (i2,%3), ..., (1k—1,%%) is called a path from
node i; to node ix. The graph G is called a connected graph
if for any i,j € V, there is a path from 4 to j.

The dynamic system (1) together with the communication
graph G is usually called a dynamic network ([4]). A group
of controls U = {u;,i = 1,2..., N} is called a distributed
protocol if for all 4, u,(t) only depends on z;(s) and z;(s),
j € N;, s <t. The average-consensus control is to design a
distributed protocol for the dynamic network, such that for
any initial values z1(0), ...,zn(0), all the agents asymptoti-
cally reach an agreement with Z;vz 1 2;(0) when ¢t — oo.
That is, Z;V=1 z;(0) can be computed asymptotically in
a distributed manner.

aij
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B. Protocol design

In [4], a weighted-average protocol was proposed:
ui(t) = Y ai(z;(t) — zi(t), t=0,1,...,

JEN;
i=1,2,..,N. @)

In (2), the ith agent needs the perfect state information of
its neighbors. In this paper, we assume that perfect state
information is not available, but only symbolic data can be
exchanged between agents, and the communication channels
are modeled as noiseless digital channels each with a pair
of encoder and decoder. The encoder ®; of the jth agent is
given by

§(0) = 0,

) = gt —1)A;() +&(t—1), 3

Ajt) = q(m-ulohy ®)
t=1,2,..

where £;(t) is the internal state of ®;, and A;(t), which is
the output of ®;, is sent to the neighbors of the jth agent.
Here, g(-) is a finite-level uniform quantizer, and g(t) > 0
is a scaling function.

The quantizer ¢(+): R — I" is a map from R to the set I'
of quantized levels. In this paper, we consider a finite-level
uniform quantizer with

I={0,+i,i=1,2,..K}.

The number of quantization levels is 2K + 1. The associated
quantizer ¢(-) is given by

0, -1/2<y<1/2,
i B <y < 2H,
qly) = i=1,2,....K—1, @)
2K—1
K7 Y Z 2
—q(-y), y<-1/2

Remark 1: The encoder ®; is a scaled difference encoder,
and &;(t) is a one-step predictor. In this difference encoding
algorithm, at each time step the “prediction error”, z;(t) —
&;(t —1) is quantized. Generally speaking, the amplitude of
prediction error is smaller than that of state x;(¢) itself, so
it can be represented by fewer bits.

Remark 2: If consensus is achieved, then the prediction
error z;(t) — &;(t — 1) vanishes as ¢ — oo. Therefore,
intuitively the scaling function g(t) should satisfy the fol-
lowing properties. On one hand, g(¢) should converges to
zero asymptotically make the quantizer persistently excited,
such that the agents receive the their neighbors’ information
continuously. On the other hand, g(t) should be large enough
such that the quantizer will not be saturated.

For each communication channel (j,3) € £, the ith agent
receives A;(t), and then uses the following decoder ¥, to
estimate x;(t):

z;(0) = 0,
Tj(t) = g(t—1)A;(t) +Z5(t - 1), (5)

t=1,2,..
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where Z;;(t) is the output of ¥ ;.

Remark 3: When the output A (t) of the quantizer is zero,
the jth agent does not send any information, so for a (2K +
1)-level quantizer q(-), the communication channel (j,1), ¢ €
N; is required to be capable of transmitting [log,(2K)] bits
without error at each time step. In particular, the quantizer

q(+) given by

0, -—-1/2<y<1/2,
ay) =4 L y=1/2, ©)
~1, y<1/2
is a one-bit quantizer.
We propose a distributed protocol as
wit) = Y ayg(@t) — &(t), t=0,1,...,
JEN;
i=1,2,.N @)
Denote
X(t) = [e1(t), - 2w (t )E’,X( ) = [61(8), - En ),
e(t) = X(¢) — X(¢),0(t) = X(¢) = InX (1), (8)
where Jy = %117,

Remark 4: If £;(t) is replaced by z;(t), then the protocol
(7) becomes

ui(t) = Z aij (Z5i(t) — zi(t)), t=10,1,...
JEN;

i=1,2,..N. ©)

The protocol (9) is a natural extension of the protocol (2) to
the case with quantized communications and it has some
computational advantage over the protocol (7). One may
wonder why we use the protocol (7) rather than the protocol
(9). We give some explanations below.

From (3) and (5), it follows that

Zy(t) =¢&(t), t=0,1,..

Thus, the internal state £;(¢) of encoder ®; is equal to the
estimates of x;(t) by its neighbors. By the symmetry of A

L i€N;, j=1,2,..,N. (10)

and (10), the protocol (7) can be rewritten as
wit) = Y alzy(t) - zi() — (2;(t) - Ta(1)
JEN;
(i (t) — &(2))]
= Y aglzi(t) —wit)] = Y aii(z;(t) — Bu(t))
JEN; JEN;
+ ) aji(@i(t) — 35 (1) (11)
JEN;

It can be seen that, in our protocol (7), the control input
of the ith agent consists of three terms. The first term,
> jen; @ij[z(t) — zi(t)], which is just the control input
of the protocol (2), plays the main role. The second term,
— > jen, @i (2;(t) — Z;i(t)), represents the weighted sum
of estimation errors for the neighbors’ states. The last term
> jen; 4ji(zi(t) —Zi;(t)) is the weighted sum of estimation
errors for x;(t) by the neighbors.

ThB7.1

The last term in (11), which we call an error-compensation
term, plays an important role in our protocol. Substituting the
protocol (3), (5) and (7) into the system (1) leads to

X(E+1) = (I—hL)X(t) + hLe(t),
X(t+1) = g)QEUEXE) 4 X(1),
where Q([y1, - yn]") = [g(y1), -, q(yn)]". From the

above, noting that JyLg = 0, we have

NZ.’L'Jt-i-l NZ.’L']

It can be seen that the closed-loop system preserves the av-
erage state under the protocol (7). If the error-compensation
term is removed, then by (11), the protocol (7) reduces to
the protocol (9), and the closed-loop system becomes

X(t+1) = (I-hL)X() - hAe(t).  (12)

Generally speaking, the closed-loop system (12) does not
preserve the average state, and worse still, it can be shown
that the closed-loop system (12) may be divergent if e(t) is a
bounded white noise ([23]). That is why we use the protocol
(7) rather than the protocol (9). This type of protocols which
can preserve the state average have been proposed in [12] and
some similar methodology of error compensation has been
addressed in [24].

,t=0,1,..

III. FINITE-LEVEL QUANTIZED CONSENSUS

For the protocol designed and the resulting closed-loop
system (12), We are concerned about whether the network
can achieve consensus with finite-level quantized commu-
nication. If so, how many bits are necessary for each pair
of adjacent agents to exchange at each time step? Can we
give a quantitative description of the relationship between the
convergence rate and the control parameters? In this section,
we will answer the above questions.

To get the main results, we need the following assump-
tions:

Al) G is connected.

A2) max; |z;(0)] < Cy, max; |6;(0)] < Cs, where C; and
Cs are known nonnegative constants.

Below is a basic result on Laplacian matrices:

Lemma 3.1: ([25]) If G = {V,&, A} is an undirected
graph, then the Laplacian £ is a symmetric matrix, and has
N real eigenvalues, in an ascending order:

0=MX(L) <L) <..<An(L) <2d%,
and
) 2T Lx
W P
where A\y(L) is called the algebraic connectivity of G. In
particular, if G is connected, then Ag(L) > 0.

We need the following lemmas.

Lemma 3.2: If Assumption Al) holds and h < 5 ( )
then pp, < 1, where

P = Jmax 1 = hAi(L)]. (13)
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Furthermore, if h < m, then p, = 1 — hAo(L).
Lemma 3.3: Suppose Assumptions A1)-A2) hold. For
any given h € (0, %(ﬁ)) and v € (pp, 1), let

Ki(h) = [Mithn) = 5] +1, (14)
Mi(h) = \/thifv(c) N 1+hAN(c), (15)
2v(v — pn) 2y
and
w  2(v = pn)(Csy + hC:An (L))
go > max{K_I_ %, N (L) 1. (16)

Then for any given K > K;(h,7), under the protocol (3),
(5) and (7) with the (2K +1)-level uniform quantizer (4) and
the scaling function g(t) = gov?, the closed-loop system (12)
satisfies

t—o0

N
1
lim ;(t) = > z;(0), i=1,2..,N.
j=1

The convergence rate of average-consensus ([26]) is de-
fined as

wp i (JXO = INX Ol 1
X(0)£Iy x(0) =00 [ X(0) — N X (0)]|2

For the convergence rate of our algorithm, we have the
following theorem.

Theorem 3.1: Suppose the conditions of Lemma 3.3
hold, then under the protocol (3), (5) and (7) with the
(2K +1)-level uniform quantizer (4), the closed-loop system
(12) satisfies

Tasym =

18(t)]l2 = O(v"), t — o0,

and rasym < vy, where 4(t) is the consensus error defined by
(3.

Due to space limit, the proofs of Lemmas 3.2, 3.3 and
Theorem 3.1 are omitted here.

Remark 5: Lemma 3.3 says that by using a scaling
function decaying exponentially and a [log, (2K (h,y))]-bit
uniform quantizer, the protocol (3), (5) and (7) can ensure
average-consensus to be achieved asymptotically. It is worth
pointing out that for any given h and -y, the bit number
[logo(2K1(h,7y))] is a conservative estimate, and in practice,
fewer bits may be required. However, the number K (h, )
gives us some intuitive clues on the relationship between
the number of bits required and the control gain ~ and the
scaling factor ~.

Remark 6: Theorem 3.1 gives an estimate for the conver-
gence rate of the consensus. The smaller the ~, the faster the
consensus error converges to zero. Note that v can be made
arbitrarily close to pp, which is the convergence rate for the
case with perfect communication ([26]). From Lemma 3.3, it
is shown that a smaller -, namely a faster convergence rate,
requires more bits to be communicated, and when v — pp,
the required number of bits goes to infinity.

ThB7.1

From Lemma 3.3 and Theorem 3.1, it can be seen that if
the convergence rate v is fixed (i.e., independnent of IV of
agents), then the number of quantization levels, 2K (h,v) +
1, will increase to infinity as N — oo. However, in many
cases, we do not expect that the number of bits is too large.
To satisfy this requirement, we can use a fixed number of
quantization levels at the cost of slower convergence. We
have the following result.

Theorem 3.2: Suppose Assumptions A1)-A2) hold. For
any given K > 1, let

2
m)w@ € (Pa,ll),
My(a, B) <K + 5} (A7)

Qx = {(,0)] a € (0,

where p, is defined by (13) and M;(a, 8) is defined by
(15). Then, (i) Qx is nonempty. (ii) For any (h,7) € Qxk,
under the protocol (3), (5) and (7) with g(¢) = goy* and the
(2K +1)-level uniform quantizer (4), the closed-loop system
(12) satisfies

N
. 1 .
tll)rgoxz(t) =~ E lxj(O), i=1,2...,N,
]:

where g¢ is a constant satisfying (16).
Proof: (i) Noting that
VNa % (L) 1 —l—a)\N(E)] 1
2X2(L) 2 2’
we know that for any given K > 1, there exists a* €
(0, m) such that

VNa*) % (L) N
2X2(L) 2
By Lemma 3.2, it is known that p,« = 1 — a*A3(L) < 1.
By this and (15), we get
VNa* AL (L) 1+ a*An(L)
2X2(L) 2 '

Then by (18), we know that there exists v* € (pqx, 1), such
that

lim

a—0

1+ a*An(L) < K—I—l
5

(18

lim M;(a*,v) =
y—1

1
Mi(a*,v*) < K + 5

Therefore (a*,v*) € Qk, that is, Qx is nonempty.

(ii) For any (h,v) € Qk, by (17), we know that h €
(0, xgzy)> 7 € (pn, 1), and 5 < Mi(h,y) < K + 3. Thus,
by (14), one gets K1 (h,~y) < K, which together with Lemma
3.3 leads to the conclusion of the theorem.

Remark 7: From Theorem 3.2, it is shown that as long as
the network is connected, we can always design a distributed
protocol to ensure average-consensus with each agent send-
ing merely one bit of information to its neighbors at each
time step.

The set Qi is a plane point set described by three
nonlinear inequalities. Generally speaking, it is difficult to
get an explicit solution of these inequalities. However, by
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introducing a free parameter ¢ € (0,1), we can get a simple
algorithm to choose (h, ) from Qg for any given K > 1.
Algorithm 1:
(i) Choose a constant €y € (0,1).
(ii) Choose the control gain h € (0, i (o)), where

* . . 2
hic (o) = min{ sy isizy
2Kepgho ([,) }
VNX2 (L) +XA2(L)AN (L)eo+ (2K +1)AZ(L)eo(1—e€0) I’

(iii) Let v = 1 — (1 — €0)hAa(L).

The result below show that any pair (h,) generated by
Algorithm 1 belongs to Qx and any point in Qg can be
generated by Algorithm 1.

Theorem 3.3: For any given K > 1, and ¢ € (0,1), let

Qk .o = {(@, B)] @ € (0, h(€0)),
,3 =1- (1 — Go)a)\g(ﬁ)}.

Then we have Qx = U c(0,1) .o

In many cases, the number N of the network nodes is
large and we are concerned about the asymptotic property as
N approaches infinity. In the following, we investigate the
asymptotic performance of the closed-loop system. It can be
seen that the asymptotic value of v has a very compendious
expression.

Theorem 3.4: Suppose Assumption Al) holds. Then for
any given K > 1,

inf(h’W)EQK ’Y _

lim =
KQ3
exp{—57%}

N —o00

where Qn = )’\\fv(é)).

)

Remark 8: () is an important physical factor. It is shown
that a network exhibits better synchronizability if Quy is
large ([27]). Theorem 3.4 shows that in some sense, the

best convergence rate we can achieve is O(exp{— I;\?NN t}).
Therefore, the best convergence rate is closely related to
the number of the quantization levels, the scale and the

synchronizability of the network.

Due to space limit, the proofs of Theorem 3.3 and 3.4 are
omitted here.

IV. NUMERICAL EXAMPLE

In this section, we use an example to demonstrate the
validity of the proposed consensus protocol and Theorem
3.1.

Example 1: We consider a network with 30 nodes and
0— 1 weights ! shown in Fig. 1. The initial states are chosen
as 2;(0) = 4,4 = 1, ..., 30. The one-bit quantizer is used. The
curves of states with A = 0.1, g(t) = 20(0.95)* are shown
in Fig. 2. Then the 5-level quantizer is used. The curves of
states with h = 0.1, g(t) = 20(0.975)" are shown in Fig.
3. It can be seen that average-consensus is achieved with an
exponential rate in both cases and a smaller v leads to a
faster convergence.

1 0 — 1 weights means that a;; = 1, if (3, 7) € &, otherwise, a;; = 0.

ThB7.1

Fig. 1. Network topology of Example 1. The edges of the graph
are randomly generated according to P{(4,j) € £g} = 0.2, for
any unordered pair (7, 7).

K=1,=0.1,y=0.95,,=20

100 150
Time([step]

Fig. 2. Curves of states with K = 1.+ = 0.95.

30
K=2,h=0.1,y=0.975,g,=20

0 50 100 150
Timef[step]

Fig. 3. Curves of states with K = 2,~v = 0.975.

V. CONCLUDING REMARKS

In this paper, the average-consensus control problem has
been considered for undirected networks of discrete-time
first-order agents under finite bit-rate communication. Based
on scaled uniform quantization, a dynamic difference en-
coding and decoding scheme is used for the communication
between each pair of agents. A distributed protocol has been
proposed, where the control input of each agent is a weighted
sum of the difference between the estimate of its neighbor’s
state and the internal state of its own encoder. This type
of protocol is equivalent to adding an error compensation
term to the original weighted average type protocol. It is
shown that for a connected undirected dynamic network with
first-order agents, no matter how many agents there are,
we can always design a distributed protocol to ensure that
average-consensus is achieved asymptotically with as few as
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one bit information exchange between each pair of adjacent
agents at each time step. It is shown that the convergence
rate is closely related to the number of network nodes, the
number of quantization levels and the synchronizability of
the network.
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