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Abstract— A novel distributed algorithm designed for
weighted average consensus is presented. This algorithm is
developed based on the well-known Belief Propagation (BP)
algorithm for statistical learning. For a connected network
without loops, the algorithm will converge in finite number
of iteration and produces a correct average consensus value
for every node in the network. For a network with loops, we
convert the weighted average problem into an optimization
problem with a relaxation factor whose solution approaches
to the weighted average with appropriate relaxation factor. A
modified algorithm is also proposed for loopy networks and
consensus will be reached asymptotically with low computation
complexity and fast convergence rate.

I. INTRODUCTION

Distributed average consensus algorithms are highly pre-
ferred and have great potential to be applied in statistical
learning and distributed signal processing fields. Most of
the existing algorithms are based on the Laplacian matrix
approach [5]–[15], which performs distributed averaging
iteratively using a stochastic matrix with averaging weights.
However, correct average consensus can be reached only
asymptotically, and the convergence rate is slow, especially
for large networks.

In this paper, a novel distributed algorithm for a group
of connected agents (nodes) to reach weighted average
consensus is to be presented. The distributed algorithm is
generalized from the celebrated Gaussian Belief Propaga-
tion algorithm. Belief Propagation algorithm, also known
as Pearl’s BP [1], was designed to compute the marginal
probability densities of variables associated with random
variables in a large-scale system with a sparse structure.
Since its initial conception in 1980s, BP has received
increasingly attention in both applications and theoretical
studies of its convergence properties. The BP algorithm has
been applied in a lot of areas such as statistical learning,
communications, estimation, and control systems. It is known
in both theoretical studies and simulations that the algorithm
has remarkable convergence properties. Hence, we try to
develop a new weighted average consensus algorithm by
taking the advantages of the BP algorithm.

We connect the weighted average consensus problem with
a particular BP algorithm called Gaussian BP designed
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for studying Gaussian distributions. The weighted average
consensus problem turns out to equate to the computation
of marginal means of a joint Gaussian distribution in the
setting of Gaussian BP. The convergence condition for loopy
Gaussian BP has been a main concern of a great number of
researchers. There are several significant results towards the
understanding of Gaussian BP algorithm. In particular, Weiss
and Freeman proved in [2] that Gaussian BP will derive the
correct marginal means asymptotically under the condition of
the pairwise information matrices being diagonally dominant.
In this paper, the assumption of generalised diagonally domi-
nant, which is the relaxed convergence condition put forward
by [3], will be used. Similar to Gaussian BP, the proposed
algorithm is fully distributed and no central controller or
processor is required. In each iteration, information exchange
(or message passing) appeared only among neighbouring
nodes. For acyclic networks (networks without loops), it
takes only d iterations for for each node to acquire the
correct average consensus, where d is the diameter of the
network graph. When applied to loopy networks, we con-
sider a relaxed average consensus problem whose optimal
solution approximates the consensus solution with arbitrary
precision by choosing a scaling parameter. We derive a
modified average consensus algorithm and show that it has
guaranteed exponential convergence to the optimal solution,
when applied to a loopy graph directly.

II. PROBLEM DESCRIPTION

Consider an undirected network G = {V, E}, where the
node set is V = {1, 2, . . . , n} and the edge set is E = {(i, j) :
i, j ∈ V}. Each node i ∈ V is associated with a known
variable yi whose weight is wi > 0. Hence, the weighted
average of all of the yi is,

x̄ =

∑
i∈V wiyi∑
i∈V wi

. (1)

where the weighted average is denoted by x̄, the set of
neighbors of node i is represented by Ni and the cardinality
is denoted by |Ni|.

The objective of distributed weighted averaging is to
derive an estimate of x̄, which is denoted by xi and will
eventually converge to x̄ after a number of iterations, on
every node i ∈ V by an iterative algorithm. Notice that when
wi = 1 for every node, weighted average x̄ will become the
standard average of all these yi, i = {1, 2, . . . , n}. A graph
is said to be connected if and only if that a path which starts
from any node i ∈ V and will end up with an arbitrary node
j ∈ V can always be found.



Denote the diameter of a graph as d which is the length of
the longest path in the graph. The loop is a path that starts
and ends up at the same node i passes through at least one
node j 6= i. An acyclic graph means that there are no loops
in the connected graph. A loopy graph is defined to be a
graph that contains at least one loop.

The following constraints are imposed on the algorithm’s
complexities of communication, computation and storage to
call it distributed:

1) Local information exchange: Each node i is allowed
to exchange information with each j ∈ Ni only once
per iteration.

2) Local computation: Each node i’s computational load
is limited to be at most O(|Ni|) per iteration.

3) Local storage: Each node i’s storage is limited to be
at most O(|Ni|) over all iterations.

Lemma 1. Under the constraint on local information ex-
change, a connected undirected graph G needs a minimum
of d iterations to achieve average consensus, where d is the
diameter of G.

Proof: Take nodes i and j to be d hops away from
each other. The information at node i must be propagated to
node j for node j to accurately compute x̄. By the constraint
on local information exchange, this process takes at least d
iterations.

III. DISTRIBUTED ALGORITHM FOR AVERAGE
CONSENSUS

In this section, we present the proposed distributed algo-
rithm for average consensus and offer its main property on
acyclic graphs.

A. Distributed Algorithm

Let xi→j(k) denote the information passed from node i
to node j at time k, which represents a scaled estimate of
the average x̄ known to node i without using information
from node j. Also denote by si→j(k) the scale passed
from node i to node j at time k, which represents the
weighted number of nodes used to compute xi→j(k). We
also define two temporary internal variables in node i, s̃i(k)
and x̃i(k). Algorithm 1 is the proposed distributed algorithm
for weighted average consensus.

Theorem 1. Suppose G is undirected and acyclic with
diameter d. Then,

s̃i(k) = wi +
∑

m∈Vi(k)

wm (7)

x̃i(k) = wiyi +
∑

m∈Vi(k)

wmxm (8)

for k = 1, 2, . . . , d, where Vi(k) is the set of nodes in G
at most k hops away from node i (not including node i).
Consequently, average consensus is achieved by Algorithm 1
after d iterations, i.e.,

x̂i(k) = x̄, ∀ k ≥ d, i ∈ V. (9)

Algorithm 1 (Distributed Algorithm for Average Consensus)
Initialization: For each node i, do: For each j ∈ Ni, set
xi→j(0) = yi, si→j(0) = wi and transmit them to node j.
Main loop: At iteration k = 1, 2, · · · , for each node i,
compute

s̃i(k) = wi +
∑
j∈Ni

sj→i(k − 1) (2)

x̃i(k) = wiyi +
∑
j∈Ni

sj→i(k − 1)xj→i(k − 1) (3)

x̂i(k) =
x̃i(k)

s̃i(k)
, (4)

then for each j ∈ Ni, compute

si→j(k) = s̃i(k)− sj→i(k − 1) (5)

xi→j(k) =
x̃i(k)− sj→i(k − 1)xj→i(k − 1)

s̃i(k)− sj→i(k − 1)
(6)

and transmit them to node j.

Sketch of Proof: For any edge (i, j) ∈ E , we analyze the
convergence of si→j(k) and xi→j(k). To do so, we build two
disjoint subgraphs Gi (containing node i) and Gj (containing
node j) of G by removing (i, j). Notice that Gi and Gj are
disjoint due to the acyclic nature of G. Also, it is clear that
G is formed by merging Gi, Gj and edge (i, j). Denote by
Wi (reps.Wj) the set of nodes in Gi (reps. Gj). We see from
(2)-(6) that si→j(k) and xi→j(k) are constructed using the
information in Gi only because sj→i(k−1) and xj→i(k−1)
(representing the information flow from node j to node i) get
removed in each iteration. That is, (2)-(5) can be rewritten
as

si→j(k) = wi +
∑

m∈Ni\{j}

sm→i(k − 1)

xi→j(k) = wiyi +
∑

m∈Ni\{j}

sm→i(k − 1)xm→i(k − 1)

which shows that the information (sj→i(k − 1), xj→i(k −
1)) is not used in computing (si→j(k), xj→i(k)). Similarly,
sj→i(k) and xj→i(k) are constructed using the information
in Gj only.

Recall that at Initialization (k = 0), si→j(0) = wi is set.
Consider the case of k = 1. From (2) and (5), we see that
si→j(1) contains all sm→i(0) for all the neighbouring nodes
m, except node j. Following the definition of Vi(k), we have
Vi(1) = Ni. It follows that

si→j(1) = wi +
∑

m∈Ni\{j}

sm→i(0) = wi +
∑

m∈Vi(1)\Wj

wm.

Repeating the above process for k = 2, 3, . . ., we can get,
for any k,

si→j(k) = wi +
∑

m∈Vi(k)\Wj

wm.

Next, consider s̃i(k) and x̃i(k). Notice from (5) that
s̃i(k) = si→j(k) + sj→i(k − 1). Also notice that node j



is 1 hop away from node i, meaning that all the nodes in Gj
which are k − 1 hops away from node j are k hops away
from node i, when considering G. That is,

(Vi(k)\Wj) ∪ (Vj(k − 1)\Wi) ∪ {j} = Vi(k).

It follows that

s̃i(k) = wi +
∑

m∈Vi(k)

wm,

which is (7). The equation (8) is shown in the same way. It
follows that x̃i(d) is the weighted sum of all the nodes in G
and s̃i(d) is the sum of their weights, resulting in x̂i(d) = x̄
for each node i. Proceeding the analysis above further with
k > d, we can show that x̂i(k) is unchanged. The details are
omitted due to space limit.

IV. DISTRIBUTED AVERAGE CONSENSUS FOR LOOPY
GRAPHS

In this section, we modify the distributed average consen-
sus algorithm, Algorithm 1, to make it suitable for direct ap-
plication to loopy graphs. This is done by relaxing the strict
requirement that all the nodes must reach exact consensus.
More precisely, for a given undirected and connected graph
G = {V, E} as before (but cyclic), we consider the following
optimization problem:

min
x

∑
i∈V

wi‖xi − yi‖2 + γ
∑

(i,j)∈E

‖xi − xj‖2, (10)

where wi and yi are as given before, x =
col{x1, x2, . . . , xn} and γ > 0 is a large weighting
(or penalty) parameter to be tuned. It is intuitive to see that
as γ → ∞, all the xi will become the same due to the
connectedness of G, and the solution to (10) will become
the solution to

x̄ = arg min
x0

∑
i∈V

wi‖x0 − yi‖2,

which can be easily verified to be identical to (1). The
relaxation mentioned above is to solve (10) instead of (1)
for a sufficiently large γ.

We first give its centralized optimal solution below. Denote
y = col{y1, y2, . . . , yn}, W = diag{w1, w2, . . . , wn}, and
define the n× n Laplacian matrix L = [`ij ] as

`ij =

 |Ni|, i = j
−1, i 6= j, (i, j) ∈ E
0, i 6= j, (i, j) 6∈ E

Lemma 2. The optimal solution to (10) is given by

x? = (γL+W )−1Wy. (11)

Proof: It is easy to verify that the objective function
in (10) can be rewritten as (x− y)TW (x− y) + xT (γL)x.
Differentiating it with respect to x and setting it to zero gives

W (x− y) + γLx = 0.

Solving it gives the solution (11). This solution is optimal
because L is symmetric and positive semi-definite, ensuring

that γL + W is symmetric and positive definite, which in
turn ensuring that the objective function is strictly convex.

The modified Algorithm 1 is presented in Algorithm 2.
For notational convenience, we denote f(w) = γw/(γ+w).
We first present a result on Algorithm 2 for acyclic graphs,
similar to Theorem 1 on Algorithm 1.

Algorithm 2 (Modified Algorithm for Average Consensus)
Initialization: For each node i, do: For each j ∈ Ni,
set xi→j(0) = yi, si→j(0) = f(wi) and transmit them to
node j.
Main loop: At iteration k = 1, 2, · · · , for each node i,
compute

s̃i(k) = wi +
∑
j∈Ni

sj→i(k − 1) (12)

x̃i(k) = wiyi +
∑
j∈Ni

sj→i(k − 1)xj→i(k − 1) (13)

x̂i(k) =
x̃i(k)

s̃i(k)
, (14)

then for each j ∈ Ni, compute

si→j(k) = f(s̃i(k)− sj→i(k − 1)) (15)

xi→j(k) =
x̃i(k)− sj→i(k − 1)xj→i(k − 1)

s̃i(k)− sj→i(k − 1)
(16)

and transmit them to node j.

Theorem 2. Suppose that the graph G is undirected, con-
nected and acyclic with diameter d. Then, running Algo-
rithm 2 yields that

x̂(k) = x?, ∀k ≥ d (17)

where x̂(k) = col{x̂1(k), x̂2(k), . . . , x̂n(k)} and x? is in
(11).

Sketch of Proof: The proof follows the same general idea
as in the proof of Theorem 1. But because the problem
dealt with in (11) is no longer a simple weighted average
consensus (due to the fact that f(w) = γw/(γ+w) is slightly
different from w), it is notationally more cumbersome to
keep track of the variables si→j(k) and xi→j(k). The details
are omitted due to space limit.

Next, we show that Algorithm 2 indeed applies to loopy
graphs directly and still enjoys the convergence of x̂i(k)→
x?i as k →∞, for all i ∈ V .

First, we point out an obvious fact of (15) that si→j(k) <
γ because f(w) = γw/(γ + w) < γ, i.e., si→j(k) is
uniformly bounded.

To study the convergence of Algorithm 2 for loopy graphs,
we construct an unwrapped tree with depth t > 0 for a loopy
graph G [2]. Take an arbitrary node, say node 1, to be the
root and then iterate the following procedure t times:
• Find all leaves of the tree (start with the root);
• For each leaf, find all the nodes in the loopy graph that

neighbor this leaf node, except its parent node in the
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Fig. 1. Left: A loopy graph. Right: The unwrapped tree around node 1
with 4 layers (t = 4)

tree, and add all these node as the children to this leaf
node.

The variables and weights for each node in the unwrapped
tree are copied from the corresponding nodes in the loopy
graph. It is clear that taking each node as root node will gen-
erate a different unwrapped tree. Fig. 1 shows the unwrapped
tree around node 1 for the loopy graph. Note, for example,
that nodes 1′, 1′′, 1′′′, 1‘, 1“, 1“‘ all carry the same values y1
and w1.

List the nodes in the unwrapped tree in breadth first order,
by starting from the root node, followed by the first layer,
then the second layer, etc. Denote the unwrapped quantities
using ˘ and denote the unwrapped tree as Ğt. Then, as shown
in [2], the unwrapped quantities and the the original ones are
related through a matrix O:

y̆ = Oy; w̆ = Ow (18)

Each row of O contains only 1 and the rest are all 0.
Consider the optimization problem (10) for Ğt (with

unwrapped quantities). By Lemma 2, its optimal solution
is given by

x̆? = (γL̆+ W̆ )−1W̆ y̆, (19)

where L̆ is the Laplacian matrix for Ğt.
We introduce two key lemmas below.

Lemma 3. The optimal quantity x̆?1 (the first element of (19))
for Ğt coincides with x̂1(t) (the result of (14) for node 1 after
running Algorithm 2 on G for t iterations), i.e.,

x̂1(t) = x̆?1 (20)

Proof omitted due to space limit.

Lemma 4. The following equations hold for the depth-t
unwrapped graph Ğt of G:

OW = W̆O, (21)

OL = L̆O + E, (22)

x̆?1 = x?1 + eT1 (γL̆+ W̆ )−1Ex?. (23)

In the above, e1 is the column vector with 1 in the first
element and zero everywhere else, and E is an error matrix

with zero in all rows except for the last Lt rows, where Lt

is the number of its depth-t leaf nodes in Ğt.

Proof omitted due to space limit.
Define the error

z?1 = x̆?1 − x?1. (24)

and denote r = γW̆−1Ex?. Note that W̆ is diagonal, hence
only the last L elements of r are nonzero, corresponding to
the depth-t leaf nodes. Then, (23) can be rewritten as

z?1 = eT1 (γL̆+ W̆ )−1W̆ r. (25)

Next, we give the crucial result that z?1 → 0 exponentially
fast as the depth t→∞.

Lemma 5.

‖z?1‖ ≤ ηt−1rmax, (26)

where 0 < η < 1 is given by

η = max
i∈V

(|Ni| − 1)γ

wi + (|Ni| − 1)γ
. (27)

Proof omitted due to space limit.
Combining the results above, we obtain our main result

on the convergence of Algorithm 2.

Theorem 3. Suppose the graph G is undirected and con-
nected. Then, running Algorithm 2 for k ≥ 1 iterations yields
that

‖x̂i(k)− x?i ‖ ≤ ηk−1rmax, ∀ i ∈ V, k = 0, 1, 2, . . . ,
(28)

where 0 < η < 1 is given by (27) and rmax is a constant
independent of k.

Proof: Taking any node i ∈ V as the root node and
form the unwrapped tree Ğk around node i. Using Lemma 5
by treating node i as node 1, we get that ‖z?i ‖ = ‖x̆?i −
x?i ‖ ≤ ηk−1rmax. Invoking Theorem 2 on the tree Ğk, we
get x̆?i = x̂i(k) for the original graph G, thus (28) holds.

V. ILLUSTRATIVE EXAMPLES

To verify the performance of the modified distributed
algorithm, there are three examples being applied to in this
section. The first one is a 13-node acyclic graph in Fig. 2
whose diameter is 5. The second example is a 9-node loopy
graph in Fig. 5. The final one is a random 1000-node loopy
graph in Fig. 8. As mentioned in the last section, the weights
of each node wi = 1, i = 1, 2, . . . , 13, the relaxation factor
γ = 1000 and yi = i, i = 1, 2, . . . , 13. For comparison, two
distributed iterative methods and simulation results of which
have also been presented. The distributed iteration of the first
Laplacian matrix based algorithm [4] is as followed,

x̂(k + 1) = x̂(k)− αLx̂(k), x̂(0) = y, (29)

It has been proved in [4] that with α = 1/λmax(L) where
λmax is the maximal eigenvalue of Laplacian matrix L, the
convergence rate appears to be the fastest.
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Fig. 3. Convergence of the Proposed Algorithm in an Acyclic Graph

Notice that the optimal solution to (11) can be regarded as
the solution to the linear matrix equation

(γL+W )x? = Wy. (30)

For the example in figure 3, it can be seen from the
simulation result that our proposed distributed algorithm
converges after 5 iterations, which is the diameter of figure 2.
By contrast, the method by [4] needs to take approximately
100 iterations to reach average consensus in figure 4, which
is considerably slower.

For the example in figure 5, Algorithm 2 reaches consen-
sus after around 15 iterations in figure 6, whereas in figure 7
it takes approximately 25 iterations to converge for [4].

For the example in figure 8, Algorithm 2 converges
roughly after 100, as shown in figure 9. This is significantly
faster than [4], shown in figure 10.

VI. CONCLUSIONS

With the inspiration of Gaussian BP algorithm, a novel
distributed algorithm for nodes to reach weighted average
consensus in large-scale systems has been presented. The
algorithm owns all of the premium properties of the BP
algorithm. Firstly, in acyclic graphs, the algorithm is able to
produce correct estimate of weighted average at each node
after d iterations, which is the graph diameter. Next, using a
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Fig. 4. Convergence of the Algorithm [4] in an Acyclic Graph
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Fig. 8. A 1000-node Loopy Graph
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Fig. 9. Convergence of the Algorithm 2 in a 1000-node Loopy Graph
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Fig. 10. Convergence of the Algorithm [4] in a 1000-node Loopy Graph

modified algorithm, nodes will reach weighted average con-
sensus asymptotically in loopy graphs. Additionally, when
applied to loopy networks, the exponential convergence rate
of our algorithm has also been illustrated via simulation. We
believe this novel distributed algorithm has the potential in
contributing to distributed estimation and machine learning
fields.
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