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Abstract

We consider a distributed convex optimization problem in which a connected
network of agents collaboratively seeks to minimize the sum of their local objec-
tive functions over a common decision variable. We propose a new distributed
optimization method in the Alternating Direction Method of Multipliers
(ADMM) framework, But our method combines the celebrated Belief Propa-
gation(BP) algorithm and relaxation iteration method to achieve distributed
optimization. Numerical simulation shows that our proposed algorithms have
good convergence speed. We also discuss the trade-off between the convergence
rate and the required communication and computational complexities.
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1 INTRODUCTION

In recent years, distributed convex optimization methods
for solving convex optimization problems over networks
have received considerable interest. In a connected, undi-
rected network with N nodes, each of which having a local
private convex cost function fi ∶ Rn → R, i ∈ 1, 2, … ,N,
we focus on iterative, distributed algorithms that solve the
convex optimization problem:

min
x∈Rn

𝑓 (x) ∶=
N∑

i=1
𝑓i(x), (1)

where f(x) is the aggregate cost function and x ∈ Rn is
a global decision variable to be optimized. This problem
has found various applications in multi-agent control [1,2],
sensor fusion in wireless sensor networks [3], distributed
learning [4] to just name a few.

In a distributed sense, the main problem can also be
rewritten by introducing a local copy xi ∈ Rn of the global

variable x for each agent i, that is, (1) becomes

min
x∈RnN

F(x) ∶=
N∑

i=1
𝑓i(xi), s. t. xi = x𝑗 ∀i, 𝑗, (2)

where x = col{x1, x2, … , xN}.
Distributed methods for solving (2) can be divided into

two classes: gradient descent methods and Lagrangian
dual methods. In the gradient descent methods
framework, the pioneering work is distributed subgradi-

ent methods (DSM) in the literature [5] which is simple to
implement, but the convergence speed is slow. The work
[6] proposes an accelerated distributed Nesterov gradi-
ent method with multi-step consensus inner iterations
and achieves rates O(1∕k2) for convex and smooth cost
functions. Here k is the number of gradient evaluation
iterations. [7] further shows the accelerated distributed
Nesterov gradient method can achieve a rate O((1 −

√
𝜇

𝜎
)2)

for 𝜇-strongly convex and 𝜎-smooth functions. Further
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utilizing smoothness, [8,9] has a linear convergence rate
for strongly convex functions and the key step in the
algorithm is a novel gradient estimation scheme that
involves historical gradient information. The paper [10]
proposes a novel decentralized exact first-order algorithm
(abbreviated as EXTRA) with global linear converge to the
exact solution with a constant step size for cost functions
with strong convexity and smoothness, and [11] further
analyzes the equivalence between the EXTRA and the
augmented Lagrangian dual method. Based on the condi-
tions of strong convexity and smoothness, further using
the Newton steps' Taylor expansion, Network Newton
(NN) method in [12] achieves an at least linear conver-
gence rate. In the Lagrangian dual framework, the widely
known method is the Alternating Direction Method of
Multipliers (ADMM) [13]. Under the distributed ADMM
iteration framework, each agent is required to repeatedly
solve an specific sub-problem to global optimality which is
computationally expensive. Many papers, such as [14,15],
which are mainly based on the gradient descent method
above, need to use a large number of inner iterations to
achieve consensus of local variables to achieve iterative
updates. Although these works [14–18] show that the
distributed ADMM can exhibit a linear convergence rate
for objective functions with strong convexity and smooth-
ness, they require a large amount of calculation and
information exchange as the cost.

In this paper, we assume that all local objective func-
tions are twice continuously differentiable, 𝜎-smooth and
strict convexity. This assumption ensures that the Hes-
sian matrix for each cost function is positive definite
and bounded. We extend [11,15] and propose a different
approach of distributed optimization in the ADMM frame-
work for solving (2). Our method is designed to exploit
the special Lagrangian structures [15], for the series of
optimization problems in the primary iterations, with a
different method of gradient descent, we extract the opti-
mality conditions of this series of optimization problems to
form a high-dimensional linear equations, then we solve
this linear equation system in a distributed way to com-
plete the whole iterative process. In the specific imple-
mentation, based on Gaussian belief propagation [19–21]
and finite-time consensus protocol [22–25], we propose
our Generalized Belief Propagation algorithm. In order to
compare the effect of this algorithm, based on the classic
relaxation methods [26–28], we generalize the Generalized
Gradient method for comparison.

The contribution of the article is that we propose a new
distributed optimization method with linear convergence
rate. Our method is to reconstruct the generalized gradi-
ent direction by solving a set of linear equations, which
is different from the accelerated gradient descent method

and consensus-based ADMM. In addition, our algorithm
can also use the second order gradient information directly
to accelerate convergence, which is completely different
from Taylor extension in [12]. Number simulation shows
that our algorithm requires only a small number of inter-
nal iterations to yield linear convergence. Our methods
require less information exchange, calculation and stor-
age relative to the existing (accelerated) gradient descent
method(1∕k2 in [6]) with the same moderate precision
requirements.

The problem we are considering is the basic problem
that has been extensively studied in many more complex
scenarios and has resulted in a series of discrete time
and continuous time algorithms. In this paper, we pro-
pose another way to deal with this simple basic problem
that is not weaker than the conventional method that has
emerged. The next step is to further attenuate the prob-
lem's assumptions and study the problem in non-smooth
and convex cases.

The rest of the paper is structured as follows: Section
II states the distributed convex optimization problem and
our network model. Section III presents our Generalized
Belief Propagation algorithm and the Generalized Gradi-
ent algorithm. Section IV demonstrates the performance
of the proposed algorithm. Section V gives the summary.

Basic Notations: For a matrix A ∈ Rm×m, we denote
its transpose matrix by AT. Let 1n denote the vector of n
ones, and In the n × n identity matrix. We denote the stan-
dard Euclidean norm of vector x ∈ Rn by ||x||. Diag(·) is
a diagonal matrix. A symmetric matrix A ∈ Rn×n is called
(strictly) diagonally dominant if |Aii|(>) ⩾ ∑

i≠𝑗|Ai𝑗| for all
i = 1, 2, …n.

2 PROBLEM FORMULATION

This section formalizes the distributed optimization
problem in the network model.

2.1 Network Models and Assumptions
We consider a (sparse) network, characterized by a triplet
 = { , } which is an undirected connected simple
graph with N nodes (or agents) and M edges, where  =
{1, 2, … ,N} denotes the set of nodes and  ⊂  × 

denotes the set of undirected edges. i = {𝑗 ∈ |(i, 𝑗) ∈
} is the neighborhood of agent i.

We assume i < j in the representation of the edge eij. The
edge-node incidence matrix C ∈ RM×N is such that each
column represents an agent and each row corresponds to
an edge. In the column of this matrix, all edges are sorted
according to dictionary ordering and the elements of C is
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defined as:

C((i𝑗),s) =

{ 1 edge ei𝑗 ∈  and s = i,
−1 edge ei𝑗 ∈  and s = 𝑗,
0 otherwise.

(3)

A ∈ RN×N is the symmetric adjacency matrix with 0
on the diagonal and 1 in the (i, j)th position if node i is
connected to node j. The graph Laplacian matrix of ,
L ∶= CTC = D − A, is a positive semi-definite matrix and
satisfies∶ L1 = 0. Here the diagonal matrix D is the degree
matrix of .

Assumption 1. Graph  = { , } is connected, undi-
rected, and simple (no self-loops or multiple edges
between two nodes).

Assumption 1 is standard for distributed optimization
and it implies that any two agents in the network can
always influence each other in the long run.

2.2 Problem formulation
In the network  = { , } of N agents, fi ∶ Rn → R is
a proper closed convex objective function known only by
agent i. Our aim is to compute the minimizer x⋆ of f(x)
through the cooperation of the agents in the network, that
is, to solve the problem (1) or the equivalent problem (2).

Throughout this paper, we assume that the set of min-
imizers of f is nonempty. Combining the strict convexity
of the function (Assumption 2), the optimal value point is
unique and we represent it as x*.

Definition 1 (Strict Convexity). A functions 𝜉 are
strictly convex, i.e.,

𝜉(𝑦) > 𝜉(x) + ⟨∇𝜉(x), 𝑦 − x⟩, (4)

hold for all x; y ∈ Rn.

Definition 2 (𝜎-Smooth). A function 𝜉 is 𝜎-smooth
with 𝜎 > 0 if it is continuously differentiable and
𝜎∕2|| · ||2 − 𝜉 is convex, or equivalently that

𝜉(𝑦) ≤ 𝜉(x) + ⟨∇𝜉(x), 𝑦 − x⟩ + 𝜎

2
||x − 𝑦||2,

holds for all x; y ∈ Rn.

Assumption 2. ∀i ∈  , fi is twice continuously differ-
entiable, 𝜎i-smooth and strict convexity.

Lemma 1 (Bounded Hessian). Under Assumption 2,
∀i ∈  , the Hessian matrix of every fi is bounded, i.e.,
0 < ∇2fi(x) ≤ 𝜎i.

Lemma 1 is an obvious result under Assumption 2. In
order to concisely express and highlight the main ideas, we
limit xi ∈ R to study the problem. The the following results
can be easily scaled to multi-dimensional situations.

3 MAIN RESULTS

In this section, we first place the problem 5 in the frame-
work of ADMM, and then we show the algorithm using
relaxation iterative as a comparison with our proposed
algorithm. Finally, we present our algorithm and related
proofs.

3.1 Distributed ADMM optimization
The connectivity of the graph ensures that the problem (2)
can also be rewritten as

min
xi∈R,i=1,2,… ,N

F(x) ∶=
N∑

i=1
𝑓i(xi),

s.t. xi − x𝑗 = 0, ∀𝑗 ∈ i.

(5)

where x = col{x1, x2, … , xN} ∈ Rn*N. Using the inci-
dence matrix C in (3), we get a compact form of the main
optimization problem as

x∗ = arg min
x∈RN

F(x),

s.t. Cx = 0,
(6)

where x* = col{x*, x*, … , x*} ∈ Rn*N. In order to solve the
problem (6), we use a special augmented Lagrangian: 𝜌 ∶
RN × RM → R:

𝜌(x, y) = F(x) + yTCx + 𝜌

2
xTLx, (7)

where 𝜌 is a position constant, and the dual variable y ∈
RM is the Lagrange multiplier. As L = CTC, the augmen-
tation term 𝜌

2
xTLx is null when the variable x is a feasible

solution of (6). Each element of y corresponds to an edge
of the connected graph  and the order of the edges is the
same as the order of the corresponding edges in matrix C.

In the framework of ADMM, the primal variables x and
the Lagrange multiplier y can be iterated as follows: start-
ing from some initial vector (x(0), y(0)), at iteration k > 0,
the variables are updated as

x(k + 1) = arg min
x

𝜌(x, y(k)), (8)

y(k + 1) = y(k) + 𝜌Cx(k + 1). (9)

For the distributed implementation of the ADMM iter-
ation, the specific iterative calculation of (9) in every y(ij)
(corresponding to the edge eij) can be expressed as follows

𝑦(i𝑗)(k + 1) = 𝑦(i𝑗)(k) + 𝜌(xi(k) − x𝑗(k)) (10)

for ∀ ei𝑗 ∈  .

Lemma 2. Under Assumption 2, ∀i ∈  , fi(xi) can be
rewritten as:

𝑓i(xi) = 𝑓i(xi(k)) + ∇𝑓i(xi(k))(xi − xi(k))

+ Λi(k)
2

(xi − xi(k))2,
(11)
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where 0 < 𝛬i(k) ≤ 𝜎i. And there exit a 𝜃 ∈ (0, 1) make
𝛬i(k) = ∇2fi(𝜉) with 𝜉 = xi(k) + 𝜃(xi − xi(k)).

Proof. Under Assumption 2, ∀i ∈  , fi is at least twice
continuously differentiable. Then using the median
theorem in the Taylor expansion of fi, we can get the
equation (11). Then, from Definitions 1 and 2 and
Lemma 1, we can get 0 < 𝛬i(k) ≤ 𝜎i.

The Lemma 2 only ensures the existence and uniqueness
of 𝛬i(k) for the function fi(xi) at xi(k), and 𝛬i(k) is depen-
dent on 𝜉 = xi(k) + 𝜃(xi − xi(k)) with 𝜃 ∈ (0, 1). In the
actual calculation, we are not able to determine the spe-
cific value of 𝜃. So for the actual calculation of 𝛬i(k), what
we can do is to approximate it with its estimation, and the
specific treatment is as follows:

• When fi is a second-order function, equation 11 is nat-
ural and 𝛬i(k) is just the second derivative ∇2fi(xi(k))
which is just constant value and free of dependence on
k and xi(k), then we can note 𝛬i(k) = 𝛬i = ∇fi.

• When fi is a high-order function, due to the role of
higher order residuals,𝛬i(k) ≠ ∇2fi(xi(k)), but the differ-
ence between the two is small. In the implementation,
as ∇2fi ∈ (0, 𝜎i], we can further relax the estimation and
use 𝛬i(k) = 𝛬i = ∇2fi(xi(0)) to approximate 𝛬i(k).

Thus, ∀k, each 𝛬i is a positive constant that does not
depend on k. We denote 𝛬 = diag{𝛬1, 𝛬2, … , 𝛬N} and
∇F(x) = (∇f1(x1),∇f2(x2), … ,∇fN(xN))T. Then the aug-
mented Lagrangian (x, y(k)) can be calculated as follows:

𝜌(x, y)
≃ F(x(k)) + ∇F(x(k))T(x − x(k)) + y(k)TCx

+ 1
2
(x − x(k))TΛ(x − x(k)) + 𝜌

2
xTLx

= F(x(k)) + y(k)TCx(k) + 𝜌

2
x(k)TΛx(k)

+ (∇F(x(k))T + yTC + 𝜌x(k)TL)(x − x(k))

+ 1
2
(x − x(k))T(Λ + 𝜌L)(x − x(k)).

(12)

Taking 𝜕(x,y(k))
𝜕x

= 0, we get

(Λ + 𝜌L)(x − x(k))
= −(∇F(x(k)) + CTy(k) + 𝜌Lx(k)).

Denote △x = x − x(k) and

b(k) = −(∇F(x(k)) + CTy(k) + 𝜌Lx(k)). (13)

The sub-problem (8) becomes the following linear
equation problem:

H △ x = b(k), (14)

where H = {hij} = 𝛬 + 𝜌L.

The detailed calculation of i-th component bi(k) of b(k)
can be expanded to:

bi(k)

= −∇𝑓i(xi(k)) −
∑
𝑗∈i

𝜌(xi(k) − x𝑗(k))

−

{ i∑
𝑗=1

C(( 𝑗i),i)𝑦( 𝑗i)(k) +
N∑

𝑗=i+1
C((i𝑗),i)𝑦(i𝑗)(k)

}
= −∇𝑓i(xi(k)) −

∑
𝑗∈i

𝜌(xi(k) − x𝑗(k))

−

{
−

i∑
𝑗=1

C(( 𝑗i),i)𝑦(i𝑗)(k) +
N∑

𝑗=i+1
C((i𝑗),i)𝑦(i𝑗)(k)

}
.

(15)

The second equal equation is due to y(ij)(k) = −y(ji)(k),
which comes from the mathematical induction based
on equation (10) and the same initial value y(ij)(0) =
−y(ji)(0) = 0. The detailed calculation of bi(k) depends
only on the information of node i itself and its neighboring
nodes, i.e.: xi(k) and xj(k), y(ij)(k) for 𝑗 ∈ i and ∀i ∈  .

A key property about matrix H is as follows:

Lemma 3. The matrix H above is strictly diagonally
dominant, i.e., hii >

∑
𝑗≠i|hi𝑗| for ∀i ∈  .

Proof. Denote L = {lij}. From L = CTC and the
definition of C in (3), it is easy to verify that lij < 0 for
all i ≠ j and that lii =

∑
𝑗≠i|li𝑗| for all i. Since 𝛬 is a

positive diagonal matrix, it follows that hii = Λi + lii >∑
𝑗≠i|li𝑗| = ∑

𝑗≠i|hi𝑗| for ∀i ∈  .

The strict diagonal dominance of the matrix H means
that the matrix H is reversible. The following key problem
is how to solve △x from (14) in a distributed way.

3.2 Generalized gradient algorithm
In the undirected connected simple graph , with L = D−
A, we modify the equation (14) as

(Λ + 𝜌D)△ x = 𝜌A △ x + b(k).

equivalently,

△x = (Λ + 𝜌D)−1(𝜌A △ x + b(k)). (16)

The generalized gradient algorithm involves solving the
above in an iterative form:

△x(t+1) = (Λ + 𝜌D)−1(𝜌A △ x(t) + b(k)) (17)

with t = 1, 2, … , and △x(0) = 0. The distributed imple-
mentation of (17) is given by

△x(t+1)
i = (Λi + 𝜌dii)−1

⎛⎜⎜⎝𝜌
∑
𝑗∈i

△x(t)
𝑗
+ bi(k)

⎞⎟⎟⎠ . (18)

We have the following key result for the generalized
gradient algorithm.
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Theorem 1. Under Assumption 1 and 2, the spectral
radius of matrix (𝛬+𝜌D)−1𝜌A is strictly less than 1. Sub-
sequently, the iterations in (17) (or (18)) convergences to
(16) exponentially.

Proof. From Lemma 3, 𝛬 + 𝜌L = 𝛬 + 𝜌D − 𝜌A is
strictly diagonally dominant. Since 𝛬 + 𝜌D is diagonal
and positive, it follows that (𝛬+ 𝜌D)−1(𝛬+ 𝜌D− 𝜌A) =
I − (𝛬 + 𝜌D)−1𝜌A is also strictly diagonally dominant.
Note that the diagonal elements of A are zero. Denote
U = {uij} = (𝛬 + 𝜌D)−1𝜌A. We have

∑
𝑗≠i|ui𝑗| < 1

for all i. By the well-known Gershgorin circle theorem
[29], the eigenvalues of U are all inside the unit circle.
Hence, the spectral radius of matrix (𝛬 + 𝜌D)−1𝜌A is
strictly less than 1.

The result above shows that as the iteration t → ∞,△x(t)

in (17) converges to △x in (16). This means that we can
run (17) for m iterations to ensure a sufficiently accurate
solution for △x where d is the graph diameter and m is a
constant much smaller than d. This leads to the general-
ized gradient-like iteration for solving the sub-problem (8):

x(k + 1) = x(k) +△x(m). (19)

Together with (9), the generalized gradient based
algorithm is summarized in Algorithm 1.

3.3 Generalized Belief Propagation
Algorithm
In this subsection, we introduce an alternative method, the
generalized belief propagation (BP) algorithm, to solve the
sub-problem (14). This algorithm is borrowed from [19].

For the given pair of (H,b) and network , we define
h(i→j)(t) and b(i→j)(t) to be two variables (or messages) to be
passed from node i to node 𝑗 ∈ i in the t-th inner itera-
tion. Also defined are two internal variables h̃i(t) and b̃i(t)
as well as the estimate △x(t)i for node i in the t-th inner

iteration. These variables are initialized and iterated as fol-
lows: For every node i ∈  , node 𝑗 ∈ i, and iteration
t = 1, 2, … :

h̃i(t) = hii −
∑

v∈i

hvihiv

hv→i(t − 1)
, (20)

b̃i(t) = bi(k) −
∑

v∈i

hivbv→i(t − 1)
hv→i(t − 1)

, (21)

△x(t)i = b̃i(t)
h̃i(t)

, (22)

hi→𝑗(t) = h̃i(t) +
h𝑗ihi𝑗

h𝑗→i(t − 1)
, (23)

bi→𝑗(t) = b̃i(t) +
hi𝑗b𝑗→i(t − 1)

h𝑗→i(t − 1)
, (24)

with hi→j(0) = hii, bi→j(0) = bi(k).
We have the following key results for the generalized BP

algorithm. The first one (Theorem 2) is a finite-time con-
vergence result for acyclic graphs, and the second one is
an asymptotic convergence result for general graphs. Their
proofs are given in the next two subsections.

Theorem 2. Under Assumption 1 and 2, with the addi-
tional condition that  is an acyclic graph with diameter
d, it holds that

lim
t→d

△x(t) = H−1b(k) = △x∗(k), (25)

and

△x(t) = H−1b(k) = △x∗(k), (26)

for all t ≥ d.

Theorem 3. Under Assumption 1 and 2, it holds that

lim
t→∞

△x(t) = H−1b(k) = △x∗(k), (27)

where △x(t) = col {x(t)1 , x(t)2 , … , x(t)N }.

Similar to the generalized gradient algorithm, for a gen-
eral connected graph, we can force the number of inner
iterations m to be much smaller than the graph diameter
d. This point will be illustrated in the next section.
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3.4 Proof of Theorem 2
We first present a simple property for hi→j(t) and h̃i(t) in
Algorithm 2.

Lemma 4. Suppose H is strictly diagonally dominant
with positive digonals. Then, hi→j(t) > |hij| and h̃i(t) > 0
for all i ∈  , 𝑗 ∈ i and t = 0, 1, … . (Here we add the
convention that h̃i(0) = hii).

Proof. We prove by induction. Since hi→𝑗(0) = h̃i(0) =
hii, it is obvious that the result holds for t = 0. Suppose
the result holds for some t ≥ 1, i.e., hi→j(t − 1) > |hij|
and h̃i(t−1) > 0 for all i ∈  , 𝑗 ∈ i. We need to show
that it also holds for t. Indeed,

hi→𝑗(t) = hii −
∑

v∈i⧵𝑗

hvihiv

hv→i(t − 1)

≥ hii −
∑

v∈i⧵𝑗

|hiv|
= hii −

∑
v∈i

|hiv| + |hi𝑗| > |hi𝑗|.
Similarly,

h̃i(t) = hii −
∑

v∈i

hvihiv

hv→i(t − 1)

≥ hii −
∑

v∈i

|hiv| > 0.

By induction, the claim holds for all t = 0, 1, … .

Now we are ready to prove Theorem 2.

Proof. We assume for now that is connected and pro-
ceed to prove the theorem. Take any node and consider
the tree representation of  with this node as the root.

Because the ordering of the nodes does not affect the
solution of (14), we assume, without loss of generality,
that the root node is labeled as node 1. Thus, it suffices
to show that △x(t)1 = x⋆1 (k) for all t ≥ d.

To help visualize the idea of the proof, we first dis-
cuss the simple graph in Figure 1 with d = 2. For this
graph, we have

Solving △x1 in H △ x = b can be done by applying
Gauss elimination step by step on [H|b] above.

Step 0.0 (t = 0): From the Initialization step in
Algorithm 2, we can rewrite (28) as below in (29) to
emphasize the transmissions from leaf nodes upwards
(i.e., from node 3 to node 1 and from nodes 4 and 5 to
node 2):

Step 0.1 (t = 1): Adding a scaled version of row 3 to
row 1 with scaling value of −h13∕h33 will eliminate the
(1,3)-entry of (28). Similarly, adding a scaled version of
row 4 to row 2 with scaling value of h24∕h44 will elimi-
nate the (2,4)-entry of (28), and adding a scaled version
of row 5 to row 2 with scaling value of h25∕h55 will elim-
inate the (2,5)-entry of (28). The result becomes the
following:

We see that the Gauss eliminations above effec-
tively do the following: Add −h13h31∕h3→1(0)
and −h13b3→1(0)∕h3→1(0) to the (1,1)-entry and
(1,6)-entry, respectively; And add −(h24h42∕h4→2(0) +
h25h52∕h5→2(0)) and −(h24b4→2(0)∕h4→2(0) +
h25b5→2(0)∕h5→2(0)) to the (2,2)-entry and (2,6)-entry,
respectively. Note in (30) that nodes 1 and 2 are
now uncoupled from nodes 3, 4 and 5. Also, because
node 3 is a leaf node, we see from (23)- (24) that
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(h3→1(k), b3→1(k)) = (h3→1(0), b3→1(0)) for all k ≥ 1.
Using (23)- (24), we can rewrite (30) as

By Lemma 4, h2→1(1) > |h21|.
Step 0.2 (t = 2): Adding a scaled version of row 2 to

row 1 with scaling value of−h12∕h2→1(1)will eliminate
the (1,2)-entry of (31), giving the following equation for
△x1: (

h1 −
h12h21

h2→1(1)
− h13h31

h3→1(1)

)
△ x1

=b1 −
h12b2→1(1)

h2→1(1)
− h13b3→1(1)

h3→1(1)
.

This is the same as transmitting −h12h21∕h2→1(1) and
−h12b2→1(1)∕h2→1(1) to node 1, and from (23)- (24), we
get

h̃1(2)△ x1 = b̃1(2).

By Lemma 4, h̃1(2) > 0. This confirms that △x(2)1 in
(22) coincides with △x⋆1 (k). Similar to Step 0.2, we see
that (h2→1(t), b2→1(t)) = (h2→1(1), b2→1(1)) for all t ≥ 2.
Therefore, △x(t)1 = △x(2)1 for all t > 2.

We now consider a general connected acyclic graph
 with diameter d. Denote by 𝜏 the depth of the tree
graph, i.e., the longest path from a leaf node to the root
node (node 1). it is clear that 𝜏 ≤ d. Without loss of
generality, assume that the nodes are listed in the fol-
lowing order: All the leaf nodes are at the bottom of
the list; Once all the leaf nodes are removed, the leaf
nodes of the remaining graph are at the bottom of the
remaining list; and so on. As before, we study the steps
of Gauss elimination for computing △x⋆1 .

Step 0 (t = 0): Let node i be any leaf node and node j
be its (unique) neighboring node. Then, by the Initial-
ization step in Algorithm 2, we have hi→j(0) = hii and
bi→j(0) = bi.

Step 1 (t = 1): Again, let node i be any leaf node
and node j be its (unique) neighboring node. Adding
a scaled version of row i to row j with the scaling
parameter of −hji∕hi→j(0) will eliminate the (j, i)-entry
of the matrix [H|b]. As verified in the example in
Figure 1, this operation is equivalent to transmitting
−hjihij∕hi→j(0) and −hjibi→j(0)∕hi→j(0) to the (j, j)-entry
and (j, (n + 1))-entry, respectively. After the Gauss
elimination, all the leaf nodes are decoupled from the
non-leaf nodes in . Similar to Step 0.1 above, we have

ai→j(t) = ai→j(0) and bi→j(t) = bi→j(0) for all t > 0, due
to the fact that i is a leaf node.

Step 2 (t = 2): Consider the reduced graph with
all the leafs removed and the remaining matrix of the
modified [H|b]. Denote by n1 the remaining number
of nodes. Let node i be any new leaf (which is the
neighbor of an old leaf) and let j be the (unique) neigh-
bor of i. From Step 1 and (20)- (21), we see that the
(i, i)-entry is actually equal to hi→j(k − 1). Similarly,
the (i, (n1 + 1))-entry equals to bi→j(k − 1). Also simi-
lar to the example above, we note from Lemma 4 that
hi→j(k − 1) > |hij| and h̃i(k − 1) > 0. We can apply the
Gauss elimination in Step 1 again. ......

Step t (t ≥ 𝜏): The above process can be repeated
until only the root node remains. Similar to the graph
in Figure 1, it is tedious but straightforward to verify
that the resulting△x⋆1 is indeed given by△x(𝜏)1 in (22).
Also note from Lemma 4 that h̃1(𝜏) > 0. It is similar to
Steps 0.1-0.2 that △x(t)1 = △x(𝜏)1 and h̃1(t) = h̃1(𝜏) for
all t > 𝜏. Since 𝜏 ≤ d, the above means that △x(t)1 =
△x(d)1 and h̃1(t) = h̃1(d) for all t > d.

Since the root node is arbitrarily chosen, we con-
clude that △x(t) = △x(d) = △x⋆ for all t > d.

Finally, we consider the general case of an acyclic
 which is not necessarily connected. If  is discon-
nected, then  can be decomposed of a finite number
of disjoint subgraphs i, each being connected with its
diameter di ≤ d. By definition, d is also the diam-
eter of one of the subgraphs. Accordingly, matrix H
can be transformed through row and column permu-
tations such that the resulting matrix H is decomposed
of block diagonal matrices Hi, i.e., (8) can be rewritten
as a finite set of Hi △ xi = bi. We see that running
Algorithm 2 is effectively running the algorithm on
each i. Applying the proved results above on a con-
nected graph, we conclude again that△x(t) = △x(d) =
△x⋆ for all t > d.

3.5 Proof of theorem 3
Algorithm 2 is borrowed from the Gaussian BP algorithm
in [21] (For details, see [21]). The following convergence
property is given in [21].

Lemma 5. Suppose H consists of pairwise cliques (also
called pairwise normalizable form [30]), i,e.,

H =
∑

e=(i,𝑗)∈
[H(e)], (32)

where  is the edge set corresponding to the matrix H,
H(e) is a symmetric and positive-definite 2 × 2 matrix,
[H(e)] is a zero-padded matrix of the size H such that the
(i, i), (i, j)(j, i) and (j, j)-th elements correspond to those of
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FIGURE 1 Illustration for the proof of Theorem 2 [Color figure
can be viewed at wileyonlinelibrary.com]

H(e). Then, the asymptotic convergence property (27) for
Algorithm 2 holds.

It turns out that the pairwise clique form is guaranteed
under the strictly diagonal dominance condition, as shown
below.

Lemma 6. If a matrix H has positive diagonal ele-
ments and is strictly diagonally dominant, then it can be
written in the form of (32).

Proof. Using the strictly diagonal dominance property,
we can express, for each row i of H,

hii =
∑
𝑗∈i

(|hi𝑗| + 𝛿i𝑗)

for some (sufficiently small) 𝛿ij > 0 for all j above. With
this, it is straightforward to see that H can be rewritten
as (32) with

H(e) =
[ |hi𝑗| + 𝛿i𝑗 hi𝑗

h𝑗i |h𝑗i| + 𝛿𝑗i

]
for each e = (i, 𝑗) ∈  . It is clear that H(e) has positive
diagonals and determinant.

Powered by the above results, we can proceed to prove
Theorem 3.

Proof. The result is a direct combination of
Lemmas 5-6.

3.6 Algorithm analysis and summary
Our Algorithms 1 and 2 are respectively embedded with
generalized gradient algorithm and generalized Belief
Propagation algorithm under the ADMM framework [13].
Our cost functions are closed, proper, and convex, and the
unaugmented Lagrangian L𝜌 has a saddle point (which is
guaranteed by the existence and uniqueness of the solution
of the original problem), then these two proposed algo-
rithms can converge by proper parameter(𝜌) adjustment.

Different from the existing gradient descent method and
more complex dual method, our method builds linear
equations based on optimality conditions, and realizes the
iteration of our algorithm by using the distributed fast solv-
ing algorithm for linear equations. Although our BP-based
algorithm requires two additional auxiliary variables com-
pared with the generalized gradient method using jacobian
iteration, it requires fewer internal iterations at the same
time. Subsequent simulations show that our algorithm
requires only a small number of internal iterations to
ensure linear convergence.This shows that compared with
the standard single-layer gradient descent method, our
two algorithms do not add much complexity in practical
application.

4 SIMULATION AND
PERFORMANCE ANALYSIS

In this section, we study the performances of Algorithms
1-2.

4.1 Quadratic objective functions case
The objective function is given by 𝑓 (x) = 1

2

∑N
i=1 qix2 + pix

with ∇2f(x) = qi > 0. The linear terms pix are added so that
the different local functions have different minima. The
values of qi and pi are randomly from [1, 50] and [−1, 1],
respectively. The graph we consider a random connect net-
work with a group of 200 agents and 400 edges. In order
to analyze the convergence rate of each algorithm, we con-
sider the MSE (mean-square error) which is defined as

MSE (k) = 1
N

N∑
i=1

||xi(k) − x∗||||xi(0) − x∗|| . (33)

Figures 2-4 show the simulation results for m = 1, 2, 6
with 𝜌 = 10, respectively, and where m represents the
number of inner iterations. In each figure, MSE-G and
MSE-BP correspond to the generalized gradient algorithm
and the generalized BP algorithm, respectively. And the
speed 1∕k2 is achieved by an accelerated distributed Nes-
terov gradient method with multi-steps consensus inner
iterations in [6] for convex and smooth cost functions. A
number of observations are in order.

http://wileyonlinelibrary.com
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FIGURE 2 MSEs with m = 1 [Color figure
can be viewed at wileyonlinelibrary.com]

FIGURE 3 MSEs with m = 2 [Color figure
can be viewed at wileyonlinelibrary.com]

• Firstly, m = 1, the generalized gradient algorithm is
divergent and the generalized BP algorithm is conver-
gent under the same parameters.

• Secondly, as m ≥ 2 (the inner iteration number)
increases, both algorithms converge faster than 1∕k2.
But when m becomes large, the incremental benefit
diminishes. For example, the difference between m = 2
and m = 6 for the generalized BP algorithm is marginal
if MSE of 10−4 is required.

• Thirdly, the generalized BP algorithm significantly
outperforms that of generalized gradient algorithm,

especially when m is small. We see that the performance
of the generalized BP algorithm for m = 2 is on par with
that of the generalized gradient algorithm for m = 6.

• Finally, with a small number of inner iterations (m ≥

2), both algorithms can be regarded to have linear con-
vergence.

From the above analysis, under fewer inner iterations,
we see that the generalized BP algorithm clearly outper-
forms the generalized gradient algorithm. In particular,
our BP-based algorithm can achieve linear convergence in

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 MSEs with m = 6 [Color figure
can be viewed at wileyonlinelibrary.com]

FIGURE 5 MSEs with m = 2 [Color figure
can be viewed at wileyonlinelibrary.com]

only one step of inner iteration. In addition, in both algo-
rithms, there is a clear tradeoff between the inner and outer
loops. One or two steps of internal iteration is the most
appropriate, more internal iteration will only increase the
complexity of computation and information exchange, but
will not greatly improve the convergence effect

4.2 Higher order nonlinear objective
function case
In the same fixed graph, if the function is not a quadratic
form, but with the following form: each node i observes a

function fi ∶ R → R, given by

𝑓i(x) = âix + b̂i(x − ĉi)2 + d̂i(x − êi)4,

where âi, b̂i, ĉi, d̂i, êi are parameters of fi,whose
values are randomly chosen from the intervals
(−1, 1), (0, 1)(−1, 1), (0, 2), (−1, 1). As b̂i and d̂i are posi-
tive, we can easily confirm that the function fi satisfies
Assumption 2. In the main equation (14), the 𝛬i in
H = 𝛬 + 𝜌(D − A) is selected as an approximate estimate:
2b̂i + 12d̂i ∗ ê2

i where ∇2𝑓i(xi) = 2b̂ixi + 12d̂i(xi − êi)2. The
iteration initial value is randomly selected in the range
(−2, 2). Figure 5 shows the simulation results for MSE-G

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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and MSE-BP with inner iteration m = 2 and 𝜌 = 10. Two
observations are following:

• Although the simulation effect of both algorithms are
slightly worse than the corresponding quadratic case
under the same parameters, the convergence speed of
both algorithms will eventually exceed the curve of
1∕k2.

• In the comparison of the two algorithms, the gener-
alized BP algorithm has a better convergence perfor-
mance than the generalized gradient algorithm. And
both algorithms give linear convergence.

In summary, in the case of very small internal iterations
m = 2 (without adding too much information exchange,
calculation and storage relative to the single-layer gradi-
ent method), our two methods can be regarded to have
linear convergence on dealing with large-scale nonlinear
optimization problems. Our methods require less infor-
mation exchange, calculation and storage relative to the
existing (accelerated) gradient descent method (with con-
vergence rate 1∕k2) with the same moderate precision
requirements(e.g., 10−3).

5 CONCLUSION

We have presented two ADMM-based distributed algo-
rithms for convex optimization over large networks, one
using the commonly used gradient approach, and one
using the Gaussian belief propagation method. Theo-
retical properties and comparative studies are done for
both algorithms. Emphasis is on the generalized BP
algorithm which, although having more complex presen-
tation, has better performance in comparison with the
gradient approach.
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15. D. Jakovetić, J. M. F. Moura, and J. Xavier, Linear convergence
rate of a class of distributed augmented lagrangian algorithms,
IEEE Trans. Autom. Control 60 (2015), no. 4, 922–936.

16. T. Chang, A proximal dual consensus ADMM method for
multi-agent constrained optimization, IEEE Trans. Sign. Proces.
64 (2016), no. 14, 3719–3734.

17. P. Giselsson and S. Boyd, Linear convergence and metric selection
for Douglas-Rachford splitting and ADMM, IEEE Trans. Autom.
Contr. 62 (2017), no. 2, 532–544.

18. S. Wei et al., On the linear convergence of the ADMM in decen-
tralized consensus optimization, IEEE Trans. Signal Proces. 62
(2014), no. 7, 1750–1761.

19. Q. Cai, Z. Zhang, and M. Fu, A fast converging distributed solver
for linear systems with generalised diagonal dominance, 2019.
arXiv:1904.12313.

20. J. Pearl, Probabilistic reasoning in intelligent systems, Morgan
Kaufman, San Francisco, CA, USA, 1988.

21. Y. Weiss and W. T. Freeman, Correctness of belief propagation in
gaussian graphical models of arbitrary topology, Neural Comput.
13 (2001), no. 10, 2173–2200.

22. W. Ma et al., Finite-time average consensus based approach for
distributed convex optimization, Asian J. Control 21 (2019Nov),
no. 6, 1–11.

23. B. Ning et al., Distributed fixed-time coordinated tracking for non-
linear multi-agent systems under directed graphs, Asian J. Control
20 (2018), no. 2, 646–658.

24. F. Wang et al., Finite-time consensus problem for second-order
multi-agent systems under switching topologies, Asian J. Control
19 (2017), no. 5, 1756–1766.



12 MA ET AL.

25. Q. Wang, Y. Wang, and C. Sun, Fixed-time consensus of
multi-agent systems with directed and intermittent communica-
tions, Asian J. Control 19 (2017), no. 1, 95–105.

26. S. S. Alaviani and N. Elia, A distributed algorithm for solv-
ing linear algebraic equations over random networks, 2018.
arXiv:1809.07955.

27. J. Liu et al., Exponential convergence of a distributed algorithm
for solving linear algebraic equations, Automatica 83 (2017),
37–46.

28. S. Mou, J. Liu, and A. S. Morse, A distributed algorithm for solv-
ing a linear algebraic equation, IEEE Trans. Autom. Control 60
(2015), no. 11, 2863–2878.

29. G. H. Golub and C. F. V. Loan, Matrix computations, Johns
Hopkins University Press, Baltimore, 1996.

30. D. M. Malioutov, J. K. Johnson, and A. S. Willsky, Walk-sums
and belief propagation in gaussian graphical models, J. Machine
Learn. Res. 7 (2006), 2031–2064.

AUTHOR BIOGRAPHIES

Wenlong Ma received his
B.S. degree and M.S. degree in
Mathematics, from Shangqiu
Normal University in 2012
and Shandong University,
Jinan, China, in 2015, respec-

tively. Since 2015 he is pursuing his Ph.D. degree
at the School of Control Science and Engineer-
ing, Shandong University. His research interests
include multi-agent network consensus control and
distributed optimization.

Huanshui Zhang received
the B.S. degree in mathematics
from Qufu Normal University,
Shandong, China, in 1986, the
M.Sc. degree in control theory
from Heilongjiang Univer-

sity, Harbin, China, in 1991, and the Ph.D. degree
in control theory from Northeastern University,
China, in 1997. He was a Postdoctoral Fellow at
Nanyang Technological University, Singapore, from
1998 to 2001 and Research Fellow at Hong Kong
Polytechnic University, Hong Kong, China, from
2001 to 2003. He is currently holds a Professorship

at Shandong University, Shandong, China. He was
a Professor with the Harbin Institute of Technology,
Harbin, China, from 2003 to 2006. He also held
visiting appointments as a Research Scientist and
Fellow with Nanyang Technological University,
Curtin University of Technology, and Hong Kong
City University from 2003 to 2006. His interests
include optimal estimation and control, time-delay
systems, stochastic systems, signal processing and
wireless sensor networked systems.

Minyue Fu received his
Bachelor's Degree in Elec-
trical Engineering from the
University of Science and
Technology of China, Hefei,
China, in 1982, and M.S. and

Ph.D. degrees in Electrical Engineering from the
University of Wisconsin-Madison in 1983 and 1987,
respectively. He joined the Department of Electri-
cal and Computer Engineering, the University of
Newcastle, Australia, in 1989. Currently, he is a
Chair Professor in Electrical Engineering and Head
of School of Electrical Engineering and Computer
Science. In addition, he was a Visiting Associate
Professor at University of Iowa in 1995-1996, and a
Senior Fellow/Visiting Professor at Nanyang Tech-
nological University, Singapore, 2002. He has held a
Qian-ren Professorship at Zhejiang University and
Guangdong University of Technology, China. He is a
Fellow of IEEE. His main research interests include
control systems, signal processing and communica-
tions. He has been an Associate Editor for the IEEE
Transactions on Automatic Control, Automatica
and Journal of Optimization and Engineering.

How to cite this article: Ma W, Zhang H, Fu M.
Distributed convex optimization based on ADMM
and belief propagation methods. Asian J Control.
2020;1–12. https://doi.org/10.1002/asjc.2284

https://doi.org/10.1002/asjc.2284

	Distributed convex optimization based on ADMM and belief propagation methods
	Abstract
	INTRODUCTION
	PROBLEM FORMULATION
	Network Models and Assumptions
	Problem formulation

	MAIN RESULTS
	Distributed ADMM optimization
	Generalized gradient algorithm
	Generalized Belief Propagation Algorithm
	Proof of Theorem 2
	Proof of theorem 3
	Algorithm analysis and summary

	SIMULATION AND PERFORMANCE ANALYSIS
	Quadratic objective functions case
	Higher order nonlinear objective function case

	CONCLUSION
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


