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discretization” ofS1 or of a “linear interpolation” becomes clear.
Let �I � �=3. Note that the slow feedbackz0 7! !

(1)
� (z0) is Lips-

chitz onS1. Thus, we can assume that an equidistant discretization
fz10 ; � � � ; zk0g � (0; 2�] exists such that the slow feedback is a
linear interpolation. Note, furthermore, that the finite set of fast
feedbacksy 7! !� (zi0; y); i = 1; � � � ; k, has a common Lipschitz
constant. Let�I � �=3. Then, we can find an equidistant discretization
fy1; � � � ; ylg � (0; 2�] such that, for anyzi0, the fast feedback is
a linear interpolation. For slow statesz 2 [zi0; z

i+1
0 ] and fast states

y 2 [yj ; yj+1], we interpolate setting

!�(z; y) := !� zi0; y +
z � zi0

zi+1
0 � zi0

!� zi+1
0 ; y

� !� zi0; y :

Then, the average(1=T ) T

0
A(y(t); !�(z; y(t)))dt coincides with

!
(1)
� (z)by the (affine) linearity of! 7! A(y; !). We chose�� 2 (0; 1]

small enough such that for all� 2 (0; �� ] the right-hand side of (15)
becomes smaller than�=3 and the proof is finished.

IV. A N EXAMPLE

We illustrate the result of the previous section by the following ex-
ample of a singularly perturbed oscillator:

A(y; u) =
0 1

�1 + y1u 0
; g(y) =

0 1

�1 0

y1
y2

with control range
 = [�1; 1]. Again, we write (z1; z2) :=
(s1; s2)= s21 + s22. According to our open-loop analysis, we know
that a constant control functionu(t) = ! 2 [�1; 1] can only
asymptotically provide a zero Lyapunov exponent for the slow
motions, which follows from the fact thaty1(t)! = � sin (t+ �)!
with positive constants�; � > 0 and that accordingly the aver-
aged slow subsystem is just an undamped linear oscillator. Thus,
the orbits are circles. When the control function is allowed to
change with respect to time the picture becomes different: the
averages(1=2�) 2�

0
y1(t)u(t)dt can take any value in the interval

[�2=�; 2=�], and the control range of the averaged slow subsystem
becomes


(1) =
0 1

�1 + v 0
: v 2 [�2=�; 2=�] :

For constant averaged control functions, the orbits of the averaged slow
subsystem are ellipses, “horizontally stretched” forv > 0, “vertically
stretched” forv < 0. Intuitively, to stabilize the averaged slow sub-
system, we have to choosev 2 [�2=�; 2=�] nonnegative for(z1; z2)
in the first or third quadrant and nonpositive for(z1; z2) in the second
or fourth quadrant. This motivates the following composite state feed-
back for stabilization:

u1(t) = �z1(t)z2(t)y1(t):
In fact, this feedback produces a singularly perturbed ordinary differ-
ential equation with corresponding averaged slow subsystem

d

dt

s1(t)

s2(t)
=

0 1

�1� 2z1(t)z2(t)=
p
2 0

s1(t)

s2(t)
:

Straightforward calculations show that this averaged differential equa-
tion has a negative Lyapunov exponent. Similarly, the system can be
destabilized by the composite state feedback

u2(t) = z1(t)z2(t)y1(t):
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Convergence Results of the Analytic Center Estimator

Er-Wei Bai, Minyue Fu, Roberto Tempo, and Yinyu Ye

Abstract—The analytic center approach for bounded error parameter
estimation was recently proposed as an alternative to the well-known least
squares and Chebyshev estimates. In this paper, we show the asymptotic
performance of this approach and prove that the analytic center converges
to the true parameter under mild conditions.

Index Terms—Analytic center, bounded error parameter estimation,
convergence analysis, membership set identification.

I. INTRODUCTION

Consider a single input–single output discrete-time system

yi = �T
i � + vi; i = 1; 2; � � � ; n; (1.1)

Manuscript received December 18, 1998; revised October 18, 1999. Recom-
mended by Associate Editor, J. Chen. This work was supported in part by the
National Science Foundation, the ARC (Australia), and the CENS-CNR.

E.-W. Bai is with the Department of Electrical and Computer En-
gineering, University of Iowa, Iowa City, IA 52242 USA (e-mail:
erwei@icaen.uiowa.edu).

M. Fu is with the Department of Electrical and Computer Engineering,
University of Newcastle, N.S.W., 2308 Australia (e-mail: eemf@hartley.new-
castle.edu.au).

R. Tempo is with the CENS-CNR, Politecnico di Torino, Torino, Italy (e-mail:
tempo@polito.it).

Y. Ye is with the Department of Management Science, University of Iowa,
Iowa City, IA 52242 USA (e-mail: yyye@dollar.biz.uiowa.edu).

Publisher Item Identifier S 0018-9286(00)02167-X.

0018–9286/00$10.00 © 2000 IEEE



570 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 3, MARCH 2000

whereyi 2 R is the system output,�i 2 Rm is the measurable re-
gressor,� 2 Rm is the unknown parameter vector to be identified, and
vi 2 R is the noise. In the bounded error parameter estimation setting,
it is assumed that the noisevi is bounded by� > 0, i.e.,

jvij � � (1.2)

for i = 1; 2; � � � ; n. Then, the membership set is defined by


n =

n

i=1

�̂ 2 Rm: � � � yi � �Ti �̂ � � : (1.3)

The membership set includes the parameter estimates consistent with
(1.1), the input–output data, and the noise bound (1.2). The goal is
to compute a specific estimate in the membership set enjoying some
optimality properties. A large body of research exists (see, for example,
[7] and [9]) in this area. The most popular estimate along this direction
is the Chebyshev center�c [10] of the set
n

�c = arg min
�̂2


max
�2


k�̂ � �k

wherek � k is anylp norm. If p = 1, this is the best worst case esti-
mate of the true but unknown system parameter vector in the sense that
it minimizes the maximum “distance” between�c and the unknown
parameter vector that generated the data. However, it is well known
that the Chebyshev center is sensitive to outliers, and moreover, online
sequential implementation of the Chebyshev center does not seem fea-
sible. To overcome these difficulties, an analytic center estimate�a was
proposed in [2]–[4]. In particular, it was shown in [2] that the analytic
center�a minimizes the logarithmic average output error and can be
implemented in a sequential form. The complexity of this sequential
algorithm for computing a sequence of analytic centers up to observa-
tion timen is linear in terms of the number of Newton iterations.

To be more specific, let us rewrite the membership set


n =

n

i=1

�̂ 2 Rm: � � � yi � �Ti �̂ � �

= f�̂ 2 Rm: (An)T �̂ � cng (1.4)

where

An = (a1; a2; � � � ; a2n)
:
= (�1;��1; �2;��2; � � � ; �n;��n) 2 R

m�2n

and

cn =

c1
c2
...

c2n�1
c2n

:
=

�+ y1
�� y1

...
� + yn
� � yn

2 R2n:

Suppose the set
n is bounded and has a nonempty interior. Then, the
analytic center�a of 
n is an interior point of
n maximizing the
(dual) potential function

�a = arg max
�̂2


 (�̂) = arg max
�̂2


1

2n

2n

i=1

ln ci � aTi �̂ : (1.5)

The following theorem was given in [2] concerning the analytic center.

Property 1.1: Consider the system (1.1), the noise bound (1.2), and
the membership set (1.3). Then, the analytic center is the solution to
the following optimization problem:

�a = arg max
�̂2


n

i=1

�2 � yi � �Ti �̂
2

= arg max
�̂2


n

i=1

ln �2 � yi � �Ti �̂
2

: (1.6)

The main result of the present paper is to show the convergence of
the analytic center to the true parameter under various conditions. A
preliminary version was published in the conference [5].

II. CONVERGENCEANALYSIS

To avoid some unnecessary complications, we modify the noise
bound and assume that

jvij � � � � < � (2.1)

for some arbitrarily small constant� > 0. Further, we define two con-
ditions, as follows.

Condition 1: n0 > 0 and�1 � �2 > 0 exist such that for all
n � n0

�1I �
1

n

n

i=1

�i�
T
i � �2I: (2.2)

In the literature, this condition is referred to as the weak persistent ex-
citation condition [6]. Condition 1 and (2.1) guarantee that the set
n

is bounded and has a nonempty interior.
Condition 2:

lim
n!1

1

n

n

i=1

vi
�2 � v2i

�i = 0: (2.3)

Condition 2 is satisfied ifvi and�i are independent random vari-
ables withE(�i) = 0 or vi is symmetric; i.e., the probability density
functionq(vi) = q(�vi), which impliesE(vi=(�2 � v2i )) = 0. The
above condition also holds when�i is a deterministic time function and
vi is a symmetric independent random variable or whenvi is a deter-
ministic time function, but�i is an independent random variable with
E(�i) = 0.

Three results are presented below. The first one answers the ques-
tion when the analytic center gives a correct estimate; i.e.,�a = �. The
second theorem, which is the main result in this section, studies the
convergence properties of the analytic center. The third result is a con-
sequence of the second theorem, which shows the convergence of�a
to the unknown� with probability one ifvi is a random variable with
zero mean.

Lemma 2.1: Under Condition 1,�a = � if and only if

1

n

n

i=1

vi
�2 � v2i

�i = 0: (2.4)

Proof: Condition 1 guarantees the existence and uniqueness of
the analytic center�a for n � n0. Further,�a is the solution of

d (�̂)

d�̂
= 0

where the potential function (�̂) is defined in (1.5), which is equiva-
lent to

1

n

n

i=1

�i yi � �Ti �a

�2 � (yi � �Ti �a)
2
= 0: (2.5)
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If �a = �, then this equation reduces to (2.4). Conversely, if (2.4) holds,
then�a = � is a solution to the above. By the uniqueness of�a under
Condition 1, this is the only solution. Hence,�a = � if and only if (2.4)
holds.

Theorem 2.1:The parameter estimation error given by the analytic
center has the following bound forn � n0:

k�a� �k �
1

n

n

i=1

�i�
T

i

�2 � v2
i

�1

�
1

n

n

i=1

2vi
�2 � v2

i

�i : (2.6)

In particular,�a ! � asn ! 1 if Conditions 1 and 2 hold.
Proof: Define the parameter estimation errore = � � �a and

prediction error�i = yi � �Ti �a. Then

�i = vi + �Ti e:

Subsequently, (2.5) gives the unique solution to�a and is equivalent to

�

n

i=1

vi�i
�2 � �2

i

=

n

i=1

�i�
T

i

�2 � �2
i

e: (2.7)

Define

�i =
vi�i

�2 � �2
i

�
vi�i

�2 � v2
i

:

Then, it is straightforward to check that

�i =
�i�

T

i

�2 � �2
i

v2i + vi�i
�2 � v2

i

e:

Adding n

i=1
�i to both sides of (2.7), we obtain

�

n

i=1

vi�i
�2 � v2

i

=

n

i=1

�i�
T

i

�2 � �2
i

1 +
v2i + vi�i
�2 � v2

i

e

=

n

i=1

�2 + vi�i
(�2 � v2

i
) (�2 � �2

i
)
�i�

T

i e

=

n

i=1

di
�2 � v2

i

�i�
T

i e

where

di =
�2 + vi�i
�2 � �2

i

:

Noting thatjvij < � andj�ij < �, we get

di �
1

2
:

Thus

e = �

n

i=1

2di
�2 � v2

i

�i�
T

i

�1 n

i=1

2vi
�2 � v2

i

�i (2.8)

and

k� � �ak �
1

n

n

i=1

�i�
T

i

�2 � v2
i

�1

�
1

n

n

i=1

2vi
�2 � v2

i

�i :

Moreover, from Condition 1 and the fact that

0 < �(2�� �) � �2 � v2i � �2

the first term is always bounded. Then, the convergence of�a to � fol-
lows from Condition 2. This completes the proof.

The geometric interpretation of the result is that the Hessian of the
logarithmic barrier at the analytic center of a polyhedron defines two
ellipsoids inscribing and outscribing the polyhedron [1], [2].

Corollary 2.1: Consider the system (1.1). Suppose that the noisevi
is a sequence of independently (not necessarily identically) distributed
random variables of zero mean with the bound given by (2.1). Further,
assume that the regressor�i satisfies Condition 1 and is independent
of vi. Then, the analytic center�a converges to the true but unknown
� with probability one asn ! 1.

Proof: The hypothesis implies that the random variablesvi=(�
2�

v2i ) are independent with zero mean and finite convariance. Then, by
the law of large numbers [8], Condition 2 is satisfied with probability
one asn ! 1. Therefore, the conclusion follows.

III. SOME REMARKS

It is interesting to compare the convergence conditions for the ana-
lytic center approach with the recursive least squares (RLS) given by

�ls =
1

n

n

i=1

�i�
T

i

�1

1

n

n

i=1

�iyi

= � +
1

n

n

i=1

�i�
T

i

�1

1

n

n

i=1

�ivi: (3.1)

For the convergence of the RLS estimate, Condition 1 remains the
same while Condition 2 is replaced with a slightly simpler condition

lim
n!1

1

n

n

i=1

vi�
T

i = 0: (3.2)

The main tradeoff is that RLS is much simpler, but does not guar-
antee that the solution lies in the membership set all of the time. On
the other hand, the analytic center requires more computation [2], in
particular, whenn is large, but at the same time, it is guaranteed to
lie in the membership set. Therefore, it would be nice to start with the
analytic center and then switch to RLS whenn becomes large. This
mixed approach is to start with an analytic center estimator and then
switch to an RLS estimator when the estimate begins to converge. The
key point, however, is to determine the switching time. To further elab-
orate on this, we assume zero mean and independence of the noise (not
necessarily identical distributions). Then, the covariance of the RLS
estimate error becomes

Cov(�ls � �) = R�1n

1

n2

n

i=1

n

k=1

�i�
T

kE(vivk)R
�1

n

where

Rn =
1

n

n

i=1

�i�
T

i :

Denote

�2 = max
i

E v2i = max
i

�

��

x2qi(x)dx

whereqi(x) is the probability density function ofvi. Then

Cov(�ls � �) �
�2

n

1

n

n

i=1

�i�
T

i

�1

�
�2

�2n
I (3.3)

where�2 is defined in (2.2). Note that�2 � �2 becausejvij � � and

�

��

x2qi(x)dx � �2
�

��

qi(x)dx � �2:
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Accordingly,Cov(�ls � �) � (�2=�2n)I and

E(k�ls � �k2) = TracefCov(�ls � �)g �
m�2

�2n
:

Now, to determine an appropriate switching time, we use the well-
known Chebyshev inequality in the following lemma [8].

Lemma 3.1: Consider any random variablex. Then, for any con-
stant� > 0

Probfkx�E(x)k � �g �
E(kx�E(x)k2)

�2
:

Using the above lemma, we consider two arbitrary tolerance parame-
ters� > 0 and� > 0. The former is used to characterize the “distance”
between� and�ls, whereas the latter is for bounding the probability
Probfk�ls � �k � �g. We may choose the switching timen deter-
mined by

n �
m�2

�2��2
: (3.4)

By the Chebyshev inequality, we obtain

Probfk�ls � �k � �g �
E(k�ls � �k2)

�2
�

m�2

�2�2n
� �: (3.5)

Clearly, no guarantee exists that, ifn � m�2=�2��
2, the RSL es-

timate lies in the membership set. However, with a probability of at
least1� �, the RLS estimate�ls is �-close to the true�, provided that
(3.4) is satisfied, and thus, for small enough� > 0; �ls is likely to be
in the membership set. Therefore, we can “safely” switch the estimate
from the analytic center to least squares. The above idea is easily im-
plementable.
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Additional Dynamics in Transformed Time-Delay Systems

Keqin Gu and Silviu-Iulian Niculescu

Abstract—In studying the stability of time delay systems, many pub-
lished results use a transformation to transform a system with single time
delay to a system with distributed delay. In this article, the inherent lim-
itations of such approaches are studied. Specifically, it is shown that such
a transformation incurs additional dynamics that can be characterized by
appropriate additional eigenvalues. The critical delay values when such ad-
ditional eigenvalues cross the imaginary axis can be explicitly calculated. If
the smallest of such delays is less than the stability delay limit of the orig-
inal system, then any stability criteria obtained using such transformation
will be conservative. Some examples are also included.

Index Terms—Razumikhin theorem, stability, time-delay systems.

I. INTRODUCTION

The study of stability of time-delay systems has been active in recent
years. See, for example, [25], [14], [19], [21], [6], [7], [24], and [23]
and the references therein. See also [16] for an overview.

For the stability of the system

_x(t) = Ax(t) +Adx(t� r) (1)

wherex(t) 2 Rn; A; Ad 2 Rn�n, many published results use the
fact

x(t� r) = x(t)�
0

�r

_x(t+ �)d�

= x(t)�
0

�r

[Ax(t+ �) +Adx(t+ � � r)] d�

to transform the above system to a distributed delay

_x(t) = (A+Ad)x(t)

� Ad

0

�r

[Ax(t + �) +Adx(t+ � � r)] d�: (2)

This transforms a system withdiscrete delay(or pointwise delay) (1) to
one withdistributed delay(2), according to the terminology in [10]. In
this paper, we will focus on the special case thatA andAd are constant
matrices.

It should be realized that systems (1) and (2) are indeed different. The
complete prediction of future trajectory of (1) requires the knowledge
of x(t) over a time interval of lengthr, for example,t 2 [�r; 0].
However, the knowledge ofx(t) over a time interval of length2r, for
example,t 2 [�r; r], is needed to predict the future trajectory of (2).

It was proven in [15] (in a more general case of systems with struc-
tured uncertainty) that the stability of (2) implies the stability of (1),
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