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Abstract. In this paper~ a robust for\varding con­
trol technique is introduced for a class of uncer­
tain nonlinear systeIIls admitting the so-called u,p­
augTnented structure. This technique gives a recur­
sive design procedure v.,~hich yields a smooth con­
troller. Further ~ it can be combined with the well­
known baek-stepping technique to solve the robust
stabilization problerrl for a large class of uncertain
nonlincar systems. In contrast to previous methods
on llonlinear forwarding, our technique is able to
handle systems with large pa.rameter uncertainties.
Copyright© 1999 IFAC
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:eo and x if (2) is a subsystem of a larger onc, or
void otherwise. Wc will denote x+ == [;£0, xTJT and
d(x+, r/, q) = d(x 1 Xo, 1/, q).

The stabilization problcrIl for the up-augrnented
structurc has been heavily studied recently for the
case "there the nonlinea.r system does not involve
uncertain parameters; sec e.g., [6], [1]' [3] and [4],
Ho\vevcr, these methods, called for\varding or feed­
forv....arding, .all involve some kind of cancellation
of nonlinearities. Subsequently, they do not a.pply
to systems with uncertain parameters, especially of
large sizes. This is in great contrast to robust sta­
bilization of linear systems. In fa.ct, a. seminal pa­
per of Wei [7] in 1990 proposed a method capable
to deal '~lith the up-auglIlented structure involving
large uncertain parameters.

1 Introduction

where x(t) E Rn is the state, u(t) E R is the control,
q E R l is an uncertain parameter vector contained
in a cornpact set 0, b(q) i~ continuous in q, f(x, q)
is continuous in q and smooth in x \\~ith f (0, q) == O.

In t.his paper, we consider the robust stabiliza­
tion problem for a class of uncertain nonlinear sys­
tems adnlitting the so~callcd up-augmented struc­
tU1'e~ This structure starts with a base systern of
the following farni:

x(t) == f(X(t)1 q) + b(q)u(t)

~.\n up-augmented system is given by

(1)

In a recent paper by the authors [5L \\rei's robust
stabilization technique was generalized to the non­
linear case. Our solution to the robust stabiliza­
tion problem involves a two-step controller. In the
first step, a controller is designed to drive the base
systeln to a local region~ Suhsequently, a second
controller is used to maintain the state of the base
system small while driving the augrnented state to
zero. This robust for\varding technique is conceptu­
ally different from the standard forvlarding ones as
no nonlinear cancellation is involved. "Then special­
i~cd to the linear ease, thi~ technique recovers the
result of "'lei [7]. Further, a recursive application of
this technique leads to a solution to robust stabiliza­
tion of systenls \vith the so-called upper-triangular'
,~t1~ct'u1'e; ~ee [5].

where Xo E R is a nP,\V state variable, t represents
time, io (x, q) is continuous in q and smooth in x
with 10(0, q) == 0, d(x, xo, T}, q) is continuous in q
and srnooth in (x, Xo, 1]) v.rith d(O~ 0, 0, q) == O. The
pararneter 'T! represent.s state variables other than

Xo
:7:

fo(x~ q)
f (x, q) + b(q) [v, + d(x, .7:0,.1], q)]

(2) However, our robust forv.rarding technique in [3J
has a \veakness \vhich serves as the motivation for
this paper. That is, the t\\~o-step controller is non­
sluooth. This iUlplies that it is difficult to cornbine
it \~lith the well-known back-stepping technique for
handling a larger class of uncertain nonlinear sys­
tems.
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The back-stepping technique deals with the so­
called llouJ1}.-augmenterl structure. For the same
base system (1), a down-augmented system is of the
form:

v.rhere X n +l E R. is a ne\v sta.te variable, 071+1 (q)
is a continuous function bounded a\vay from zero,
and d(·) is the same as before. It is '¥cll-kno,vn
nO\-\T that this structure can b~ easily handled using
the standard back-stepping technique; see, e.g., [2].
.A.. striking fea.ture of the back-stepping technique is
that it is capable to treat uncertain paranleters of
large sizes. A key assulnption in the back-stepping
technique is that the base system has a smooth sta­
bilizer, say un{x). This is because a state tra.llsfor­
mation

..A.SSUMPTIONS

ASSuIllption 2.1 (Local Exponential Stflbilizubil­
ity) : There exists a srnooth controller Un (x) for
the base ~ystem (1) such that, \vith

(5)u(t) = Un(x(t)),

controller later. As mentioned in the previous sec­
tion, the key mechanism involved is a tVolo-step con­
trol law. In the first step, a nonlinear controller is
applied to the base syst.ern so that its state x con­
verges to a usmall'= bounded set n while Xo is not
regulated. In the second step, a nonlincar controller
is designed to maintain x within n vlhile driving
the augmented state x+ to zero. Overall, this two­
step control law achieves robust global asymptotic
stabilization (RG~t\.S) and robust local exponential
~tabilization (R,LES).

(3)
f (x, q) + b(q)Xn +l
On+l (q) [u + d(x, xo, 17, q)]

z == x; Zn+l == Xn+l - 'l.Ln(x) (4) the state of the system (1) is RLES.

ASSllDlption 2.2 (Local Smonthnes." Propertie.s):
For the same local region n and local controller
uo(x) as above, any x E nand q E Q, there holds

is used and the differentiahility of the ne\\~ state is
required. It is worth to note that the back-stepping
technique yields a smooth stabilizer, provided that
the do\vn-aug-mented systern is srnooth.

The need for a Slllooth stabilizer for the up­
auglnented struetllre is I10\V clea.r: Such a stabi­
lizer would allow the base systen1 to be an up­
augmented structure. That is, robust stabilization
can be achieved for a rllueh larger class of UIlcer­
t.ain nonlinear systems generated using recursive
up-augmentations and do,vn-augmentations. This
structure r when specialized to the linear case, cor­
responds to the so-called anti-sY"lnrnetric stcpuJise
configuration, coined by \\7e i (7).

fo(x, q) =: a(x, q)x;
f (x, q) + b(q) 'Uo (x) ~ ..4 (x, (1) x

b(q) = On(q) ( ~ ) = 8n(q)b

where

A (x ~ q) == [ dO ( )
nl X, q

fl(X, '1) = [BD (x, q) *]

(6)

(7)

'Vith the above introduction, tJle objective of this
paper is simply stated: '~le aim to propose a robust
forwarding technique that Vo,i~ould yield a smooth sta­
bilizing controller for the up-auglnented systeIYl in
(2).

"le point out that all the results allo\v the systeln
to be t.ime-varying. But for notational convenience,
the time-dependence is suppressed.

~vith * representing an arbitrary term, 1 ~

(}o(x, q) 2:: ~ > 0; 1 ~ Bn(x, q) > ~n > 0, where
!la and fln are constants. 0

ReIIIark 2.1 \Vith the loca.l smoothness assump­
tion, the RLES property in _.\.ssumption 2.1 can be
modified to the follo"ving; there exists tl > 0, c > 0
and matrix P == pT > 0 Huch that

PA(x,q) + AT(x,q)P:s -E.l, 'Ix E o.,q E Q. (8)

2 Robust Forwarding
N on-slllooth Control

with \vhere

(9)

In this section wc revisit the robust for~vardiI1gtech­
nique in [5]. This technique does not yield a srnooth
controller) but will serves as the basis for a smooth

ASSulllption 2 .. 3 (Global Properties): Consider the
foll(n~-ing system derived from (2):

x = f(x, q) + b(q)['ll + d(x-L 1 T}, q)] (10)
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Given any smooth function TJ(t) a.nd 0 < (J < 1,
there exists a smooth controller Ud(X+ ,1]) such that~

with

the state of the system (2) will he driven into p!2 in
a finite time T, where n is given in (9), and pO ~

{px: x E f!}.

u(t) == Ud(X+(t), T/(t)), (11)

\Ve also note that the function .(OV(x) S(7.U)d1iJ resern­
hIes a ;'potential barrier)' and the Lyapunov func­
tion (12) is valid only for x E ~!, i.e.,

v"+(x+) ~ 00 as xT Px ~ jJ. (15)

This implies that future x E n as long as that
l,T+(XT ) remains bounded.

ReIllark 2.2 Assumption 2.3 appears to be strong.
HO'~lever, we note that it is automatically satisfied
for first order systerns beeause a ~'high-gain17 u(t)
can be designed to ~'overcomp," both f (;£, q) aIHl
d( x+ , 1], q), forcing the state to converge to po.. In
Sect.ion 4, \V€ ",~ill sh01-V that this property can be
preserved under robust forwarding design. 0

LYAPUNOV FUNCTION AND CONTROLLER DESIGN

For notational sitnplicity~ ,ve will denote s(lf (x)) by
s(a::). Defining

[

1 - (-t O)P ]

p+ === -p ( '"1
0

) ( 'Y )- s(x)P + P 0 (, O)P

(16)
v.rhich is positive definite for all x E n. The inverse
of P+ is given by

To simplify the ana.lysis, '\ve also assume in this sec­
tion that 1] is void, i.e., d(x+,1J,q) ::::= d1 (x+,q).
Since d 1 (x+, q) is sInooth in x+ and d 1 (0, q) == 0,
",Te can re"vrite

(17)
(r 0)] .
p-l

.A.lso define a (nonlinear) state transformation

(xv ~ (, O)PX)2rv~(x)

+ la s(w)dw > 0, Vx E 0(12)

Now we pay attention to controller design for (2).
First, '~le ntilize Assurnption 2.3 and apply (11) to
drive x(t) into pfl in a finite time T. In this step,
xo(t) is not regulated. Once x(t) E po" we sv.titeh t.o
a laeal Inude v/here a different controller u+{x+, 1])
will be applied. This controller will maintain xCt)
in n while driving x+ (t) to zero. The design of
u+(x+,7]) relies on a local Lyapunov function for
(2)

Differentiating \,7+ (x+(t)) along the trajectory of
(2)~ ~-e have

l>'+ 2[xo - (1' O)Px][xo - er O)Px]

+2s(V(x))xT P±

::::: 2(x+)Tp+±+ (20)

for some D+ (x+ ~ q) smooth in x+ and continuous
in q.

Theorerrl 2.1 For the up-augmented system (2)
satisfying .A.ssumptions 2.1-2.3 and d(x+, rI, q) ~

d 1 (x+, q), there exist .-./ < 0 and o(x+) > 0 such
that the nonlinear controller

will render

for some continuous c+(x) > 0, x E O.

(13)

(14)lim l v

s(1.o)(Iw ---+ 00.
V---+j.l 0

and

Vtihere J < 0 is a constant t.o be specified and s ( .)
is a locally smooth function Hatisfying: sew) > 0
\/w E [0, ,u);

l V

s(w)dw < 00, \Iv E (0, /L);

Remark 2.3 Note that (12) includes a quite large
set of the Lyapunov functions. _tt particula.r choice
of s(·) is given by [5];

s(w) == _JJ~.
f.j, - 1J}

:ror linear systems we can t.ake J1, :::: 00 and s('UJ) a
constant, which yields a quadratic Lyapunov func­
tion. It can be verified that this is the same L,ya.­
punov function used in \Vei [7). In generally, these
Lyapunov functions are non-quadratic. Ho'\vever} as
x --4- 0, V+ (x+) becomes quadratic in x+ because
s(O) > o.
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I\1oreover, the following choice of ""Y: 0:+ (x+) and
E+ (x) \vill sufIice :

o < g < Emax = min ).m,in [_p~l (AT (x! q)P
qEQ;xEn

+PA(.-r,q))P-l] (23)

. 1
I < 7rnax == mIn -28( ) [a(x,q) (AT(x,q)P

qEQ; xEO 0 q

+PA(x, q) + EP2) -1 aT(x, q) - 10] (24)

£
c+(x) === 2Amin (S-l(X)P+(X») > 0 (25)

J2(x+)
a(x+) = S-l(X) __- (26)

c
\\~here J(x+) is any smooth function satisfying

AIso~ v..~ith ASSlllnption 2.2 and (z+)Tb+ == zTb, \\re

have

ZTA(x,q) ( J )= zT-ydn1 (x,q)b

~ dn1 ex, q) ( +)Tb+ ( )
')' (}.() z q .

'll q

Therefore, froIH the above discussion and (30), \ve
have

1/+ :s _8- 1 (X)E (z+) T z+ + 2s- 1(x) (z+)'rb+(q)

[ ( ) dnl(X,Q) ()]
. s x U + r Bn(q) Zo + s X d1 . (31)

l)sing (19) and (27), ,ye have

Proof: Using Assumptions 2~1-2.2, \ve obtain

II-yt1(~~Zo + s(x)d1 (x+, q)1I S §(x+)l!z+lI· (32)

Then substituting (32), (26) and the controller (21)
into (31) results in

where .4+(x, q) is defined as

A + (x ) _ [0 a(x, q) ]. ).+ () [ 0 ]
,q - 0 A(x

1
q) , u q:::::: b(q) .

v+= (x+)T [P+A+(x,q) +A+(x,q)Tp +] x+

+2(x+)TP+b+(q)[u + d1 (x+ ~ t~ q)] (28)

Let E(') : R -+ R be any monotonic smooth fune­
tion satisfying the follo\ving properties:

(34)

(35)

with

0, v :s; 0
1, v > 1

t(v)
~('V)

Robust Forwarding
Smooth Control

v+ S -S-l(X)~(z+)Tz+

S -i (p+l/2 X +)T (s-l(x)p+) (p+I/2 x+)

S -E:+ (X+)~T(X4-) (33)

3

In particular, £+ (U) > 0" I-Ience, ",re have RG.A,"S
and I1LES for the closed-loop system (2). \/\7\7

Denote

In t.his section, we sho\v ho,;\r to Inodify the nOll­

Slnooth controller in the previous section so that it
becomes a smooth one~

fl}
F(v) == lo s(w)dw

Note that ]1'(v) is monot.onic.

(29)

(30)

_ -1 ( ) ( +)T [ 2Bo(x, q),
- s x z p-la1~(x, q)

a(x,q)]J-l J +
p-l --<4T (x, q) + A(x, q)P-t Z

+2s- 1 (x)zT A(x, q) ( 6) 20

+2 (z+) T b~ (q)[1L + d1 (x+, q)).

It is easy to verify that

A+(x}q)S+ + S+ A+(x, q)T

[

2a(x,q) ( ci )
::::: 8-

1
(x) r ( l' )

p-1aT(x, q) + .flex, q) 0

a(x, q)P-l + (, O)./1T(x, q) ].

p-l AT(x~ q) + ..I4(x, q)P-1

It follows from (28) and (29) that

The choice of £ and '"'/ in (23) and (24) assure.s that,
for Vq E Q, x E n~

[
2tJo(x, q), a(x, q)p-l J < -?I.

p-1aT (x, q) p-l AT (x, q) + A(x, q)P-l ~ '-

'I~hen, define the ne\v smooth stabilizing controller:

t <T;
t ""2 T

(36)
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Consider the follo~ring control la"\\r

"'\l\le first justify Assumption 2.2. Note that fo(x~ q)~

f(x, q) and b(q)[Ul (x+) + d(.-r-+ 1 q)) are Ioeally
srrlooth~ It follows that

void4 Since d(x+, 1], q) = 0 when (x+, 1]) := 0, the
function d(x+, 'f/, q) can be decomposed into two
smooth terms as follo"\\rs:

(41)
foCx, q)
f(x, q) + b(q)['Ul (x+) + d1 (x+ ,q)J

±o
x

d(x+, 'l}, q) ::::: d1 (x+ J q) + £1+ (x+) 1]; q)r; (39)

with d1 (0, q) == O.

\vhere lLl (x+) is as in (36). Then, the systerIl

is RGAS and R,LES.

\vhere T ~ 0 is the first instant \vhen x E po. (see
Assurnption 2.3), and

T ~ ~1 (F(V (x(t))) - F(V (x(T)))) + K,2 (t - T)
(37)

with a.ny K'i > O. The srnoothness of thiH controller
is due to the definition of ~(-) and T == 0 at switching
tillle t == T ~ The key feature of this new controller is
that it. heeoInes '11.+ \vhen either t or 1l0 (x) becomes
sufficiently large# Combining with the properties of
u+ in Theorem 2.1, this '\I-ill assure that x remains
n for t 2: T and that x+ --+ 0 as t --+ co. T'his result
is summarized in the following theorem;

TheorelTI 3.1 For the up-augrrlented systerrl (2)
satisfying l\ssumptions 2.1-2.3 and d(x+ J 'l7i q) ==
d 1 (x+, q), the smooth controller in (36) will render
the closed-loop system RGAS and RLES.

Proof Follo\vs from Theorem 2.1 and the argument
above. vVV

4 Recursive Applicatiol1
Robust Forwarding

of

"\vhere

The purpose of this section is to sho~v that the ro­
bust nonlinear forvirarding technique studied in the
previous sections can be applied recursively. A sim­
ple motivation for this is the need to deal with the
so-called 'upper-triangular structure:

Hence) the system (41) satisfies Assurnption 2.2.

For Assumptions 2.1 and 2.3, \ve have the follov.ring
tVlO theorenls, respectively:

!n-l (xnd q)
fn(X],···,Xn~q)+ll

(38) TheorerrI 4.1 For the SystCID (41), take So >
s(O) > 0 and let

where .T}, ... ,Xn are sta.te variables, q is an unc.er­
tain parameter vector as before and Jii i == 1,·,·, n
are smooth in x and continuous in q.

[

1 - (/ O)P ]
Pd == _p ( '0 ) ( J ) (43)soP + P 0 C'~I O)P

But the significance of the recursive applicability
goes beyond the upper-triangular structure. As wc
will point out in the next section, a rnuch richer class
of nonlinear systems can be robustly stabilized by
combining robust nonlinear forwarding and ba.ck~

stepping.

1echnically speaking, we need to sho,,,, that the ro­
bust nonlincar forwarding technique used in the pre­
vious sections can pI'Bserve .Aossumptions 2.1-2.3 for
the up-augmented structure4 The results belo\\,r ap­
ply to both smooth and non-smooth controllers.

First, we return to the general case where 1] is not

Then~ there exists /-l+ > 0 such that

Pd A7(x+ ~ q) + (A:t(x+ ~ q))T Pit ::; ~Et I (44)

for an x+ E n+ ==: {x+: (x+)Tpo+x+ < ft+}~

Proof: This fol1o\vs frolll the RLES property of the
system. The details are omitted.

TheoreIn 4.2 Suppose the up-augrnented system
(2) satisfies Assumptions 2.1-2.3. For any given ,8 >
0, the controller (40) v.rith

uz(x+,7]) = - ,8s~x) (1 + 7]2)zTbJ~(x+, 17) (45)
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Then~ examples of ASSC a.re given as follows:

5 Concluding ReITlarks

To explain the ASSC, we consider the follov-ring sys­
tem

Proof !\.1odificd from ~"'hcorcm 2.1~ Details are
omitted.

~ ]
~ ]
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These exarnples are all generated via a sequence of
up- and du~vn-augmentations.It-'or example, the first
example is generated via an up-augrnentation from
the lo"\ver-right 2 x 3 strUl.ture. A precise definition
of the ASSC can be found in \iVei [7] with the excep­
tion that the matrix Ai(x, q) in [7] is independent
of x~

(48)x == I(x, q) + b(q)u

• * == any scalar function of x and q \vith a knO\~ln

bound over n x Q;

• () ;= any scalar function of x and q \vith 1 ?
101 '2:: ft > 0 over n x Q.

The importance of Slllooth cont.rollers is that the
robust Ilonlinear forwarding technique can be com­
bined \vith the hack-stepping technique to produce
a rich class of uncertain nonlinear systems \vhich
can be robustly stabilized. Roughly speaking, the
structure of such a system is mainly character­
ized by its locally linearized version and admits
the so-called anti-symmetric stepwise config'U1'atio'n
(ASSC) \~lhich has heen studied by \\lei in [7] for
uncertain linear systems.

will locally render

~"+(x+):::; -£+~T+(X+) +/3 (46)

where e52 (x+, 71) is a Sll100th function satisfying

82 (x+,1]) 2: max ld2 (x+ ~ 1}, q){. (47)
qEQ

and eT = C:6/2 \vith Et given in Theorem 4_1.

In this paper, \ve have proposed a ne,v design tech~

nique, robust nonHnear forwarding, for robust stabi­
lization of nonlineal' systenls with a.n np-augrnented
structure. This teehnique allows us to deal with
nonlinear systems '\vit.h large parameter uncertain­
ties, can provide either smooth or non-smooth (but
simpler) stabiliziug controllers.

where f{~r., q) is smooth in x and continuous in q,
b(q) is continuous in q~ and q E Q is an uncertain
parameter vector as before~ Define

M(x,q) = [8f1~ q) b(q)] (49)

and adopt the following convention;

[ ~
(I *
o ()
* * ~ ]
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