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Abstract. In this paper~ a robust for\varding con
trol technique is introduced for a class of uncer
tain nonlinear systeIIls admitting the so-called u,p
augTnented structure. This technique gives a recur
sive design procedure v.,~hich yields a smooth con
troller. Further ~ it can be combined with the well
known baek-stepping technique to solve the robust
stabilization problerrl for a large class of uncertain
nonlincar systems. In contrast to previous methods
on llonlinear forwarding, our technique is able to
handle systems with large pa.rameter uncertainties.
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:eo and x if (2) is a subsystem of a larger onc, or
void otherwise. Wc will denote x+ == [;£0, xTJT and
d(x+, r/, q) = d(x 1 Xo, 1/, q).

The stabilization problcrIl for the up-augrnented
structurc has been heavily studied recently for the
case "there the nonlinea.r system does not involve
uncertain parameters; sec e.g., [6], [1]' [3] and [4],
Ho\vevcr, these methods, called for\varding or feed
forv....arding, .all involve some kind of cancellation
of nonlinearities. Subsequently, they do not a.pply
to systems with uncertain parameters, especially of
large sizes. This is in great contrast to robust sta
bilization of linear systems. In fa.ct, a. seminal pa
per of Wei [7] in 1990 proposed a method capable
to deal '~lith the up-auglIlented structure involving
large uncertain parameters.

1 Introduction

where x(t) E Rn is the state, u(t) E R is the control,
q E R l is an uncertain parameter vector contained
in a cornpact set 0, b(q) i~ continuous in q, f(x, q)
is continuous in q and smooth in x \\~ith f (0, q) == O.

In t.his paper, we consider the robust stabiliza
tion problem for a class of uncertain nonlinear sys
tems adnlitting the so~callcd up-augmented struc
tU1'e~ This structure starts with a base systern of
the following farni:

x(t) == f(X(t)1 q) + b(q)u(t)

~.\n up-augmented system is given by

(1)

In a recent paper by the authors [5L \\rei's robust
stabilization technique was generalized to the non
linear case. Our solution to the robust stabiliza
tion problem involves a two-step controller. In the
first step, a controller is designed to drive the base
systeln to a local region~ Suhsequently, a second
controller is used to maintain the state of the base
system small while driving the augrnented state to
zero. This robust for\varding technique is conceptu
ally different from the standard forvlarding ones as
no nonlinear cancellation is involved. "Then special
i~cd to the linear ease, thi~ technique recovers the
result of "'lei [7]. Further, a recursive application of
this technique leads to a solution to robust stabiliza
tion of systenls \vith the so-called upper-triangular'
,~t1~ct'u1'e; ~ee [5].

where Xo E R is a nP,\V state variable, t represents
time, io (x, q) is continuous in q and smooth in x
with 10(0, q) == 0, d(x, xo, T}, q) is continuous in q
and srnooth in (x, Xo, 1]) v.rith d(O~ 0, 0, q) == O. The
pararneter 'T! represent.s state variables other than

Xo
:7:

fo(x~ q)
f (x, q) + b(q) [v, + d(x, .7:0,.1], q)]

(2) However, our robust forv.rarding technique in [3J
has a \veakness \vhich serves as the motivation for
this paper. That is, the t\\~o-step controller is non
sluooth. This iUlplies that it is difficult to cornbine
it \~lith the well-known back-stepping technique for
handling a larger class of uncertain nonlinear sys
tems.
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The back-stepping technique deals with the so
called llouJ1}.-augmenterl structure. For the same
base system (1), a down-augmented system is of the
form:

v.rhere X n +l E R. is a ne\v sta.te variable, 071+1 (q)
is a continuous function bounded a\vay from zero,
and d(·) is the same as before. It is '¥cll-kno,vn
nO\-\T that this structure can b~ easily handled using
the standard back-stepping technique; see, e.g., [2].
.A.. striking fea.ture of the back-stepping technique is
that it is capable to treat uncertain paranleters of
large sizes. A key assulnption in the back-stepping
technique is that the base system has a smooth sta
bilizer, say un{x). This is because a state tra.llsfor
mation

..A.SSUMPTIONS

ASSuIllption 2.1 (Local Exponential Stflbilizubil
ity) : There exists a srnooth controller Un (x) for
the base ~ystem (1) such that, \vith

(5)u(t) = Un(x(t)),

controller later. As mentioned in the previous sec
tion, the key mechanism involved is a tVolo-step con
trol law. In the first step, a nonlinear controller is
applied to the base syst.ern so that its state x con
verges to a usmall'= bounded set n while Xo is not
regulated. In the second step, a nonlincar controller
is designed to maintain x within n vlhile driving
the augmented state x+ to zero. Overall, this two
step control law achieves robust global asymptotic
stabilization (RG~t\.S) and robust local exponential
~tabilization (R,LES).

(3)
f (x, q) + b(q)Xn +l
On+l (q) [u + d(x, xo, 17, q)]

z == x; Zn+l == Xn+l - 'l.Ln(x) (4) the state of the system (1) is RLES.

ASSllDlption 2.2 (Local Smonthnes." Propertie.s):
For the same local region n and local controller
uo(x) as above, any x E nand q E Q, there holds

is used and the differentiahility of the ne\\~ state is
required. It is worth to note that the back-stepping
technique yields a smooth stabilizer, provided that
the do\vn-aug-mented systern is srnooth.

The need for a Slllooth stabilizer for the up
auglnented struetllre is I10\V clea.r: Such a stabi
lizer would allow the base systen1 to be an up
augmented structure. That is, robust stabilization
can be achieved for a rllueh larger class of UIlcer
t.ain nonlinear systems generated using recursive
up-augmentations and do,vn-augmentations. This
structure r when specialized to the linear case, cor
responds to the so-called anti-sY"lnrnetric stcpuJise
configuration, coined by \\7e i (7).

fo(x, q) =: a(x, q)x;
f (x, q) + b(q) 'Uo (x) ~ ..4 (x, (1) x

b(q) = On(q) ( ~ ) = 8n(q)b

where

A (x ~ q) == [ dO ( )
nl X, q

fl(X, '1) = [BD (x, q) *]

(6)

(7)

'Vith the above introduction, tJle objective of this
paper is simply stated: '~le aim to propose a robust
forwarding technique that Vo,i~ould yield a smooth sta
bilizing controller for the up-auglnented systeIYl in
(2).

"le point out that all the results allo\v the systeln
to be t.ime-varying. But for notational convenience,
the time-dependence is suppressed.

~vith * representing an arbitrary term, 1 ~

(}o(x, q) 2:: ~ > 0; 1 ~ Bn(x, q) > ~n > 0, where
!la and fln are constants. 0

ReIIIark 2.1 \Vith the loca.l smoothness assump
tion, the RLES property in _.\.ssumption 2.1 can be
modified to the follo"ving; there exists tl > 0, c > 0
and matrix P == pT > 0 Huch that

PA(x,q) + AT(x,q)P:s -E.l, 'Ix E o.,q E Q. (8)

2 Robust Forwarding
N on-slllooth Control

with \vhere

(9)

In this section wc revisit the robust for~vardiI1gtech
nique in [5]. This technique does not yield a srnooth
controller) but will serves as the basis for a smooth

ASSulllption 2 .. 3 (Global Properties): Consider the
foll(n~-ing system derived from (2):

x = f(x, q) + b(q)['ll + d(x-L 1 T}, q)] (10)
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Given any smooth function TJ(t) a.nd 0 < (J < 1,
there exists a smooth controller Ud(X+ ,1]) such that~

with

the state of the system (2) will he driven into p!2 in
a finite time T, where n is given in (9), and pO ~

{px: x E f!}.

u(t) == Ud(X+(t), T/(t)), (11)

\Ve also note that the function .(OV(x) S(7.U)d1iJ resern
hIes a ;'potential barrier)' and the Lyapunov func
tion (12) is valid only for x E ~!, i.e.,

v"+(x+) ~ 00 as xT Px ~ jJ. (15)

This implies that future x E n as long as that
l,T+(XT ) remains bounded.

ReIllark 2.2 Assumption 2.3 appears to be strong.
HO'~lever, we note that it is automatically satisfied
for first order systerns beeause a ~'high-gain17 u(t)
can be designed to ~'overcomp," both f (;£, q) aIHl
d( x+ , 1], q), forcing the state to converge to po.. In
Sect.ion 4, \V€ ",~ill sh01-V that this property can be
preserved under robust forwarding design. 0

LYAPUNOV FUNCTION AND CONTROLLER DESIGN

For notational sitnplicity~ ,ve will denote s(lf (x)) by
s(a::). Defining

[

1 - (-t O)P ]

p+ === -p ( '"1
0

) ( 'Y )- s(x)P + P 0 (, O)P

(16)
v.rhich is positive definite for all x E n. The inverse
of P+ is given by

To simplify the ana.lysis, '\ve also assume in this sec
tion that 1] is void, i.e., d(x+,1J,q) ::::= d1 (x+,q).
Since d 1 (x+, q) is sInooth in x+ and d 1 (0, q) == 0,
",Te can re"vrite

(17)
(r 0)] .
p-l

.A.lso define a (nonlinear) state transformation

(xv ~ (, O)PX)2rv~(x)

+ la s(w)dw > 0, Vx E 0(12)

Now we pay attention to controller design for (2).
First, '~le ntilize Assurnption 2.3 and apply (11) to
drive x(t) into pfl in a finite time T. In this step,
xo(t) is not regulated. Once x(t) E po" we sv.titeh t.o
a laeal Inude v/here a different controller u+{x+, 1])
will be applied. This controller will maintain xCt)
in n while driving x+ (t) to zero. The design of
u+(x+,7]) relies on a local Lyapunov function for
(2)

Differentiating \,7+ (x+(t)) along the trajectory of
(2)~ ~-e have

l>'+ 2[xo - (1' O)Px][xo - er O)Px]

+2s(V(x))xT P±

::::: 2(x+)Tp+±+ (20)

for some D+ (x+ ~ q) smooth in x+ and continuous
in q.

Theorerrl 2.1 For the up-augmented system (2)
satisfying .A.ssumptions 2.1-2.3 and d(x+, rI, q) ~

d 1 (x+, q), there exist .-./ < 0 and o(x+) > 0 such
that the nonlinear controller

will render

for some continuous c+(x) > 0, x E O.

(13)

(14)lim l v

s(1.o)(Iw ---+ 00.
V---+j.l 0

and

Vtihere J < 0 is a constant t.o be specified and s ( .)
is a locally smooth function Hatisfying: sew) > 0
\/w E [0, ,u);

l V

s(w)dw < 00, \Iv E (0, /L);

Remark 2.3 Note that (12) includes a quite large
set of the Lyapunov functions. _tt particula.r choice
of s(·) is given by [5];

s(w) == _JJ~.
f.j, - 1J}

:ror linear systems we can t.ake J1, :::: 00 and s('UJ) a
constant, which yields a quadratic Lyapunov func
tion. It can be verified that this is the same L,ya.
punov function used in \Vei [7). In generally, these
Lyapunov functions are non-quadratic. Ho'\vever} as
x --4- 0, V+ (x+) becomes quadratic in x+ because
s(O) > o.
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I\1oreover, the following choice of ""Y: 0:+ (x+) and
E+ (x) \vill sufIice :

o < g < Emax = min ).m,in [_p~l (AT (x! q)P
qEQ;xEn

+PA(.-r,q))P-l] (23)

. 1
I < 7rnax == mIn -28( ) [a(x,q) (AT(x,q)P

qEQ; xEO 0 q

+PA(x, q) + EP2) -1 aT(x, q) - 10] (24)

£
c+(x) === 2Amin (S-l(X)P+(X») > 0 (25)

J2(x+)
a(x+) = S-l(X) __- (26)

c
\\~here J(x+) is any smooth function satisfying

AIso~ v..~ith ASSlllnption 2.2 and (z+)Tb+ == zTb, \\re

have

ZTA(x,q) ( J )= zT-ydn1 (x,q)b

~ dn1 ex, q) ( +)Tb+ ( )
')' (}.() z q .

'll q

Therefore, froIH the above discussion and (30), \ve
have

1/+ :s _8- 1 (X)E (z+) T z+ + 2s- 1(x) (z+)'rb+(q)

[ ( ) dnl(X,Q) ()]
. s x U + r Bn(q) Zo + s X d1 . (31)

l)sing (19) and (27), ,ye have

Proof: Using Assumptions 2~1-2.2, \ve obtain

II-yt1(~~Zo + s(x)d1 (x+, q)1I S §(x+)l!z+lI· (32)

Then substituting (32), (26) and the controller (21)
into (31) results in

where .4+(x, q) is defined as

A + (x ) _ [0 a(x, q) ]. ).+ () [ 0 ]
,q - 0 A(x

1
q) , u q:::::: b(q) .

v+= (x+)T [P+A+(x,q) +A+(x,q)Tp +] x+

+2(x+)TP+b+(q)[u + d1 (x+ ~ t~ q)] (28)

Let E(') : R -+ R be any monotonic smooth fune
tion satisfying the follo\ving properties:

(34)

(35)

with

0, v :s; 0
1, v > 1

t(v)
~('V)

Robust Forwarding
Smooth Control

v+ S -S-l(X)~(z+)Tz+

S -i (p+l/2 X +)T (s-l(x)p+) (p+I/2 x+)

S -E:+ (X+)~T(X4-) (33)

3

In particular, £+ (U) > 0" I-Ience, ",re have RG.A,"S
and I1LES for the closed-loop system (2). \/\7\7

Denote

In t.his section, we sho\v ho,;\r to Inodify the nOll

Slnooth controller in the previous section so that it
becomes a smooth one~

fl}
F(v) == lo s(w)dw

Note that ]1'(v) is monot.onic.

(29)

(30)

_ -1 ( ) ( +)T [ 2Bo(x, q),
- s x z p-la1~(x, q)

a(x,q)]J-l J +
p-l --<4T (x, q) + A(x, q)P-t Z

+2s- 1 (x)zT A(x, q) ( 6) 20

+2 (z+) T b~ (q)[1L + d1 (x+, q)).

It is easy to verify that

A+(x}q)S+ + S+ A+(x, q)T

[

2a(x,q) ( ci )
::::: 8-

1
(x) r ( l' )

p-1aT(x, q) + .flex, q) 0

a(x, q)P-l + (, O)./1T(x, q) ].

p-l AT(x~ q) + ..I4(x, q)P-1

It follows from (28) and (29) that

The choice of £ and '"'/ in (23) and (24) assure.s that,
for Vq E Q, x E n~

[
2tJo(x, q), a(x, q)p-l J < -?I.

p-1aT (x, q) p-l AT (x, q) + A(x, q)P-l ~ '-

'I~hen, define the ne\v smooth stabilizing controller:

t <T;
t ""2 T

(36)
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Consider the follo~ring control la"\\r

"'\l\le first justify Assumption 2.2. Note that fo(x~ q)~

f(x, q) and b(q)[Ul (x+) + d(.-r-+ 1 q)) are Ioeally
srrlooth~ It follows that

void4 Since d(x+, 1], q) = 0 when (x+, 1]) := 0, the
function d(x+, 'f/, q) can be decomposed into two
smooth terms as follo"\\rs:

(41)
foCx, q)
f(x, q) + b(q)['Ul (x+) + d1 (x+ ,q)J

±o
x

d(x+, 'l}, q) ::::: d1 (x+ J q) + £1+ (x+) 1]; q)r; (39)

with d1 (0, q) == O.

\vhere lLl (x+) is as in (36). Then, the systerIl

is RGAS and R,LES.

\vhere T ~ 0 is the first instant \vhen x E po. (see
Assurnption 2.3), and

T ~ ~1 (F(V (x(t))) - F(V (x(T)))) + K,2 (t - T)
(37)

with a.ny K'i > O. The srnoothness of thiH controller
is due to the definition of ~(-) and T == 0 at switching
tillle t == T ~ The key feature of this new controller is
that it. heeoInes '11.+ \vhen either t or 1l0 (x) becomes
sufficiently large# Combining with the properties of
u+ in Theorem 2.1, this '\I-ill assure that x remains
n for t 2: T and that x+ --+ 0 as t --+ co. T'his result
is summarized in the following theorem;

TheorelTI 3.1 For the up-augrrlented systerrl (2)
satisfying l\ssumptions 2.1-2.3 and d(x+ J 'l7i q) ==
d 1 (x+, q), the smooth controller in (36) will render
the closed-loop system RGAS and RLES.

Proof Follo\vs from Theorem 2.1 and the argument
above. vVV

4 Recursive Applicatiol1
Robust Forwarding

of

"\vhere

The purpose of this section is to sho~v that the ro
bust nonlinear forvirarding technique studied in the
previous sections can be applied recursively. A sim
ple motivation for this is the need to deal with the
so-called 'upper-triangular structure:

Hence) the system (41) satisfies Assurnption 2.2.

For Assumptions 2.1 and 2.3, \ve have the follov.ring
tVlO theorenls, respectively:

!n-l (xnd q)
fn(X],···,Xn~q)+ll

(38) TheorerrI 4.1 For the SystCID (41), take So >
s(O) > 0 and let

where .T}, ... ,Xn are sta.te variables, q is an unc.er
tain parameter vector as before and Jii i == 1,·,·, n
are smooth in x and continuous in q.

[

1 - (/ O)P ]
Pd == _p ( '0 ) ( J ) (43)soP + P 0 C'~I O)P

But the significance of the recursive applicability
goes beyond the upper-triangular structure. As wc
will point out in the next section, a rnuch richer class
of nonlinear systems can be robustly stabilized by
combining robust nonlinear forwarding and ba.ck~

stepping.

1echnically speaking, we need to sho,,,, that the ro
bust nonlincar forwarding technique used in the pre
vious sections can pI'Bserve .Aossumptions 2.1-2.3 for
the up-augmented structure4 The results belo\\,r ap
ply to both smooth and non-smooth controllers.

First, we return to the general case where 1] is not

Then~ there exists /-l+ > 0 such that

Pd A7(x+ ~ q) + (A:t(x+ ~ q))T Pit ::; ~Et I (44)

for an x+ E n+ ==: {x+: (x+)Tpo+x+ < ft+}~

Proof: This fol1o\vs frolll the RLES property of the
system. The details are omitted.

TheoreIn 4.2 Suppose the up-augrnented system
(2) satisfies Assumptions 2.1-2.3. For any given ,8 >
0, the controller (40) v.rith

uz(x+,7]) = - ,8s~x) (1 + 7]2)zTbJ~(x+, 17) (45)
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Then~ examples of ASSC a.re given as follows:

5 Concluding ReITlarks

To explain the ASSC, we consider the follov-ring sys
tem

Proof !\.1odificd from ~"'hcorcm 2.1~ Details are
omitted.

~ ]
~ ]
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These exarnples are all generated via a sequence of
up- and du~vn-augmentations.It-'or example, the first
example is generated via an up-augrnentation from
the lo"\ver-right 2 x 3 strUl.ture. A precise definition
of the ASSC can be found in \iVei [7] with the excep
tion that the matrix Ai(x, q) in [7] is independent
of x~

(48)x == I(x, q) + b(q)u

• * == any scalar function of x and q \vith a knO\~ln

bound over n x Q;

• () ;= any scalar function of x and q \vith 1 ?
101 '2:: ft > 0 over n x Q.

The importance of Slllooth cont.rollers is that the
robust Ilonlinear forwarding technique can be com
bined \vith the hack-stepping technique to produce
a rich class of uncertain nonlinear systems \vhich
can be robustly stabilized. Roughly speaking, the
structure of such a system is mainly character
ized by its locally linearized version and admits
the so-called anti-symmetric stepwise config'U1'atio'n
(ASSC) \~lhich has heen studied by \\lei in [7] for
uncertain linear systems.

will locally render

~"+(x+):::; -£+~T+(X+) +/3 (46)

where e52 (x+, 71) is a Sll100th function satisfying

82 (x+,1]) 2: max ld2 (x+ ~ 1}, q){. (47)
qEQ

and eT = C:6/2 \vith Et given in Theorem 4_1.

In this paper, \ve have proposed a ne,v design tech~

nique, robust nonHnear forwarding, for robust stabi
lization of nonlineal' systenls with a.n np-augrnented
structure. This teehnique allows us to deal with
nonlinear systems '\vit.h large parameter uncertain
ties, can provide either smooth or non-smooth (but
simpler) stabiliziug controllers.

where f{~r., q) is smooth in x and continuous in q,
b(q) is continuous in q~ and q E Q is an uncertain
parameter vector as before~ Define

M(x,q) = [8f1~ q) b(q)] (49)

and adopt the following convention;

[ ~
(I *
o ()
* * ~ ]
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