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Abstract

In this paper, we consider the problem of state estimation for linear discrete-time dynamic systems using quantized measure-
ments. This problem arises when state estimation needs to be done using information transmitted over a digital communication
channel. We investigate how to design the quantizer and the estimator jointly. We consider the use of a logarithmic quantizer,
which is motivated by the fact that the resulting quantization error acts as a multiplicative noise, an important feature in
many applications. Both static and dynamic quantization schemes are studied. The results in the paper allow us to understand
the tradeoff between performance degradation due to quantization and quantization density (in the infinite-level quantization
case) or number of quantization levels (in the finite-level quantization case).
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1 Introduction

Control and estimation using quantized information
can be traced back to early days of control research. In
particular, research into the so-called quantized linear
quadratic Gaussian (LQG) control problem started in
1960’s; see, e.g., Lewis & Tou (1965) and Tou (1963).
More broad attempts on quantized feedback control can
be traced back further to the works of Kalman (1956)
and Widrow (1961) on the effects of quantization errors
to sampled-data feedback systems. The overwhelming
success of networked control systems, especially for
industrial control and automation, has brought a resur-
gent interest in quantized feedback control. Examples
of works include Wong & Brockett (1997), Brockett &
Liberzon (2000), Baillieul (2001), Elia & Mitter (2001),
Nair & Evans (2000), Tatikonda & Mitter (2004), and
Fu & Xie (2005, 2006). Recent attempts on the quan-
tized LQG problem include Tatikonda, Sahai & Mitter
(2004), Matveev & Savkin (2004), and Fu (2008).

⋆ A preliminary version of this paper was presented at the
17th IFAC World Congress, held in Seoul, Korea, July 2008.
Corresponding author: Minyue Fu. Tel. +61-249217730. Fax
+61-249216993. This work was supported in part by ARC
Centre for Complex Dynamic Systems and Control, Aus-
tralia, and CNPq grant 303.440/2008-2/PQ, Brazil.

Email addresses: minyue.fu@newcastle.edu.au (Minyue
Fu), csouza@lncc.br (Carlos E. de Souza).

Similar to the classical control theory where state esti-
mation plays an essential role, estimation based on quan-
tized information is also critical to quantized feedback
control. This has been well recognized in most of the
references above. In addition, quantized estimation has
a broad range of applications beyond feedback control.
Examples include sensor network-based estimation and
tracking (Epstein et. al., 2008; Tiwari et. al., 2005) and
consensus networks (Carli et al., 2007, 2008). In addi-
tion, quantized estimation is a part of the solution to a
more broad problem of network-based estimation where
transmitted information suffers also from transmission
delays and packet dropouts (Xiao, Xie & Fu, 2009; Ep-
stein et. al., 2008; Tiwari et. al., 2005).

Traditional quantizers employ linear (or uniform) quan-
tization. While they preserve information well when the
input signal falls into the dynamic range of the quan-
tizer, the number of quantization levels required for a
given quantization step-size increases linearly as the dy-
namic range increases. This paper considers logarithmic
quantizers where the quantization step-size grows ex-
ponentially as the input increases. The use of logarith-
mic quantizers is motivated by the fact they are shown
to outperform linear quantizers in control problems, as
demonstrated by Elia & Mitter (2001), and Fu & Xie
(2005, 2006). When used for state estimation, logarith-
mic quantization leads to a multiplicative noise, rather
than additive noise as in the case of linear quantiza-

Preprint submitted to Automatica 6 June 2009



tion. This allows us to have accurate estimation when
the state is small and less accurate estimation when the
state is large. That is, logarithmic quantization guaran-
tees the relative error due to quantization to be roughly
constant. This is a very important feature in many ap-
plications. Imagine the situation of a pilot looking for a
runway: it is not necessary to have very accurate posi-
tioning of the runway when the plane is far away, but
the positioning must be accurate when the runway gets
close. Another major advantage of logarithmic quanti-
zation is that many physical measurements inherently
carry multiplicative noises (i.e., the sensors are designed
with a specified relative error). Optical sensors, infra-
red sensors and hall-effect sensors are among sensing de-
vices with natural multiplicative noises. When a mea-
sured signal as such is further quantized by a logarithmic
quantizer, the overall noise is still multiplicative.

In this paper, we study how to design a state estimator
for a single-output linear discrete-time system when the
measurements are subject to logarithmic quantization.
The problem setting is the same as in the standard
Kalman filtering problem, except that now we need to
design the state estimator and quantizer jointly. Both
infinite-level and finite-level quantizers are considered.
For an infinite-level quantizer with a given quantization
density, we propose a design method which can deliver
good estimation performance and at the same time
guarantees the stability of the state estimation error
dynamics. For finite-level quantization, design methods
are offered for both static quantizer and dynamic quan-
tizer. The first case uses a truncated infinite-level quan-
tizer, suitable for stable systems. The latter involves
a dynamic scaling parameter which acts as a zoom-
in/zoom-out function (similar to Brockett & Liberzon
(2000)), allowing us to deal with unstable systems.
We also demonstrate via examples how the proposed
methods work. Simulation results suggest that near op-
timal performance can be achieved with a relatively low
bit-rate quantizer.

2 Problem Formulation

Consider the following linear system:
{

x(k + 1) = Ax(k) + Bw(k), x(0) = x0

y(k) = Cx(k) + v(k)
(1)

where x(k) ∈ R
n is the state, w(k) ∈ R

m is the process
noise, y(k) ∈ R is the measurement, v(k) ∈ R is the mea-
surement noise, and A, B and C are known matrices of
appropriate dimensions. It is assumed that x0 ∈ R

n is
a random variable with mean x̄0 and covariance matrix
Σ0, and w(k) and v(k) are uncorrelated widely station-
ary white noises with zero mean and covariance matri-
ces Σw and Σv, respectively, and they are assumed to
be uncorrelated with x0 for all integers k ≥ 0. It is fur-
ther assumed that x(0) − x0, w(k) and v(k) have even
probability density functions.

-w(k)
v(k)

y(k)
System

?
+- i

-Quantizer - Channel -Estimator -x̂(k)

Fig. 1. Quantized state estimation.

Our quantized estimator consists of three parts: a quan-
tizer, a digital communication channel and an estimator,
as shown in Fig. 1. The channel is assumed to be free of
transmission errors and time delay. Instead of quantizing
the measured signal directly, we quantize the prediction
error of the estimator. The estimator is chosen to be
{

x̂(k+1) = Ax̂(k) + LQ(y(k)−ŷ(k)), x̂(0) = x̄0

ŷ(k) = Cx̂(k)
(2)

where x̂(k) ∈ R
n is the estimate of x(k), ŷ(k) ∈ R is the

estimate of y(k) based on x̂(k), Q(·) is the quantizer, and
L is the estimation gain. Define the prediction error as

ε(k) = y(k) − ŷ(k) (3)

and denote the quantization error by

εq(k) = ε(k) − Q(ε(k)). (4)

Since the state estimate is constructed only using the
quantized prediction error and communication is as-
sumed to be noiseless, both sides of the channel can
construct the same estimate using the quantized predic-
tion error. In particular, the construction of x̂(k) on the
transmitter side does not require the estimated state to
be transmitted back from the receiver side. Quantizing
ε(k) is known to be better than quantizing y(k) directly;
see Tatikonda, Sahai & Mitter (2004) and Fu (2008).

We consider two types of quantizers, static ones and dy-
namic ones. A static quantizer takes one input sample
and produces one output sample without referring back
to the previous input samples. This is what is explicitly
assumed in (2) and (4). A dynamic quantizer is more
complex, allowing quantization to be done using the cur-
rent and all past samples of the input.

Our objective of quantized state estimation is similar to
that of stationary Kalman filter, namely to minimize the
asymptotic variance of the estimation error defined by

lim
k→∞

E{(x(k) − x̂(k))T (x(k) − x̂(k))} (5)

subject to certain constraints on the structure and in-
formation flow of the quantizer to be specified in later
sections, where in the above E{·} denotes expectation.
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3 State Estimation with Static Logarithmic
Quantization

In this section, we employ a static logarithmic quantizer
which is depicted in Figure 2 and described by

Q(ε) =



























ρiµ0, if 1
1+δ

ρiµ0 < ε ≤ 1
1−δ

ρiµ0,

i = 0, ±1, ±2, . . . ,

0, if ε = 0,

−Q(−ε), if ε < 0

(6)

where ρ ∈ (0, 1) represents the quantization density and

δ = (1 − ρ)/(1 + ρ). (7)

A small ρ (or large δ) implies coarse quantization, and
a large ρ (or small δ) means dense quantization.

-
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Fig. 2. Logarithmic quantizer.

3.1 Basic Properties

Defining the estimation error

e(k) := x(k) − x̂(k)

the estimation error dynamics can be described by the
following state-space model:

{

e(k + 1) = Ae(k) + Bw(k) − LQ(ε(k))

ε(k) = Ce(k) + v(k)
(8)

Our task is to choose ρ and L so that the asymptotic
estimation error variance (5) is minimized.

As observed in Fu & Xie (2005), a logarithmic quantizer
is easily bounded by a sector bound, namely

|Q(ε) − ε | ≤ δ| ε | . (9)

Using the above, we may rewrite (8) as

e(k + 1) = Ae(k) −Lε(k) + Bw(k) + L∆(k)ε(k) (10)

where

∆(k) =

{

εq(k)/ε(k), if ε(k) 6= 0,

0, otherwise
(11)

with the property that |∆(k)| ≤ δ for all k.

Given the sector bound for ∆(k) as above, we consider
an auxiliary uncertain system defined by

z(k + 1) = (A − LC)z(k) − Lv(k) + Bw(k)

+ L∆k(Cz(k) + v(k)), |∆k| ≤ δ. (12)

Note that (12) differs from (10) in the sense that ∆k

is an arbitrary function, whereas ∆(k) in (10) is due to
the quantizer Q(·). It turns out that ∆(k) in (10) can be
viewed as a special instance of ∆k.

We first present some key properties for the auxiliary
system (12).

Theorem 3.1 The estimation error dynamics (10) has
the following properties:

(a) The estimation error e(k), the prediction error ε(k),
and the quantization error εq(k) have zero-mean and
an even probability density function for all k ≥ 0;

(b) The estimation error dynamics (8) is quadratically
stable if and only if the auxiliary system (12) is
quadratically stable, i.e., there exists a matrix X =
XT > 0 such that

eT Xe > (Ae − LQ(Ce))T X(Ae − LQ(Ce)) (13)

for all nonzero e ∈ R
n if and only if there exists a

matrix P =PT > 0 such that

P > (A−L(1−∆)C)T P (A−L(1−∆)C), ∀ |∆| ≤ δ

(14)

(c) If the auxiliary system (12) is quadratically stable,
then the covariance matrix of e(k) is bounded and
asymptotically invariant;

(d) The minimum quantization density ρinf(L) for the
auxiliary system (12) to be quadratically stable for
a given L is given by

ρinf(L) =
1 − δsup(L)

1 + δsup(L)
(15)

where

δsup(L) = 1/‖C(zI − A + LC)−1L‖∞. (16)

Proof . The statement (a) can be easily shown by induc-
tion. Since x̂(0) = x̄0, then e(0) is zero-mean with an
even probability density. Note that Q(·) is an odd func-
tion. Suppose e(k) is so too for some k. Then, it follows
from (8) that e(k + 1) is also zero-mean with an even
probability density. Hence, by induction, e(k) is zero-
mean with an even probability density for all k ≥ 0. In
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addition, in view of (4) and since ε(k) = Ce(k)+v(k), it
follows that ε(k) and εq(k) have zero-mean and an even
probability density function for all k ≥ 0.

The statement (b) is proved in Fu & Xie (2005). To show
the statement (c), we assume that (14) holds for some
matrix P =PT > 0. It follows that

(1−2η)P >(A−L(1−∆)C)TP (A−L(1−∆)C), ∀ |∆|≤δ

for some sufficiently small scalar η > 0. Next, define
the Lyapunov function V (e) = eT Pe for system (10).

Considering (10) and denoting ∆̃(k)=1−∆(k), we get

V (e(k+1)) = [ Ae(k) − L∆̃(k)ε(k) + Bw(k) ]T P

· [ Ae(k) − L∆̃(k)ε(k) + Bw(k) ]

= eT (k)[A − L∆̃(k)C ]T P [A − L∆̃(k)C ]e(k)

+ [−L∆̃(k)v(k) + Bw(k) ]T P [−L∆̃(k)v(k) + Bw(k) ]

− 2eT(k)[A − L∆̃(k)C ]T P [−L∆̃(k)v(k) + Bw(k) ]

≤ (1+τ)eT (k)[A − L∆̃(k)C ]T P [A − L∆̃(k)C ]e(k)

+ (1+τ−1)[−L∆̃(k)v(k) + Bw(k) ]T P

· [−L∆̃(k)v(k) + Bw(k) ]

for any scalar τ > 0. To obtain the inequality above,
we have used the well-known triangular inequality that
2aT b ≤ τaT a + τ−1bT b for any column vectors a and b
of the same dimension. In particular, we may choose τ
such that (1− 2η)(1 + τ) = 1− η. Then, it follows that

V (e(k + 1) ≤ (1−η)V (e(k)) + m1v
2(k) + m2w

T (k)w(k)

for some sufficiently large m1 and m2 independent of k.
Applying the result above recursively, we obtain

V (e(k)) ≤ (1 − η)kV (e(0))

+

k
∑

i=1

(1 − η)k−i(m1v
2(i) + m2w

T (i)w(i))

which implies

Tr(e(k)eT (k)) ≤ (1/λmin(P ))
{

(1 − η)kV (e(0))

+

k
∑

i=1

(1 − η)k−i(m1v
2(i) + m2w

T (i)w(i))
}

where Tr{·} denotes matrix trace and λmin(P ) is
the minimum eigenvalue of P . Defining Ree(k) :=
E{e(k)eT (k)}, the latter inequality leads to

Tr(Ree(k)) ≤ (1/λmin(P ))
[

(1 − η)kE{V (e(0))}

+
(

m1Σv + m2Tr(Σw)
)

k
∑

i=1

(1 − η)k−i
]

≤ m̃0Tr(Ree(0)) + m̃1Σv + m̃2Tr(Σw)

for some constants m̃0, m̃1 and m̃2. Hence, Ree(k) is
bounded, which implies the boundedness of the covari-
ance matrix of e(k).

The proof of the asymptotic invariance of the covariance
matrix of e(k) is obtained by noting that

E{V (e(k + 1) |x(k)} − V (e(k))→ −∞ as ‖e(k)‖→∞
and using arguments similar to those in Kushner (1971,
Chapter 8) related to the probability measure of e(k).

The statement (d) follows from the known fact in robust
stability analysis that (12) is quadratically stable if and
only if ‖C(zI−A−LC)−1L‖< δ−1; see Packard & Doyle
(1990). Therefore, the largest δ to maintain quadratic
stability is given by (16) and the minimum quantization
density ρinf(L) is related to δsup(L) by (15). ∇∇∇

3.2 Asymptotic Covariance Matrix of Estimation Error

We now proceed to quantify the asymptotic covariance
matrix of e(k). Denote by E(k) the covariance matrix of
e(k) and its asymptotic version by E = limk→∞ E(k).
We assume that ρ > ρinf(L) so that E(k) is bounded
(by Theorem 3.1 (c)). In the sequel it is assumed that
x0 − x̄0, w(k) and v(k) are Gaussian distributed. Note
that in view of Theorem 3.1 (a) the latter assumption
implies that the estimation error, the prediction error
and the quantization error have zero mean and an even
probability density function. Moreover, we will denote
by σ2

ε and σ2
q the asymptotic variances of ε(k) and εq(k),

respectively, and define

σ̃2
q = σ2

q/σ2
ε (17)

to be the normalized quantization error variance.

The computation of E(k) is complicated by the fact that
Q(·) is a nonlinear function. But when the number of
quantization levels is not too small, the following condi-
tions hold very well in numerical simulations.

C1. The quantization error εq(k) is uncorrelated with
ẽ(k + 1) := Ae(k) − Lε(k) + Bw(k) (note that the
latter is the predicted state estimation error without
quantization error);

C2. Asymptotically, the prediction error ε(k) is approx-
imately Gaussian distributed with zero mean and vari-
ance σε.

Remark 3.1 Some remarks on the above conditions are
in order. We first note the well known fact (Anderson
& Moore, 1979) that, if there had been no quantiza-
tion before time k, then ẽ(k + 1) would be uncorrelated
with ε(k), thus independent of ε(k) because both would
be Gaussian distributed. Hence, if ε(k) were quantized,
its quantization error εq(k) would be uncorrelated with
ẽ(k + 1). Now because quantization happened before
time k, ẽ(k + 1) and ε(k) (thus εq(k)) are correlated in
general. However, the correlation is typically weak. In
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particular, if the quantization density is relatively high,
the effect of past quantization errors should be negligi-
ble and it is thus fair to assume ẽ(k+1) and εq(k) to be
uncorrelated. For the same reason, the Gaussian distri-
bution assumption is also approximately valid when the
quantization density is relatively high. 2

Under Condition C2, we may relate the variance of the
quantization error εq(k) to that of the prediction error
ε(k). We observe that εq(k) is influenced by the choice
of µ0 in (6). However, two simple properties are easily
observed from (6):

P1. The quantization error εq(k) is periodic in µ0 in a
logarithmic scale, i.e., if µ0 is multiplied by ρj for any
integer j, εq(k) remains the same;

P2. A logarithmic quantizer is linearly scalable in the
sense that if ε(k) is multiplied by ρj for any integer j,
εq(k) is multiplied by the same factor.

In fact, the influence of µ0 to εq(k) is negligible for small
values of δ. This means that σ2

q is approximately pro-

portional to σ2
ε for a given δ. That is, for a given δ, the

value of σ̃2
q in (17) is approximately constant. For a Gaus-

sian distributed prediction error, the assertion above is
demonstrated in Fig. 3 which is produced by Monte-
Carlo simulations. In the figure, the upper and lower
bounds are the maximum and minimum values of σ̃2

q

with respect to µ0, and they are indeed very close, espe-
cially for small δ (up to 0.3). It turns out that the actual
σ̃2

q can be well approximated by

σ̃2
q ≈ δ̃2 :=

1 + 0.45δ2

3
δ2 (18)

which is also shown in Fig. 3.
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Fig. 3. Estimates of normalized quantization error variance.

We now provide an estimate for the asymptotic covari-
ance matrix of e(k). Consider the quantized estimation

error dynamics (8). We suppose that Conditions C1 and
C2 and the approximation (18) for σ̃2

q hold and k → ∞.

Using Condition C1, it follows from (8) that the asymp-
totic covariance matrix of e(k), denoted by E, satisfies

E= (A−LC)E(A−LC)T + BΣwBT + LΣvL
T + σ2

qLLT.

Using (17), (18) and considering that σ2
ε = CECT +Σv,

we can approximate E by the solution Ẽ = ẼT ≥ 0 to
the following generalized Lyapunov equation:

Ẽ = (A−LC)Ẽ(A−LC)T + BΣwBT + LΣvL
T

+ δ̃2L(CẼCT + Σv)L
T . (19)

Note that if a solution Ẽ to (19) exists, it is unique and
positive semidefinite. In connection with (19), consider
the generalized Lyapunov difference equation as follows:

Ẽ(k+1) = (A−LC)Ẽ(k)(A−LC)T + BΣwBT + LΣvL
T

+ δ̃2L(CẼ(k)CT + Σv)LT, Ẽ(0) = Σ0. (20)

Theorem 3.2 Suppose the system (8) is quadratically

stable. Then Ẽ = limk→∞ Ẽ(k) exists and is finite, and
is also the positive semidefinite solution to (19).

Proof . Suppose that system (8) is quadratically stable.
By Theorem 3.1, ‖ δC(zI −A+ LC)−1L ‖∞ < 1. Using
the discrete-time bounded-real lemma (de Souza & Xie,
1992), there exists a matrix Ω = ΩT > 0 such that

1 − δ2CΩCT > 0,

Ω − LLT − Ae(Ω
−1 − δ2CT C)−1AT

e > 0

where Ae = A − LC. Since (Ω−1 − δ2CT C)−1 ≥ Ω, the
above inequalities imply

Ω − AeΩAT
e > δ2LCΩCT LT . (21)

We denote

Ē = αΩ, Υ = (1 + δ̃2)LΣvLT + BΣwBT

where α > 0 is a scaling parameter. Since (21) is linear
in Ω and is a strict inequality, it follows that there exists
a sufficiently large α > 0 such that Ē ≥ Σ0 and

Ē − AeĒAT
e > δ2LCĒCT LT + Υ. (22)

We will show that Ẽ(k) ≤ Ē for all k ≥ 0. This can be

proved by induction. Note that Ẽ(0) ≤ Ē and δ̃ < δ.

Suppose Ẽ(k) ≤ Ē for some k. Then, from (20) and (22),

Ẽ(k + 1) ≤ AeĒAT
e + δ2LCĒCT LT + Υ ≤ Ē.

Hence, Ē is indeed an upper bound of Ẽ(k) for all k.

Now we use the result above to show the convergence of
Ẽ(k). Note that (20) is a linear difference equation in

Ẽ(k). Using standard properties of Kronecker product,
(20) can be rewritten as
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Ẽv(k + 1) = ÃẼv(k) + Υv (23)

where Ẽv(k) and Υv are the vector forms of Ẽ(k) and

Υ, respectively, and Ã is a matrix that depends on
A, L, C and δ̃. Since Ẽ is bounded for any bounded in-
put Υ and initial state Ẽv(0), (23) has bounded-input,
bounded-output stability. This in turn implies that
(23) has asymptotic stability, i.e., Ã is Schur stable.

It follows that Ẽv converges to a constant vector as
k → ∞ (because the input Υv is constant). Therefore,

Ẽ = limk→∞ Ẽ(k) exists and is finite, and is also the
(unique) positive semidefinite solution to (19). ∇∇∇

Remark 3.2 Notice that (20) and (19) can be viewed as
the equations defining respectively the covariancematrix
and the stationary covariance matrix of the signal ē(k)
given by the following system with multiplicative noise:

ē(k + 1) = (A−LC)ē(k) + Bw(k) − (1+δ̃2)
1

2 Lv(k)

− δ̃ξ(k)LCē(k), ē(0) = ē0 (24)

where ē(k) ∈ R
n, w(k) and v(k) are the same white noise

signals as in system (1), ē0 ∈ R
n is a zero-mean random

variable with covariance matrix Σ0, and ξ(k) is a scalar
widely stationary zero-mean white noise sequence with
unitary variance and uncorrelated with w(k), v(k) and

ē0. In the absence of quantization noise, i.e. δ̃=0, (24)
becomes the state equation of the estimation error for
the quantization-free state estimation problem for sys-
tem (1) and filter (2). Note that (1+ δ̃2)

1

2 ≈1 when δ is
relatively small. Hence, as far as the variance of the es-
timation error is concerned, the main effect of quantiza-
tion amounts to a multiplicative noise δ̃ξ(k)LCē(k). 2

3.3 Design of Estimation Gain

So far, we have assumed that the estimation gain L is
given. We now discuss how to design L. From (19), it is

natural to choose L to minimize Ẽ. If δ (and thus δ̃) is
small and the Kalman gain 1 LK , which is the optimal L
when δ=0, is not large, it is typically sufficient to choose
L=LK . In general, the following result can be used:

Theorem 3.3 The optimal L that minimizes Tr(Ẽ) in
(19) can be found by solving the following generalized 2

discrete-time algebraic Ricatti equation for a symmetric
positive-definite matrix Ẽ:

Ẽ = AẼAT + BΣwBT − AẼCT CẼAT S−1, (25)

S = (1 + δ̃2)(CẼCT + Σv) (26)

and the optimal estimation gain L is given by

L = AẼCT S−1. (27)
1 The design of the Kalman gain can be found in Anderson
& Moore (1979).
2 A standard discrete-time algebraic Ricatti equation has
δ̃ = 0 in (25).

Equivalently, we can obtain Ẽ in (25) by solving the fol-
lowing convex optimization problem:

minTr (Q), subject to
[

Q I

I P

]

≥ 0 (28)













P PA PB δ̃PA

ATP (1+δ̃2)(P +CT Σ−1
v C) 0 0

BTP 0 Σ−1
w 0

δ̃AT P 0 0 (1+δ̃2)P













≥ 0

(29)
with the optimal Ẽ given by Ẽ = P−1.

Proof . Expanding the right hand side of (19) and re-
grouping the terms, we get

Ẽ = AẼAT + BΣwBT − AẼCT CẼAT S−1

+ (L − AẼCT S−1)S(L − AẼCT S−1)T (30)

where S is as in (26). Nullifying the term that involves

L will minimize Ẽ, which yields (25) and (27).

To show (28) and (29), consider the following equation:

ẼΩ = (A − LC)ẼΩ(A − LC)T + δ̃2LCẼΩCT LT

+ (1 + δ̃2)LΣvL
T + BΣwBT + Ω (31)

where Ω = ΩT ≥ 0. It is clear that ẼΩ is a monotoni-
cally increasing function of Ω. Hence, in view of (30) and
considering the optimal L in (27), the problem

min
Ẽ

Tr(Ẽ), subject to:

Ẽ > AẼAT + BΣwBT − AẼCT CẼAT S−1 (32)

gives the (unique) solution of Ẽ to (25). Now, applying
the matrix inversion lemma and standard matrix ma-
nipulations, we can rewrite (32) as

Ẽ> (1+δ̃2)−1A
[

δ̃2Ẽ+(Ẽ−1+CT Σ−1
v C)−1

]

AT+BΣwBT

Denoting P = Ẽ−1 and applying Schur’s complement, it
can be readily verified that the latter inequality is equiv-
alent to (29). Finally, it is easy to check that min Tr(Ẽ)
is the same as min Tr(Q) subject to (28). ∇∇∇

3.4 Illustrative Example

We now give an example to demonstrate the accuracy
of the estimate Ẽ and the design of estimation gain. We
will call the optimal L in (27) a robust estimation gain
due to the fact that it is designed to mitigate quanti-
zation errors. The gain L designed without considering
quantization errors will be called the Kalman gain.

The example we consider is a low-pass filtered random
process corrupted by a measurement noise. More specif-
ically, the system model is given by (1) with
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A =

















2.4744 −2.8110 1.7038 −0.5444 0.0723

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

















,

BT = [ 1 0 0 0 0 ],

C = [ 0.245 0.236 0.384 0.146 0.035 ]

and Σw = 1. Different values of Σv will be considered.
The filter has a normalized bandwidth of approximately
0.25 (where 1 corresponds to the Nyquist bandwidth).

Two cases, Σv =1 and Σv =1/16, are tested. The range
of δ for the tests is chosen to be [0, 0.3]. For a given Σv

and δ, we have designed two estimator gains, one taken as
the Kalman gain designed by ignoring the quantization
error and the other being the robust gain computed using
(27). Quadratic stability of (8) is verified using (16) for
both gains at δ=0.3.

Figs. 4 and 5 show the simulated values of Tr(E) for both

estimator gains along with their estimates Tr(Ẽ). Fig. 4
is for Σv =1 and Fig. 5 for Σv =1/16. From these figures,
we see that when the measurement noise is relatively
large (Σv = 1), the Kalman gain performs well (and is
actually slightly better than the robust gain). But when
the measurement noise is relatively low (Σv = 1/16),
the robust gain performs significantly better than the
Kalman gain. This is because when Σv is small, Kalman
estimation relies heavily on the measurement, which is
thus sensitive to quantization errors. In contrast, the ro-
bust gain is designed to cope with quantization errors,
so it performs better when Σv is small and the quan-
tization error dominates. Also seen in Figs. 4 and 5 is
that, in all cases, the estimate Tr(Ẽ) matches the actual
Tr(E) very well, especially for small δ.

0 0.05 0.1 0.15 0.2 0.25 0.3
27

27.2

27.4

27.6

27.8

28

28.2

28.4

δ

T
r(

E
)

Estimated Tr(E) using Kalman gain
Simulated Tr(E) using Kalman gain
Estimated Tr(E) using robust estimation gain
Simulated Tr(E) using robust estimation gain

Fig. 4. Infinite-level logarithmic quantization for Σv = 1.
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11

11.2

11.4

11.6

11.8

12

δ

T
r(

E
)

Estimated Tr(E) using Kalman gain
Simulated Tr(E) using Kalman gain
Estimated Tr(E) using robust estimation gain
Simulated Tr(E) using robust estimation gain

Fig. 5. Infinite-level logarithmic quantization for Σv = 1/16.

4 State Estimation with Finite-Level Quantiza-
tion

In this section, we study state estimation with a finite-
level quantizer. The estimator structure (2)-(4) is used.

4.1 Truncated Logarithmic Quantization

A finite-level quantizer can be designed by simply trun-
cating a logarithmic quantizer, i.e., we saturate the sig-
nal when it is too large (in magnitude) and have a dead-
zone when the signal is too small. A 2N -level logarithmic
quantizer with quantization density ρ is given by

Q(ε)=











































ρiµ0, if 1
1+δ

ρiµ0 < ε ≤ 1
1−δ

ρiµ0,

i = 0, 1, . . . , N−1,

ρN−1µ0, if 0 ≤ ε ≤ 1
1+δ

ρN−1µ0,

µ0, if ε > 1
1−δ

µ0,

−Q(−ε), if ε < 0

(33)

where δ and µ0 both are to be optimized for a given N .

To set up this optimization problem, we assume that
Conditions C1 and C2 hold. Recall that the zero-mean
property for the estimation error, prediction error and
quantization error is guaranteed when x0, w(k) and v(k)
have even probability density functions. The optimiza-
tion problem can be written as follows:

min J(µ0, δ) (34)

where J(µ0, δ) is the asymptotic variance of the quanti-
zation error. We have that

J(µ0, δ) = 2(I1 + I2 + I3) (35)

where
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I1 :=

∫ (1−δ)−1µ0

(1+δ)−1µ0ρN−1

(ε − Q(ε))2p(ε)dε

I2 :=

∫ (1+δ)−1µ0ρN−1

0

(ε − µ0ρ
N−1)2p(ε)dε

I3 :=

∫

∞

(1−δ)−1µ0

(ε − µ0)
2p(ε)dε (36)

and p(ε) is the probability density function of ε(k).

The joint optimization of µ0 and δ is a difficult prob-
lem. Therefore, we settle for a suboptimal solution. We
first choose µ0 with the aim that the input signal to the
quantizer will be within the unsaturated region as much
as possible, i.e., we want to choose µ0 to maximize I1

for a fixed δ. Since I1 corresponds to the case where no
saturation occurs, our earlier analysis for infinite-level
quantization still applies and we get

I1 = δ̃2

∫ (1−δ)−1µ0

(1+δ)−1µ0ρN−1

ε2p(ε)dε (37)

with δ̃2 given in (18). Differentiating I1 with respect to
µ0 and setting it to zero, we get the maximizing value
µ∗

0 for µ0 as follows:

µ∗

0 = σε(1 − δ)µ (38)

where

µ =

√

6N ln(1/ρ)

1 − ρ2N
. (39)

Substituting the optimized µ0 of (37) into (35) and re-
placing ε with σετ , we get

J(µ∗

0, δ) = σ2
ε J̃(µ, δ) (40)

with

J̃(µ, δ) = 2δ̃2

∫ µ

µρN

τ2 1√
2π

exp(−τ2

2
)dτ

+ 2

∫ µρN

0

(τ − (1 + δ)µρN )2
1√
2π

exp(−τ2

2
)dτ

+ 2

∫

∞

µ

(τ − (1 − δ)µ)2
1√
2π

exp(−τ2

2
)dτ. (41)

Note that for a given N , J̃(µ, δ) can be numerically op-
timized with respect to δ and the optimal δ does not de-
pend on σε. The results of this optimization are shown
in Table 1 for different values of N . In the table, Nb de-
notes the number of quantization bits, which is such that
2Nb = 2N , and ρ is the optimized quantization density,
which is related to the optimized δ by (7).

Using the optimized J̃(µ, δ), we can provide an estimate
of E in the finite-level quantization case. Recall that in
the infinite-level quantization case, the estimate Ẽ of E

Nb N δ ρ µ0/σε J(µ∗

0, δ)/σ2

ε

2 2 0.5338 0.3040 1.7699 0.1457

3 4 0.3253 0.5091 2.7220 0.04892

4 8 0.1909 0.6794 3.4887 0.01568

5 16 0.1095 0.8026 4.0931 0.00494

6 32 0.0619 0.8834 4.5774 0.00153

7 64 0.0346 0.9331 4.9779 0.00047

8 128 0.0191 0.9625 5.3134 0.00014

Table 1
Optimized quantization density.

is given in (19). The term δ̃2L(CẼCT + Σv)L
T in (19)

represents the asymptotic quantization error variance
σ2

q and thus needs to be replaced with J(µ0, δ). Using

(40), we can simply replace δ̃2 with J̃(µ, δ) using the
optimized δ. That is, (19) is revised to be

Ẽ = (A − LC)Ẽ(A − LC)T + BΣwBT

+ LΣvL
T + J̃(µ, δ)L(CẼCT + Σv)L

T . (42)

Example The results above are demonstrated using
the same example as in the previous section. Monte-
Carlo simulations are shown in Figs. 6 and 7, again for
Σv = 1 and Σv = 1/16, respectively. Three observa-
tions are made. Firstly, with about 4∼5 bits of quanti-
zation, the quantized estimator has its estimation error
variance only marginally larger than in the case with-
out quantization. Secondly, the improvement achieved
by the robust estimation gain is marginal when Nb ≥ 4,
but more noticeable when Nb is small, especially when
the measurement noise is relatively small. For the case
when Σv = 1/16 and Nb = 2, the Kalman gain yields
Tr(E) ≈ 56. If we decrease Σv further, the Kalman gain
will yield an unstable estimator. Thirdly, our estimate
for the estimation error is very accurate (with less than
0.1% relative error for Nb ≥ 3).

We proceed to verify Conditions C1 and C2 for our ex-
ample using the robust estimation gain. For C1, we com-
pute the correlation coefficient 3 of εq(k) and each com-
ponent of ẽ(k + 1) = Ae(k) − Lε(k) + Bw(k) and de-
note by r(k) the vector whose entries are these correla-
tion coefficients. For our example with Σv = 1/16, the
ℓ2 norm of the sequence r(k) are found to be 0.028 for
Nb = 2, 0.007 for Nb= 3 and 0.0013 for Nb = 4. It is clear
that Condition C1 holds well. Fig. 8 shows the normal-
ized autocorrelation function of the asymptotic predic-
tion error for the case of Σv = 1/16. We see that the pre-
diction error samples are slightly correlated for Nb = 2
but practically uncorrelated for Nb > 2. Fig. 9 shows the
probability density function of the asymptotic predic-
tion error for the case of Nb = 2, computed using simu-

3 The correlation coefficient of two zero-mean random vari-
ables u and v equals E{uv} /

√

E{u2}E{v2}.
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Fig. 6. Finite-level logarithmic quantization for Σv = 1.
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Fig. 7. Finite-level logarithmic quantization for Σv = 1/16.

lated data and normalized to have a unity variance, along
with a standard Gaussian probability density function.
We see that the computed probability density function
fits a Gaussian probability density well even for Nb = 2.
Hence, Condition C2 holds well too.

4.2 Dynamic Scaling

The use of any finite-level quantizer can potentially cre-
ate a stability problem when the system (1) is unstable
and the initial state is too large or there is a burst of
large process noise. To overcome this problem, we intro-
duce a dynamic scaling method borrowed from Fu & Xie
(2009). The idea is to scale ε(k) so that it is within the
quantization range ±[ ρN−1µ0, µ0] as much as possible.
To do so, we modify (2) and (4) to respectively

x̂(k + 1) = Ax̂(k) + Lg−1
k Q(gkε(k)) (43)
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Fig. 8. Autocorrelation function of prediction error ε(k).
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Fig. 9. Probability density function of prediction error ε(k).

εq(k) = ε(k) − g−1
k Q(gkε(k)) (44)

where ε(k) is the prediction error, i.e. ε(k) = y(k) −
Cx̂(k), and gk is the scaling parameter at time k defined
recursively by g0 = 1 and

gk+1 =















gkγ1, if |Q(gkε(k))| = µ0,

gk/γ2, if |Q(gkε(k))| = ρN−1µ0,

gk, otherwise

(45)

where γ1, γ2 ∈ (0, 1) are design parameters: γ1 makes
the gk+1 smaller than gk, thus plays a zoom-out role;
similarly, γ2 plays a zoom-in role. Note that the change
of gk is implicitly expressed in the quantized output by
checking whether it is saturated, in the dead zone or not.
Thus, no explicit transmission of gk is required.

The following result is quoted from Fu & Xie (2009):
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Theorem 4.1 Consider the estimation error dynamics
(8) with the infinite-level logarithmic quantizer (6). Sup-
pose L and ρ are chosen such that (8) is quadratically
stable, i.e. (by Theorem 3.1 (b)), there exists a Lyapunov
matrix P = PT > 0 such that

(A−L(1−∆)C)T P (A−L(1−∆)C)<P, ∀ |∆| ≤ δ (46)

where δ is related to ρ by (7). Define

N0 = 1 +
2 log(γ2−

√
1−η) − log(LT PLCP−1CT )

2 log(ρ)
(47)

where 0 < η < 1 is chosen such that

(A − L(1−∆)C)T P (A − L(1−∆)C) ≤ (1−η)P (48)

for all |∆| ≤ δ, and γ2 satisfies
√

1−η < γ2 < 1. Also,
take 0 <γ1 < 1 such that the matrix γ1A is Schur stable
and let N ≥ N0. If the 2N -level quantizer (33) together
with the estimator (43) are used instead, then the esti-
mation error dynamics is bounded asymptotically if the
noise signals are uniformly bounded, i.e., |w(k)| ≤ w̄,
|v(k)| ≤ v̄ for some constants w̄ and v̄.

5 Conclusion

In this paper, we have studied the use of logarithmic
quantizers in the quantized state estimation problem.
Both infinite-level and finite-level quantizers are treated.
For an infinite-level static quantizer, a number of results
are given to approximate the asymptotic variance of the
state estimation error for a given quantization density,
which in turn yields clear relationship between quanti-
zation density and the asymptotic estimation error vari-
ance. The aforementioned results have also been gener-
alized to the case where a fixed-rate finite-level quantizer
is used. This allows us to understand the effect of a given
bit rate to the asymptotic error variance. For unstable
systems, we have also introduced a dynamic scaling pa-
rameter for the quantizer to ensure the stability of the
state estimation error dynamics.
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