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a b s t r a c t

This paper studies the state estimation problem for a stochastic discrete-time system over a lossy channel
where the packet loss ismodeled as an independent and identically distributed binary process. To counter
the effect of random packet loss, we propose a linear coding method to preprocess the measured output,
and prove that the coded output is information preserving when packet loss is void and is information
enhancing when packet loss is present. An optimal state estimator under the minimum mean square
error (MMSE) criterion is derived for the coded output when subject to packet loss. The maximum packet
loss rate for ensuring a stable estimator is then derived and shown to be very close to a well-known
lower bound. Also considered is a compressed linear coding method where the measured output is first
compressed onto a lower dimensional space before encoding, and it is shown that the similar packet rate
condition for stability holds.
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1. Introduction

Thiswork is concernedwith a networked state estimation prob-
lem where the sensor and the estimator are connected through
a digital network with packet loss. The packet loss process of
the network is modeled by an independent and identically dis-
tributed (i.i.d.) binary process. If the packet loss rate is above a cer-
tain threshold, it is known that the optimal intermittent Kalman
filter (IKF) can be unstable, i.e., its estimation error can be un-
bounded (Sinopoli et al., 2004). In this paper, we ask whether
it is possible to obtain a weaker condition on the packet loss
rate for a stable state estimator by preprocessing the raw output
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measurement. We provide an affirmative answer by applying a
simple linear coding method and developing the corresponding
MMSE state estimator.

With the rapid development of sensing, signal processing,
and communication technologies, networked systems have been
widely used inmany important areas such asmonitoring, detection
and tracking. One of the key issues is to estimate the state
of the networked system over an unreliable communication
network, which has received considerable interest in the recent
years (Hespanha, Naghshtabrizi, & Xu, 2007; Sinopoli et al.,
2004). By modeling the packet loss process as an i.i.d. binary
process, Sinopoli et al. (2004) proved the optimality of the IKF and
the existence of a critical packet loss rate under which the IKF is
guaranteed to be stable. This seminal result raises a fundamental
problem of quantifying the critical loss rate. A lot of efforts have
been devoted towards finding this critical rate (Huang&Dey, 2006;
Mo&Sinopoli, 2012; Plarre&Bullo, 2009; Sinopoli et al., 2004; You,
Fu, & Xie, 2011).

In Sinopoli et al. (2004), both upper and lower bounds for
the critical packet loss rate are provided. The lower bound is
simply characterized by the largest magnitude of the unstable
eigenvalues of the system, and is shown to be tight for several
cases: (1) The observation matrix is invertible in the observable
subspace (Plarre&Bullo, 2009); (2) All the systemeigenvalues have
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distinct magnitudes (Mo & Sinopoli, 2008); (3) The system is non-
degenerate (Mo & Sinopoli, 2010). However, it was shown in You
et al. (2011) that the lower bound is not always tight, and even for a
class of second-order systems, the critical rate strictly lies between
the lower and upper bounds. Exact characterization of the critical
rate for the general case is complicated and can be found in Rohr,
Marelli, and Fu (2014).

In Schenato (2008), it was shown that by transmitting the out-
put of the Kalman filter instead of transmitting the measured
output directly, the critical packet loss rate equals to the afore-
mentioned lower bound. However, the dimension of the estimated
state is usually much higher than that of the measured output,
which intuitively requires more communication resources on the
sensor side. Other disadvantages include the need for state esti-
mation at the transmitter side and the difficulty to generalize the
method when the measurements are not collated at one transmit-
ter. An alternative is to send a finite linear combination of outputs.
This idea was explored by Robinson and Kumar (2007) for scalar
systems. He, Han, Wang, and Shi (2013) studied linear minimum
mean square error (MMSE) estimation and smoothing using the
statistics of the packet loss process. Note that they do not study the
stability of the derived estimators. Differently, there are other com-
plex coding methods for quantized stabilization problems where
the sensor transmits the quantized state (or state estimate) in Yük-
sel (2009), You and Xie (2011), Minero, Coviello, and Franceschetti
(2013).

In this paper, we propose a new coding method which con-
structs a finite-length linear combination of the measured output,
which is then transmitted to the remote estimator via the lossy
network. Since the dimension of the coded output is not greater
than the measured output, no additional communication load will
be induced. The coded output has two important features. Firstly,
it is information preserving, when the transmission is perfect, in the
sense that the raw output can be perfectly reconstructed from the
coded output. Secondly, it is information enhancing, when packet
loss exists, in the sense that a higher packet loss rate can be toler-
ated to ensure a stable state estimator. More specifically, we show
that the maximum packet loss rate for ensuring a stable state esti-
mator can bemade very close to the aforementioned lower bound.

To study the information preserving and enhancing properties
of the coded output, we introduce the notion of strong observability.
Roughly speaking, the standard observability condition requires
an uninterrupted sequence of measurements to achieve stable
estimation, whereas the strong observability condition allows the
measurements to be intermittent.Wewill show that the role of our
coding method is to enhance an observability condition by turning
it into a strong observability condition, allowing us to effectively
combat packet loss.

Using the codedoutput,wedevelop anMMSE state estimator by
augmenting the state dimension. Themaximumpacket loss rate for
ensuring a stableMMSE state estimator is shown to be very close to
the aforementioned lower bound. To further reduce the dimension
of the coded output, we use a compressed encoding method which
first compresses the measured output onto a lower dimensional
subspace before applying the linear coding method. This allows us
to transmit a lower-dimensional (or even scalar) codedoutputwith
a similar packet loss condition for a stable state estimator.

The rest of the paper is organized as follows. The estimation
problem is formulated in Section 2. Section 3 introduces the lin-
ear coding method and gives the MMSE estimator using the inter-
mittent coded output. Section 4 analyzes the stability condition for
the estimator. Section 5 generalizes the coding method by reduc-
ing the dimension of the coded output. Simulation and concluding
remarks are drawn in Sections 6 and 7, respectively. Many proofs
are in the Appendix.
Fig. 1. Networked estimation with output coded.

2. Problem formulation

Consider the following discrete-time stochastic system

xk+1 = Axk + wk,
yk = Cxk + vk,

(1)

where A ∈ Rn×n, C ∈ Rq×n, xk ∈ Rn denotes the state and
yk ∈ Rq denotes the measured output, at time k. The initial state x0
is a Gaussian random vector with mean x̄0 and covariance matrix
P0. Both wk and vk are white Gaussian noises with zero mean
and positive definite covariance matrices Q and R, respectively. In
addition, x0, wk and vk are mutually independent.

We are concerned with a networked state estimation problem
where the sensor (whichmeasures yk) and the estimator are linked
via a lossy network. Due to the channel unreliability, packets from
the sensor to the estimator may be lost and the loss information
is assumed to be known by the estimator. We use a binary ran-
dom process γk to model this process. More precisely, γk = 1 in-
dicates that the packet transmitted from the sensor is successfully
delivered to the estimator at time k, whereas γk = 0 means that
the packet is lost. We assume that the packet loss process is an
i.i.d. process with packet receiving rate p = Prob(γk = 1) = E[γk].
As opposite to Mo and Sinopoli (2012); Sinopoli et al. (2004); You
et al. (2011), we study the networked estimation configuration de-
picted in Fig. 1, where the signal zk transmitted to the estimator is
a coded version of yk.

Since we focus on the state estimation problem and its stability
property, there is no loss of generality to make the following
assumption.

Assumption 1. The matrix A is unstable and invertible, and (A, C)
is observable.

Remark 1. We assume the instability of the system because for
stable systems, the estimation error covariance would be bounded
even all the packets from sensor get lost, which would make the
stability analysis for the state estimator meaningless. In practice,
however, even if the system is stable, wemaywant to impose some
stability margin for the state estimator. One way to achieve this is
to simply consider the related system obtained by replacingmatrix
A with the scaled matrix αA for some α > 1. This scaled system
may no longer be stable, andwould therefore satisfy Assumption 1.
The parameter α represents the stability margin, in the sense that
if the state estimator for the scaled system is stable, then the
state estimator for the original system is stable with a positive
exponential decay rate.

For any matrices X and Y with compatible dimensions, denote
col{X, Y } = [XT , Y T

]
T . Let

m = n − rank(C) + 1.

Then, the matrix col{C, CA, . . . , CAm−1
} has full column rank.

We focus on a class of encoders with finite memory size,
whose output can be computed recursively. More precisely, zk =

Ek(yk, yk−1, . . . , yk−m+1), where the map Ek(·) denotes the en-
coder at time k, and thememory size ism. Since zk is to be transmit-
ted to the estimator through an unreliable channel, the maximum
information available to the estimator at time k is given by (Ander-
son & Moore, 1979)

Fk = {(γi, ziγi) : i = 0, 1, . . . , k}.
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The MMSE predictor and estimator of xk are given by

x̂k|k−1 = E[xk|Fk−1], and x̂k|k = E[xk|Fk], (2)
respectively. Their error covariance matrices are
Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)

T
|Fk−1];

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)T |Fk], (3)
respectively.

Our objective is to recursively compute the above quantities,
and derive the network condition for the stability of the filter, i.e.,

sup
k∈N

E[∥xk − x̂k|k∥2
] < ∞, (4)

where the expectation is taken with respect to the packet loss
processes {γk}.

In general, the higher the dimension of the coded output zk, the
larger the required communication resources. For this reason, our
goal is to design a coder to reduce the effect of packet loss with the
dimension of its output no larger than that of themeasured output.
In the next section, we give a coding method which keeps zk of the
same dimension as that of yk. A compressed codingmethod, where
the dimension of zk is reduced, will be given in Section 5.

3. Linear coding and state estimation

3.1. Linear coding

If the measured output is directly transmitted, i.e., zk = yk, the
MMSE estimator is computed by the IKF (Sinopoli et al., 2004). This
is given as

x̂k+1|k = Ax̂k|k−1 + γkAKk(yk − Cx̂k|k−1); (5)

Pk+1|k = APk|k−1AT
− γkAKkCPk|k−1AT

+ Q , (6)
with the initial values P0|−1 = P0 and x̂0|−1 = x0, where Kk =

Pk|k−1CT (CPk|k−1CT
+ R)−1 is the Kalman gain.

As discussed in Section 1, the critical packet loss rate for ensur-
ing a stable IKF depends on the system structure in a complicated
way and is in general greater than the known lower bound (Rohr
et al., 2014; You et al., 2011). This motivates the idea of construct-
ing the output of the Kalman filter at the sensor end and trans-
mitting it to the estimator (Schenato, 2008), i.e. transmitting zk =

E[xk|y1, . . . , yk]. Then, the MMSE estimator is given by

x̂k|k =


zk, if γk = 1;
Ax̂k−1|k−1, if γk = 0. (7)

The necessary and sufficient condition for the stability of the above
estimator is simply given by

|λmax|
2(1 − p) < 1, (8)

whereλmax is amaximumeigenvalue ofA inmagnitude. That is, the
critical packet loss rate 1 − p equals |λmax|

−2, which is the well-
known lower bound (Sinopoli et al., 2004). However, the dimen-
sion of the state estimate is generally much higher than that of yk.

Our proposed linear coding method is as follows. Take αT
k =

[αk1, . . . , αk(m−1), 1] ∈ R1×m (Recall m = n − rank(C) + 1). The
coded output is given by
zk = yk + αk(m−1)yk−1 + · · · + αk1yk−m+1

= (αT
k ⊗ Iq)col{yk−m+1, . . . , yk} ∈ Rq (9)

with the convention that yk = 0 for k < 0, where Iq ∈ Rq×q is the
identity matrix and ⊗ is the Kronecker product (Horn & Johnson,
1985). The design of {αk : k ∈ N} will be detailed later.

It is clear from (9) that the sequence {y0, y1, . . . , yk} can be
uniquely recovered from the sequence {z0, z1, . . . , zk} for any k ≥

0. For this reason, the coded output is information preservingwhen
there is no packet loss.
3.2. The MMSE estimator

From (9), the noise in zk is correlated with those in zk−1, zk−2,
. . . , z0. Hence, we cannot obtain an MMSE estimator by simply
running a Kalman filter with the system’s output zk. To get around
this, we define µk = col{yk−m+1, yk−m+2, . . . , yk−1} and obtain

µk+1 = Fµk + Gyk, (10)

where G = col{0, 0, . . . , 0, Iq} and F =


0 I(m−1)q
0 0


. Define the

augmented state uk = [xTk µT
k ]

T . With the notation Hk = [C αk1Iq
. . . αk(m−1)Iq], (1) and (9) are rewritten as the following augmented
system

uk+1 =


A 0
GC F


uk +


wk
Gvk


,

zk = Hkuk + vk.

(11)

Clearly, the noise components in (11) are temporally independent.
Hence, we can obtain an MMSE estimator of uk+1 via a Kalman
filter (Anderson & Moore, 1979) by

ûk+1|k = Φûk|k−1 + γk(ΦΣk|k−1HT
k + Sk)

× (HkΣk|k−1HT
k + R)−1(zk − Hkûk|k−1), (12)

Σk+1|k = ΦΣk|k−1Φ
T

+ Q̄ − γk(ΦΣk|k−1HT
k + Sk)

× (HkΣk|k−1HT
k + R)−1(ΦΣk|k−1HT

k + Sk)T (13)

with Q̄ =


Q 0
0 GRGT


, Φ =


A 0
GC F


and Sk =


0
GR


.

Remark 2. With the coding scheme (9), the dimension of the aug-
mented state in the MMSE estimator is n+ (m− 1)q. On the other
hand, as detailed in Remark 12, the compressed coding schemes
in Section 5 permit reducing the dimension of augmented state to
2n − 1.

If there is no packet loss, our next result shows that the MMSE
estimator (12) using {zk}, and the IKF using {yk}, are equivalent.

Theorem 3. Suppose packet loss is not present. Then, for any coding
vectors {αk : k ∈ N}, we have x̂k+1|k = [In 0]ûk+1|k, where x̂k+1|k is
given by (2) and ûk+1|k is given by (12).

Proof. Note from (12) and Theorem 3.2 of Anderson and Moore
(1979) that ûk+1|k = E[uk+1|z0, z1, . . . , zk]. Similarly, (2) implies
x̂k+1|k = E[xk+1|y0, y1, . . . , yk]. Following the fact that the se-
quences {y0, y1, . . . , yk} and {z0, z1, . . . , zk} are equivalent (infor-
mation preserving), we have

E[uk+1|z0, z1, . . . , zk] = E[uk+1|y0, y1, . . . , yk].

Multiplying its both sides by [In 0], the right-hand side becomes

[In 0]E[uk+1|y0, y1, . . . , yk] = E[xk+1|y0, y1, . . . , yk].

It follows that [In 0]ûk+1|k = x̂k+1|k. �

Although both estimators (12) and (2) yield the same estimate
in the absence of packet losses, we will show in Section 4 that,
in the presence of packet losses, the coded output is information
enhancing, in the sense that (12) permits a larger critical packet
loss rate for stability.

4. Stability analysis

In this section we study the stability of the MMSE estimator
in (12) when the coded output is transmitted to the estimator
over a lossy channel. To this end, we introduce the notion of
strong observability, and show that the coded output is strongly
observable. Using this we then derive the stability condition.
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Consider the following discrete-time system

xk+1 = Axk + wk,
yk = Ckxk + vk,

(14)

which is similar to (1), with the difference in that Ck is allowed to
be time-varying. Nevertheless,m = n − rank(Ck) + 1 is constant.

Definition 1. For any τ ≥ m, the system (14), or the pair (A, {Ck :

k ∈ N}), is said to be strongly observable with period τ , if for any
1 ≤ i1 < i2 < · · · < im−1 < τ and k ≥ τ − 1, the following
regression matrix

O(k, k − i1, . . . , k − im−1)

= col{Ck, Ck−i1A
−i1 , . . . , Ck−im−1A

−im−1} (15)

has full column rank.

Remark 4. If a pair (A, C) is observable, then (A, C) is strongly ob-
servable with period τ = m. However, (A, C) may not be strongly
observable with period τ > m. An example of this case is given by

A =


2 0
0 −2


, C = [1 1], (16)

for which the observability index is m = 2 and (A, C) is observ-
able. However, (A, C) is not strongly observablewith period τ > 2,
because col{C, CA−2

} = col{C, 0.25C} does not have full column
rank.

Denote
C = col{CAm−1, CAm−2, . . . , C} and Ck = (αT

k ⊗ Iq)C.

The following lemma states that the periodically coded output
turns an observable system into a strongly observable one. Its proof
is given in Appendix A.1.

Lemma 5. Consider the system (1), together with Assumption 1 and
the coding scheme (9). If the coding vectors {αk : k ∈ N} are periodic
with period τ ≥ m (i.e., αk = αk+τ ), and α0, α1, . . . , ατ−1 are ran-
domly drawn from an absolutely continuous probability distribution,2
then, with probability one,3 (A, {Ck : k ∈ N}) is strongly observable
with period τ .

We are now ready to state the main result of this paper.

Theorem 6. Consider the system (1), togetherwith Assumption 1 and
the coding scheme (9). For any τ ≥ m, suppose that the coding vectors
{αk : k ∈ N} are periodic with period τ , and that α0, α1, . . . , ατ−1
are randomly drawn from an absolutely continuous probability distri-
bution. Then, the MMSE estimator (12) is stable with probability one
if

|λmax|
2(1 − p)(P(τ ,m))1/τ < 1, (17)

where

P(τ ,m) =

m−1
i=0

τ

i

 p
1 − p

i

≥ 1,

and


τ

i


is the binomial coefficient for choosing i from τ .

Proof. See Appendix A.2. �

Remark 7. Notice that (P(τ ,m))1/τ → 1 as τ → ∞. This implies
that the gap between the sufficient condition (17) and the neces-
sary condition (8) vanishes as τ → ∞. Fig. 2 shows this conver-
gence for system (16).

2 Loosely speaking, this means that the probability density function does not
contain impulses.
3 The probability of having a system which is not strongly observable is zero.
Fig. 2. The lower bound of critical packet loss rate.

Example 1. We now illustrate the advantage of coding in terms
of stability using the system (16). From You et al. (2011), the IKF
(i.e., without coding) for (16) is stable if and only if

|λmax|
4(1 − p) < 1. (18)

Clearly, it follows from Theorem 6 that we can always choose a
period τ such that the stability condition resulting from coding is
strictly weaker than (18).

5. Compressed coding

The coding method in the previous section requires the coded
output to be of the same dimension as that of the raw measure-
ment. In this section we show how to reduce the dimension of the
coded output. We also develop a similar packet loss condition for
the existence of a stable state estimator.We study two approaches.

5.1. First approach

Let MA be the maximum geometric multiplicity of every
eigenvalue of A. Since the number of Jordan blocks associated
with a given eigenvalue equals its geometric multiplicity (Horn &
Johnson, 1985), it follows from the Jordan form of an observable
system (Chen, 1984) that MA ≤ rank(C). Select any integer ℓ with
MA ≤ ℓ ≤ rank(C), and consider the coded output

zk = (αT
k ⊗ Iℓ)col{Λyk−n+ℓ, . . . , Λyk} ∈ Rℓ, (19)

where Λ ∈ Rℓ×q is a constant matrix and αT
k ∈ R1×(n−ℓ+1) is the

coding vector at time k. We have the following result whose proof
is given in Appendix A.3.

Lemma 8. Under Assumption 1 and MA ≤ ℓ ≤ rank(C). Let Λ ∈

Rℓ×q randomly drawn from an absolutely continuous probability
distribution. Then, (A, ΛC) is observable and ΛC has full row rank
with probability one.

Moreover, the MMSE estimator for the coding scheme (19)
is straightforwardly obtained by replacing µk in (10) with
µk = col{Λyk−m+1, Λyk−m+2, . . . , Λyk−1}. Then, we obtain the
following corollary of Theorem 6.

Corollary 9. Consider the system (1) satisfying Assumption1, and the
coding scheme (19), with MA ≤ ℓ ≤ rank(C), where Λ ∈ Rℓ×q

are randomly drawn from an absolutely continuous probability
distribution. For any τ ≥ n − ℓ + 1, suppose that {αT

k : k ∈ N}
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are periodic with period τ , and that α0, α1, . . . , ατ−1 are randomly
drawn from an absolutely continuous probability distribution. Then,
the corresponding MMSE estimator is stable with probability one if

|λmax|
2(1 − p)(P(τ , n − ℓ + 1))1/τ < 1. (20)

Proof. In view of Lemma 8, (A, ΛC) is observable and ΛC has full
row rank with probability one. Note that rank(ΛC) = ℓ. Then, the
stability condition follows from Theorem 6.

Remark 10. Notice that P(τ , n − ℓ + 1) increases as ℓ decreases
(see its definition in Theorem 6). Corollary 9 states that the larger
the dimension of the coder output, the larger the critical packet
loss ratewill be. This reveals a tradeoff between the state estimator
stability and the communication load.

5.2. Second approach

Using the above compressed coding method, the dimension of
the coded output can be reduced to MA. This is done by first com-
pressing the measured output, while maintaining observability,
and then applying the proposed linear coding. In this subsectionwe
give an alternativemethod, which permits reducing the dimension
of the coded output to a scalar by directly coding each dimension
of measured output.

Taking a coding vector Λk ∈ Rnq, we define a scalar coded
output

zk = ΛT
k col{yk−n+1, yk−n+2, . . . , yk} ∈ R. (21)

Let C := col{CA−n+1, CA−n+2, . . . , C}. We have the following
lemma on the strong observability of the system resulting from the
coding scheme (21).

Lemma 11. Consider the system (1)with the coding scheme (21) and
let τ ≥ m be any given integer. Under Assumption 1, suppose that
{ΛT

k : k ∈ N} are periodic with period τ and Λ0, Λ1, . . . , Λτ−1
are randomly drawn from an absolutely continuous probability
distribution. With probability one, (A, {ΛT

k
C : k ∈ N}) is strongly

observable with period τ .

Proof. See Appendix A.4.

Note that the MMSE estimator for the coding scheme (21) is
straightforwardly obtained by replacing µk in (10) with µk =

col{Λk1yk−n+1, . . . , Λk(n−1)yk−1}, where Λki ∈ Rq, i = 1, 2, . . . , n
and Λk =


Λk1 Λk2 · · · Λkn


.

Remark 12. The dimension of augmented state uk in MMSE
estimator (12) under coding schemes (9), (19) and (21) are n +

(m−1)q, n+(m−1)ℓ and 2n−1, respectively. Thismeans that the
compressed coding can reduce the dimension of augmented state
in MMSE estimator, which also reduce the computation burden.

Then, the stability condition of the corresponding MMSE state
estimator follows directly from Theorem 6.

Corollary 13. For the same setting as the one in Lemma 11, the
corresponding MMSE state estimator is stable with probability one if

|λmax|
2(1 − p)(P(τ , n))1/τ < 1.

Remark 14. The dimension of the output of coder (21) is lower
than that of coder (19). However, its stability requirement is
stronger. Also, both coding schemes require storing τ coding
vectors. This means that coder (21) needs to store nqτ scalars,
while coder (19) only needs [(n − ℓ + 1)τ + qℓ], which is far
less. Hence, the choice between these coding schemes permits
accommodating a tradeoff between communication load on one
side, and memory capacity and stability requirement on the other.
Fig. 3. Comparison between estimators under packet receival rate 0.85.

Fig. 4. Comparison between estimators under packet receival rate 0.95.

6. Simulation

To illustrate the advantages of the proposed linear coding
method, we use two examples to compare the MMSE estimators
obtained using uncoded and coded outputs. The first estimator is
the IKF in Sinopoli et al. (2004) using themeasured output directly.
The second one is the proposed estimator (12) using the coded
output (9). In both examples we use the second-order system
in (16). In order to approximate the expected estimation error
covariance we use 1500 Monte Carlo runs.

In the first example we use a packet arrival rate of p = 0.85
and a period of τ = 20. From Theorem 7 in You et al. (2011), the
stability condition (18) for the IKF is not satisfied, i.e., |λmax|

4(1 −

p) = 2.4 > 1. However, from Theorem 6 and (18), the stability
condition of the MMSE estimator using the coded output is satis-
fied (with probability one over the choice of the coding vectors),
i.e., |λmax|

2(1− p)(P(20, 2))1/20 = 0.74742 < 1. This is confirmed
by Fig. 3, which shows the trace of the expected estimation error
covariance on xk in a logarithmic scale.

In the second example we use p = 0.95 and τ = 20. In this
case, |λmax|

4(1 − p) = 0.8 and |λmax|
2(1 − p)(P(20, 2))1/20 =

0.24914, thus both estimators are stable. We see from Fig. 4 that
the performance of the proposed estimator using coded output is
not worse than that of the IKF. In conclusion, the MMSE estimator
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using the coded output is more robust to packet loss and has a
similar performance than that of the IKF,when they are both stable.

7. Conclusion

Motivated by the necessity of using unreliable channels for data
communication, several coding methods on the system outputs
have beenproposed to reduce the effect of randompacket losses on
stability of theMMSE state estimator. A new notation called strong
observability is defined and the key idea designing the coding
vectors is to make a observable system strongly observable. We
show that the proposed linear coding approach can enhance the
stability of the state estimator under packet losses. In addition,
our results reveal a tradeoff between the dimension of transmitted
data and the required network reliability.

Appendix

A.1. Proof of Lemma 5

For each k ∈ N, define αkm = 1, so that we can write αT
k =

[αk1, . . . , αkm]. Let 1 ≤ i1 < · · · < im−1 < τ and O , O(k, k −

i1, . . . , k− im−1). Let also A = MJM−1 be the Jordan decomposition
of A, with J = J1 ⊕· · ·⊕ JB, Jb, b = 1, . . . , B being the Jordan blocks
in J , and jb being the eigenvalue associated to Jb. Then,

Ck =

m
l=1

αklCAm−l
= CM


m
l=1

αklJm−l


M−1

= CM


B

b=1

Uk−i1,b


M−1, (A.1)

with Uk,b =
m

l=1 αk−i1,lJ
m−l
b . Now, for each b ∈ {1, . . . , B}, all the

entries on themain diagonal ofUk,b have the same value, whichwe
denote by uk,b. Hence, Uk,b is invertible if and only if uk,b ≠ 0. We
have

uk,b =

m
l=1

αkljm−l
b . (A.2)

Since αkl, k ∈ {1, . . . , τ }, l ∈ {1, . . . ,m} are randomly drawn from
an absolutely continuous probability distribution, it follows that
themeasure of the event onwhichuk,b = 0 is zero. Thismeans that,
with probability one, for each k ∈ N and b ∈ {1, . . . , B}, uk,b ≠ 0
and therefore Uk,b is invertible. Hence, so is

B
b=1 Uk−i1,b, and in

view of (A.1), rank (Ck) = rank(C).
The rest of the argument then follows by induction. For 0 ≤

j < m − 1, with i0 = 0, let Oj = col

Ck, Ck−i1A

−i1 , . . . , Ck−ijA
−ij

.

Since (A, C) is observable, and A is invertible, it follows that
rank(CA−ij) = n, for all j = 0, . . . ,m − 1. Hence, if rank(Oj) < n,
there exists at least one row ofCA−ij+1 which is not included in the
linear span rowspan


Oj

of the rows of Oj. Again, since αk−ij+1 is

randomly chosen, with probability one,

rowspan

Ck−ij+1A

−ij+1


= rowspan


αT
k−ij+1

⊗ Iq


CA−ij+1


( rowspan

Oj

.

Hence, it follows that rank(Oj+1) > rank(Oj) with probability one.
This in turn implies n ≥ rank(O) ≥ rank(C) + m − 1 = n, and
completes the proof. �
A.2. Proof of Theorem 6

We first introduce the following lemma.

Lemma 15. Suppose that {αT
k : k ∈ N} is periodic and (A, {αT

k C :

k ∈ N}) is strongly observable with period τ . Under Assumption 1,
if there are m packets received in time period [(j − 1)τ , jτ), j ≥ 1,
there exists a positive value β > 0 (independent of P0) such that
Pjτ |jτ < βI.

Proof. Suppose that ztk , ztk−1 , . . . , ztk−m+1 are received in time
period [(j − 1)τ , jτ), j ≥ 1, i.e., jτ > tk > tk−1 > · · · > tk−m+1 ≥

(j−1)τ . For ease of writing, here we call O(tk, tk−1, . . . , tk−m+1) as
O(k). Since (A, {αT

k C : k ∈ N}) is strongly observable with period
τ , O(k) is of full column rank. One can obtain a direct estimator of
xtk by using ztk , ztk−1 , . . . , ztk−m+1 , i.e.,

x̆tk|tk = OĎ(k)col{ztk , ztk−1 , . . . , ztk−m+1}, (A.3)

where the superscript Ď denotes the Moore–Penrose pseudo-
inverse (Horn & Johnson, 1985). Let zk = Ckxk + nk, since xt−i =

A−ixt −
i

j=1 A
−jwt+j−i−1, Ck = (αT

k ⊗ Iq)C and nk =
m

i=1

αki(vk−i+1 −
m−1

j=i CA−m+jwk−j+i−1), the estimator in (A.3) is
rewritten as

x̆tk|tk = OĎ(k)col

Ctkxtk + ntk , Ctk−1A

−tk+tk−1

× xtk − Ctk−1

tk−tk−1
j=1

A−tk+tk−1+j−1wtk−j

+ ntk−1 , . . . , Ctk−m+1A
−tk+tk−m+1xtk + Ctk−m+1

×

tk−tk−m+1
j=1

A−tk+tk−m+1+j−1wtk−j + ntk−m+1


= OĎ(k)O(k)xtk + OĎ(k)ñtk , (A.4)

where ñtk is a linear combination of the noises from time tk to
tk−m+1. Denote the estimation error covariance of x̆tk|tk by P̆tk|tk , it
follows that

P̆tk|tk = OĎ(k)E[ñtk ñ
T
tk ](O

Ď(k))T . (A.5)

Since tk − tk−m+1 is finite, there exists a positive value c > 0 such
that E[ñtk ñ

T
tk ] < cI, which results in that

P̆tk|tk < c(OT (k)O(k))Ď, (A.6)

Since O(k) is full column rank, then OT (k)O(k) > 0. Combining
with that {αT

k : k ∈ N} is periodic and tk − tk−m+1 < τ , there
exist a positive value κ > 0 such that OT (k)O(k) > κ I . Substitut-
ing the above into (A.6), P̆tk|tk < cκ−1I . Since the estimation error
covariance of the MMSE estimator is lower than that of P̆tk|tk , then
Ptk|tk < cκ−1I . Based on the upper bounded divergence speed of
estimation error covariance (i.e., |λmax|

2), there exists ε > 1 such
that Pjτ |jτ ≤ ε|λmax|

2(jτ−tk)Ptk|tk . Since jτ − tk < τ , the proof is
completed by letting β = ε|λmax|

2τ cκ−1.

Proof of Theorem 6. Firstly, we prove that supk∈N E[Pkτ |kτ ] < ∞.
For any j ∈ {0, 1, . . . , k}, denote the event that there are less
than m packets received in each of [(k − 1)τ , kτ), [(k − 2)τ , (k −

1)τ ), . . . , [jτ , (j + 1)τ ) but no less than m packets received in
[(j − 1)τ , jτ) by Ωm

j,k. Let its probability be pmj,k. Specially, Ωm
0,k

means that there are less thanm packets received in each of [(k −

1)τ , kτ), [(k−2)τ , (k−1)τ ), . . . , [0, τ ). Based on Lemma 5, with
probability one, (A, αT

k C : k ∈ N) is strong observable with period
τ , which satisfies the conditions in Lemma 15, and leads to that
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E[Pjτ |jτ |Ω
m
j,k] < βI . Then there exists a positive value ε > 1 such

that

E[Pkτ |kτ ] =

k
j=0

E[Pkτ |kτ |Ω
m
j,k]p

m
j,k

< ε

k
j=0

|λmax|
2(k−j−1)τ E[Pjτ |jτ |Ω

m
j,k]p

m
j,k

< εβ|λmax|
−2τ

k
j=0

|λmax|
2(k−j)τpmj,kI. (A.7)

Note that the probability of that Ωm
j,k is

pmj,k =


m−1
i=0

τ

i


pi(1 − p)τ−i

k−j

×


1 −

m−1
i=0

τ

i


pi(1 − p)τ−i


= [(1 − p)τP(τ ,m)]k−j(1 − (1 − p)τP(τ ,m)). (A.8)

Substituting the above into (A.7) yields that

E[Pkτ |kτ ] < εβ|λmax|
−2τ (1 − (1 − p)τP(τ ,m))

×

k
j=0

(|λmax|
2(1 − p)P(τ ,m)1/τ )(k−j)τ . (A.9)

From (A.9), it is clear that |λmax|
2(1 − p)P(τ ,m)1/τ < 1 is a

sufficient condition for supk∈N E[Pkτ |kτ ] < ∞. Since τ is finite, the
proof is completed �

A.3. Proof of Lemma 8

Denote the nA distinct eigenvalues of A by λ1, . . . , λnA and let
MA(λi) be the geometric multiplicity of λi, i = 1, 2, . . . , nA. Let
MA = maxi∈{1,...,nA} MA(λi). For ease of notation, there is no loss
of generality to assume that A is already in a Jordan form, i.e., A =

diag{A1, A2, . . . , AnA}, where Ai is the Jordan blocks of λi. By abus-
ing the use of notation, let C = [C1, . . . , CnA ] in conformity of A.
By Horn and Johnson (1985), we know that the number of elemen-
tary Jordan blocks of λi is equal to its geometry multiplicity. This,
together with the observability of (A, C), implies that rank(Ci) ≥

MA(λi) for all i ∈ {1, . . . , nA}. Similar to the proof of Lemma 5,
since each row of Λ ∈ Rℓ×q is randomly generated from an abso-
lutely continuous probability distribution, then rank(ΛC) = ℓ and
rank(ΛCi) = min{ℓ, rank(Ci)} ≥ min{ℓ, MA(λi)} with probability
one. Note that ℓ ≥ MA ≥ MA(λi), wehave rank(ΛCi) ≥ MA(λi) for
all i = 1, 2, . . . , nA. Thus (A, ΛC) is observable and rank(ΛC) = ℓ
with probability one, which completes the proof. �

A.4. Proof of Lemma 11

Taking any tk−n+1 < tk−n+2 < · · · < tk with tk − tk−n+1 < τ .
Similar to the proof of Lemma 5, it is sufficient to prove the fact
that if rank(col {ΛT

tk
C, . . . , ΛT

tk−j
CA−tk+tk−j}) < n for any j =

0, 1, . . . , n − 2, then we have, with probability one,

rank

col

ΛT

tk
C, . . . , ΛT

tk−j−1
CA−tk+tk−j−1


= rank


col

ΛT

tk
C, . . . , ΛT

tk−j
CA−tk+tk−j


+ 1. (A.10)

Since A is invertible and (A, C) is observable, we have rank(C
A−tk+tk−j−1) = n for any 0 ≤ j ≤ n − 2. This implies that
there must exist a row of CA−tk+tk−j−1 that cannot be linearly
represented by the rows in col{ΛT

tk
C, . . . , ΛT

tk−j
CA−tk+tk−j}. Since

tk − tk−n+1 < τ , then ΛT
tk , . . . , ΛT

tk−n+1
are randomly generated

from an absolutely continuous probability distribution. It means
that, with probability one, Λtk−j−1

CA−tk+tk−j−1 is independent with
col{ΛT

tk
C, . . . , ΛT

tk−j
CA−tk+tk−j}, which completes the proof. �
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