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a b s t r a c t

In this paper we study a distributed weighted least-squares estimation problem for a large-scale system
consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset
of the unknown parameters and has a measurement linear in the unknown parameters with additive
noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate
of its own parameters using its own measurement and information shared with the network through
neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically
compute the global optimal estimate. The convergence rate of the algorithm will be maximized using
a scaling parameter and a preconditioning method. This algorithm works for a general network. For a
network without loops, we also provide a different iterative algorithm to compute the global optimal
estimate which converges in a finite number of steps. We include numerical experiments to illustrate the
performances of the proposed methods.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

A sensor network is a web of a large number of intelligent
sensing and computing nodes connected via a communication net-
work (Dargie & Poellabauer, 2010). The emergence of sensor net-
works calls for the development of distributed algorithms for a
number of tasks to replace the traditional centralized methods.
In particular, the development of distributed algorithms for pa-
rameter estimation has recently attracted a great deal of atten-
tion (Fang & Li, 2008; Kar, Moura, & Ramanan, 2012; Li & AlRegib,
2007, 2009; Lopes & Sayed, 2008; Ribeiro & Giannakis, 2006a,b;
Ribeiro, Schizas, Roumeliotis, & Giannakis, 2010; Xiao, Ribeiro, Luo,
& Giannakis, 2006). They find applications in environmental and
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weather monitoring, industrial process monitoring and control,
surveillance, state estimation for smart grid, etc.

Existing distributed estimation methods can be classified in
several ways. The first classification of themethods is done accord-
ing to whether a coordinating node or fusion center (FC) is present.
When an FC is present, each node communicates with the FC ei-
ther directly (via a star topology) or indirectly (via a mesh topol-
ogy), i.e., there is a directed communication path from either node
to the FC. The estimation is carried out at the FC, after some pos-
sible pre-processing at each node before transmission. The meth-
ods proposed in Fang and Li (2008), Li and AlRegib (2007, 2009),
Ribeiro andGiannakis (2006a,b) are of this type. On the other hand,
when no FC is present, estimation is done by executing a coop-
erative algorithm among all the nodes of the network. The net-
work is connected in someway and each node communicates with
its neighboring nodes only. Representative methods of this type
include Conejo, de la Torre, and Canas (2007), Gómez-Expósito,
Villa Jaén, Gómez-Quiles, Rousseaux, and Van Cutsem (2011), Kar
et al. (2012) and Lopes and Sayed (2008). A second classification
is done by whether the estimation method is static or dynamic. In
static estimation, a set of parameters is estimated using the mea-
surements of all nodes, which collectively form a snapshot of the
system at a fixed time. Examples of this type include Fang and Li
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(2008), Kar et al. (2012), Li and AlRegib (2007, 2009), Lopes and
Sayed (2008) and Ribeiro and Giannakis (2006a,b). On the other
hand, in dynamic estimation all the nodes track the evolution of
a set of parameters for which a dynamic model is available, as in
the Refs. Carli, Chiuso, Schenato, and Zampieri (2008), Hlinka, Slu-
ciak, Hlawatsch, Djuric, and Rupp (2012), Khan and Moura (2008)
and Ribeiro et al. (2010). Some ‘‘hybrid’’ methods exist, which per-
mit tracking a time-varying sequence of parameters, without a dy-
namic model, by updating a static estimate at each time (Lopes &
Sayed, 2008). A final classification is done bywhether a distributed
estimation method is a small-scale one or a large-scale one. In a
small-scale method, all nodes estimate a common set of parame-
ters (Fang & Li, 2008; Kar et al., 2012; Li & AlRegib, 2007, 2009;
Lopes & Sayed, 2008; Ribeiro & Giannakis, 2006a,b). But in a large-
scale method, each node only reconstructs a subset of the parame-
ters, i.e., the collective knowledge of the parameters is distributed
among all the nodes (Conejo et al., 2007; Gómez-Expósito et al.,
2011; Huang, Werner, Huang, Kashyap, & Gupta, 2012; Khan &
Moura, 2008). Large-scale estimation is in general more challeng-
ing than its small-scale counterpart.

In this paper we study distributed static estimation for a
large-scale system consisting of a network of interconnected sub-
systems. Each sub-system is concerned with a subset of the un-
known parameters and has measurements, linear in the unknown
parameters, corrupted by additive noise. The distributed estima-
tion task is for each sub-system to estimate its local state using
its own measurement and information shared with the network
through neighborhood communication.We use the weighted least
squares (WLS) criterion for optimal estimation. The goal is that the
composite estimate of thewhole system, consisting of all local esti-
mates, will become globally optimal in the sense that it is the same
as the optimal estimate obtained using all the measurements and
a centralized estimation method.

This problem is motivated by many applications involving a
large-scale spatially distributed system. For example, the state es-
timation problem for a large power network is concerned with
estimating the voltages and phases of the power supply at each
sub-system, consisting of a number of buses or a substation, using
measurements (provided by, for example, a phasor measurement
unit (PMU) or a supervisory control and data acquisition (SCADA)
system) (Conejo et al., 2007; Jiang, Vittal, & Heydt, 2008). Interac-
tions of sub-systems are reflected by the fact that local measure-
ments available at each sub-system typically involve neighboring
sub-systems. For example, a current measurement at a conjunc-
tion depends on the voltage difference of two neighboring buses.
In a smart grid setting, each sub-system is only interested in the
local state, i.e., its own voltages and phases, using local measure-
ments and information acquired fromneighboring sub-systems via
neighborhood communication (Tai, Marelli, Rohr, & Fu, 2013). For
a large power network, it is both impractical and unnecessary for
every sub-system to estimate the whole state of the system, thus
distributed estimation methods for local state estimation are nat-
urally called for. The second example is the localization problem
for a wireless sensor network, involving estimating the locations
of all sensors using relative measurements (e.g., relative distances
or relative positions) between sensors (Diao, Fu, & Zhang, 2013;
Khan, Kar, & Moura, 2009). For a small sensor network with a few
sensing nodes, it is possible to aggregate all the measurements at
an FC to compute a global estimate of all sensor locations. Such
an algorithm is not scalable, and would require massive comput-
ing resources when the network becomes large. It is also unneces-
sary for each sensor to localize other nodes. A distributed method
is preferred, where each node aims to estimate its own location
using local measurements and neighborhood communication. The
third example is a traffic network for a city or a highway system,
where each node or sub-system wants to estimate its local state
(e.g., traffic flow rates, delays, etc.). Due to the spatial correlations
of the traffic flows in different sub-systems, neighboring traffic in-
formation is certainly useful in predicting the traffic conditions at
each sub-system. Again, distributed estimation methods are pre-
ferred over centralized methods. Many other examples in sensor
networks can be found in, e.g., Ribeiro et al. (2010), Kar et al. (2012)
and Yang et al. (2010).

We first provide a fully distributed iterative algorithm for each
node to compute its own local estimate. This algorithm works for
a general connected network. Contrary to the method proposed in
Conejo et al. (2007), our algorithm guarantees that the compos-
ite estimate will converge asymptotically to the global WLS es-
timate. We then focus on the convergence rate of the algorithm.
Since our method is based on Richardson’s method for solving
systems of linear equations (Bertsekas & Tsitsiklis, 1997), its con-
vergence rate depends on certain scaling parameter and a pre-
conditioning matrix. Choosing the optimum scaling parameter
requires the knowledge of the largest and the smallest eigenval-
ues of certain positive definite matrix (the estimation error covari-
ance). A distributed algorithm for estimating these values can be
obtained using the power method (Bertsekas & Tsitsiklis, 1997).
However, to prevent numerical instability, this approach requires
periodically executing a normalization step, which needs to be
carried out in a distributed manner. In Yang et al. (2010), this is
done using average consensus. A drawback of this approach is that
consensus itself converges asymptotically. This significantly slows
down the convergence of the eigenvalue estimation. To avoid this,
we propose a different method in which normalization is done
locally, at each node, without inter-node communication. In this
way, the optimal scaling parameter can be obtained using a dis-
tributed method. We then address the problem of designing the
preconditioning matrix. Our distributed scenario constrains us to
use a block diagonal matrix. Choosing the optimal matrix under
this constraint, and using only distributed processing, is a very
challenging problem for which we are not able to provide a solu-
tion. Nevertheless,we are able to bound the difference between the
convergence rate achieved using the optimal matrix, and the con-
vergence rate resulting using a practically feasible matrix design.
This bound turns out to have a simple expression which depends
on the network connectivity. A shortened version of this method
appears in the conference paper (Marelli & Fu, 2013).

For an acyclic network (i.e., its communication graph contains
no loops), we provide a different iterative algorithm for distributed
estimation. As opposed to the previous algorithm, in this one,
the composite estimate is guaranteed to converge to the globally
optimal estimate in a finite number of steps. Indeed, we show that
the convergence time equals the diameter of the aforementioned
graph. Numerical experiments show that this method offers a
major reduction in convergence time.

The rest of paper is organized as follows. In Section 2 we
describe the distributed WLS estimation the problem. In Section 3
we derive the first distributed WLS method, which converges
asymptotically. In Section 3.1 we describe distributed methods for
finding the value of the scaling parameter which yields the fastest
convergence rate. In Section 3.2 we describe a sub-optimal choice
for preconditioning matrix, and we bound its sub-optimality. In
Section 4 we introduce the second distributed WLS method which
converges in finite time. Numerical experiments are presented in
Section 5, and concluding remarks are given in Section 6. For the
ease of readability, all proofs are contained in the Appendix.

Notation 1. For a vector x, ∥x∥ denotes its 2-norm, and [x]i denotes
its ith entry. For a matrix X, ∥X∥ denotes its operator (induced) norm.
For square symmetric matrices X and Y , X < Y means that matrix
Y − X is positive-definite. For vectors and matrices, the superscript T

denotes its transpose, and ∗ denotes its transpose conjugate.
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2. Problem description

Consider a network formed by I nodes. For each i = 1, . . . , I ,
Node i has an associated parameter vector xi ∈ Cdi , and measures
the vector yi ∈ Cpi , which is given by

yi =

I
j=1

Ai,jxj + vi, (1)

where vi ∼ N (0, Ri) denotes the measurement noise. The noises
vi and vj are statistically independent, whenever i ≠ j.

Let xT =

xT1, . . . , x

T
I


, yT =


yT1, . . . , y

T
I


, vT =


vT1 , . . . , v

T
I


,

R = diag {R1, . . . , RI} and A =

Ai,j

i,j=1,...,I . Then, we canwrite the

measurement model of the whole network as

y = Ax + v, (2)

with v ∼ N (0, R). The WLS estimator x̂ of x is defined by Kay
(1993, Eq. (8.14))

x̂ = argmin
x
(y − Ax)∗R−1(y − Ax).

Its solution is given by

x̂ = Ψ−1α (3)

with

α = A∗R−1y and Ψ = A∗R−1A.

For theWLS problem to be well defined, wemake the following
assumption:

Assumption 2. Matrix A has full column rank and R is non-
singular.

Computing (3) requires global information, i.e., all themeasure-
ments and the information about A and R need to be made avail-
able together. Our goal is to derive distributed methods in which
Node i computes the component x̂i of the estimate x̂, correspond-
ing to xi, using only the local measurement yi and information re-
ceived from its neighbors (a formal definition of neighborhoodwill
be given later).

In the rest of the paper we use the following notation:

Notation 3. Let Ii =

j : Aj,i ≠ 0


denote the set of nodes whose

measurements involve the parameters of Node i, and Oi =

j :

Ai,j ≠ 0

denote the set of nodes whose parameters are involved in

the measurements of Node i. Let Ni = Ii ∪ Oi be the neighborhood of
Node i. We also define Bi =


j : Ni ∩ Nj ≠ ∅


to be the set of nodes

whose neighborhood have a non-empty intersection with that of Node
i. Notice that Bi =


j : Ψi,j ≠ 0


.

3. Asymptotic method for WLS estimation

The distributed WLS method derived in this section uses the
following definition of neighbor node.

Definition 4. Node j is a neighbor of Node i if j ∈ Ni.

Also, the proposed method requires the following connectivity
assumption:

Assumption 5. For each i = 1, . . . , I , Node i can send/receive
information to/from all its neighbors. Also, Ai,j, for all j ∈ Oi, and Ri
are available at Node i.
Although ourmethodworks regardless of whether the network
is sparse or not, it works most efficiently for sparse networks. A
network is called sparse if the cardinality of Ni is small for all
i = 1, 2, . . . , I .

Consider any block diagonal positive definite matrix

Π = diag {Π1, . . . ,ΠI} (4)

withΠi ∈ Cdi×di , i = 1, . . . , I . Then define

Υ = Π1/2ΨΠ1/2 (5)

and choose

0 < γ < 2 ∥Υ ∥
−1 . (6)

Let α̃ = (γΠ)1/2 α and ˜̂x = (γΠ)−1/2 x̂. From (3) we have

˜̂x = (γΥ )−1 α̃.

From (6), 0 < γΥ < 2I . Hence, −I < γΥ − I < I and therefore
∥I − γΥ ∥ < 1. In view of this, we can use Richardson’s method
(Bertsekas & Tsitsiklis, 1997) to compute ˜̂x recursively. This leads
to

˜̂x(t + 1) = (I − γΥ ) ˜̂x(t)+ α̃. (7)

Then, by substituting the expressions of α̃ and ˜̂x, we obtain
straightforwardly

x̂(t + 1) = (I − γΠΨ ) x̂(t)+ γΠα. (8)

We call Π the preconditioning matrix, because, as it will be
explained in Section 3.2, it is used to increase the convergence rate
of the recursions (8).

Let

αi =


k∈Ii

α
(k)
i , (9)

with α(k)i = A∗

k,iR
−1
k yk, for k = 1, . . . , I , so that αT

=

αT
1 , . . . , α

T
I


.

Also, for i, j = 1, . . . , I , let

Ψi,j =


k:i,j∈Ok

Ψ
(k)
i,j , (10)

where Ψ (k)
i,j = A∗

k,iR
−1
k Ak,j, for all k = 1, . . . , I , so that Ψ =

Ψi,j

i,j=1,...,I . We have that


Ψ x̂(t)


i =

I
j=1

Ψi,jx̂j(t)

=

I
j=1


k:i,j∈Ok

Ψ
(k)
i,j x̂j(t)

=


k:i∈Ok


j∈Ok

Ψ
(k)
i,j x̂j(t)

=


k∈Ii


j∈Ok

Ψ
(k)
i,j x̂j(t). (11)

Then, from (8), (11) and (9), we obtain

x̂i(t + 1) = x̂i(t)− γΠi

I
j=1

Ψi,jx̂j(t)+ γΠiαi

= x̂i(t)− γΠi


k∈Ii


j∈Ok

Ψ
(k)
i,j x̂j(t)−


k∈Ii

α
(k)
i


. (12)

Notice that the matrices Ψ (k)
i,j are only available at Node k. That is,

Node k acts as an intermediary between Node j, which transmits
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x̂j(t), and Node i, which receives


j∈Ok
Ψ
(k)
i,j x̂j(t). This means that

node j should transmit x̂j(t) to all nodes k with j ∈ Ok, or
equivalently, to all nodes in Ij. However, Node j does not know
which nodes are in Ij. Thus, Node j simply transmits x̂j(t) to all
nodes in Nj, and it is up to the receiving Node k to detect whether
Node j ∈ Ok or not.

Following the discussion above, we obtain the following algo-
rithm to implement (12).

Algorithm 1 - distributed WLS estimation:
Initialization:
(1) For each k = 1, · · · , I and i ∈ Ok, Node k computes α(k)i and

sends it to Node i.
(2) On reception, Node i computes αi =


k∈Ii

α
(k)
i .

(3) For each i = 1, · · · , I , Node i sets x̂i(1) = 0.

Main loop: At time t ∈ N:
(1) For each j = 1, · · · , I and k ∈ Nj, Node j sends its current

estimate x̂j(t) to Node k.
(2) On reception, for each k = 1, · · · , I and i ∈ Ok, Node k sends

to Node i

x̌i,k(t) =


j∈Ok

Ψ
(k)
i,j x̂j(t).

(3) On reception, for each i = 1, · · · , I , Node i computes

x̂i(t + 1) = x̂i(t)− γΠi


k∈Ii

x̌i,k(t)− αi


.

To implement Algorithm 1, we need to design the scaling factor
γ and the preconditioning matrices Πi, for all i = 1, . . . , I . We
address these two tasks in Sections 3.1 and 3.2, respectively.

3.1. Distributed design of the scaling factor γ

In this section we study two approaches for designing the
scaling factor γ . In Section 3.1.1 we describe a distributed
algorithm which converges asymptotically to the optimal value
of γ , i.e., the resulting γ will achieve the maximum convergence
speed. In Section 3.1.2, we give another distributed algorithm
which converges in finite time to a sub-optimal value of γ .

3.1.1. Asymptotic algorithm for γ
In view of (7), the value of γ that maximizes the convergence

rate is

γ =
2

∥Υ ∥ +
Υ −1

−1 , (13)

because this is the value that minimizes ∥I − γΥ ∥. In order for
each node to find the value of γ given in (13), we need distributed
methods for finding ∥Υ ∥ and

Υ −1
−1. We give these methods

below. These methods yield, at Node i and time step t , estimates
Υ i(t) and Υ i(t), of ∥Υ ∥ and

Υ −1
−1, respectively. Then, at the

same node and time step, the estimate γi(t) of γ is obtained by

γi(t) =
2

Υ i(t)+ Υ i(t)
.

Distributed method for finding ∥Υ ∥:
Choose any vector b(0) ≠ 0 and let b(t) = Υ tb(0). Then, using

(11) withΠ1/2b(t) in place of x̂(t), we obtain at Node i,

bi(t + 1) = [Υ b(t)]i
= Π

1/2
i


ΨΠ1/2b(t)


i

= Π
1/2
i


k∈Ii


j∈Ok

Ψ
(k)
i,j Π

1/2
j bj(t), (14)
where bi(t) denotes the ith block component of b(t). Then, using
the power method (Bertsekas & Tsitsiklis, 1997), Node i can
asymptotically compute ∥Υ ∥ as follows

∥Υ ∥ = lim
t→∞

∥bi(t)∥
∥bi(t − 1)∥

. (15)

An inconvenience with the approach above is that b(t) either
increases or decreases indefinitely. To avoid this, the vector b(t)
can be periodically normalized. In Yang et al. (2010), this was
done using average consensus (in the continuous-time case). Aswe
mentioned in Section 1, we avoid the drawbacks of that method by
providing an alternative approach in which b(t) is normalized at
each node, and each iteration, without inter-node communication.
This algorithm is given below:

Algorithm 2 - distributed estimation of ∥Υ ∥: For each k =

1, · · · , I , Node k, chooses b̄k(1), with
b̄k(1) = 1 and sets ςk(1) =

1 and υ(k)i,j (1) = 1, for all i, j ∈ Nk. Then, at time t ∈ N:

(1) For each j = 1, · · · , I and k ∈ Nj, Node j sends
Π

1/2
j b̄j(t), ςj(t)


to Node k.

(2) On reception, for each k = 1, · · · , I and i ∈ Ok, Node k sends
b̌(k)i (t), ς̄

(k)
i (t)


to Node i, where

b̌(k)i (t) =


j∈Ok

υ
(k)
i,j (t)Ψ

(k)
i,j Π

1/2
j b̄j(t),

ς̄
(k)
i (t) = max

j∈Nk
υ
(k)
i,j (t),

and

υ
(k)
i,j (t) =

ςi(t)
ςj(t)

υ
(k)
i,j (t − 1).

(3) On reception, for each i = 1, · · · , I , Node i computes

b̄i(t + 1) = ςi(t + 1)b̃i(t + 1),

ςi(t + 1) = max
b̃i(t + 1)

 , ς̄ (k)i (t), k ∈ Ii

−1
,

with

b̃i(t + 1) = Π
1/2
i


k∈Ii

b̌(k)i (t). (16)

Also, the estimate Υ i(t) of ∥Υ ∥ is

Υ i(t) = ςi(t + 1)−1. (17)

The convergence of Algorithm 2 to ∥Υ ∥ is guaranteed by the
next theorem.

Theorem 6. Consider the network (1) together with Assumptions 2
and 5. Then, for each i ∈ {1, . . . , I},

lim
t→∞

Υ i(t) = ∥Υ ∥ . (18)

Distributed method for finding
Υ −1

−1:
Let c ≥ ∥Υ ∥ andΦ = cI − Υ . It follows thatΥ −1
−1

= eig (Υ )

= c − eig (Φ)
= c − ∥Φ∥ ,

where, for a symmetric matrix X , eig (X) and eig (X) denote the
smallest and largest eigenvalues of X , respectively. Hence, we can
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find
Υ −1

−1 by applying Algorithm 2 on Φ , to find ∥Φ∥. To this
end, at Node i and time t , we choose c = Υ i(t). This leads to the
following algorithm:

Algorithm 3 - distributed estimation of
Υ −1

−1: Apply
Algorithm 2 with (16) replaced by

b̃i(t + 1) = Υ i(t)b̄i(t)−Π
1/2
i


k∈Ii

b̌i,k(t),

and (17) replaced by

Υ i(t) = Υ i(t)− Φ i(t),

Φ i(t) = ςi(t + 1)−1.

3.1.2. Finite-time algorithm for γ
A sub-optimal design of γ can be achieved using the following

result.

Theorem 7. Condition (6) is satisfied by choosing γ so that

0 < γ <
2

max
i
φi
,

where

φi =


k∈Ii

υi,k,

υi,k =


j∈Ok

Π1/2
i Ψ

(k)
i,j Π

1/2
j

 .
The design of γ using Theorem 7 requires the global information
maxi φi. For each, i = 1, . . . , I , Node i can obtain φi from an
initialization stage in which it receives υi,k, from each Node k,
with k ∈ Ii. Then, maxi φi can be obtained by running the max-
consensus algorithm (Olfati-Saber & Murray, 2004), in parallel
with the estimation Algorithm 1. Notice that the max-consensus
algorithm converges in finite time.

3.2. Design of the preconditioning matrixΠ

Asmentioned above, for a given choice ofΥ , the fastest conver-
gence rate of Algorithm 1 is achieved when γ is chosen as in (13).
Under this choice of γ , we have that
∥I − γΥ ∥ = γ ∥Υ ∥ − 1

=
2 ∥Υ ∥

∥Υ ∥ +
Υ −1

−1 − 1

=
∥Υ ∥ −

Υ −1
−1

∥Υ ∥ +
Υ −1

−1

=
κ (Υ )− 1
κ (Υ )+ 1

,

where κ(Υ ) = ∥Υ ∥
Υ −1

 denotes the condition number of Υ .
Then, from (7), there exists K ≥ 0, such thatx̂ − x̂(t)

 ≤ K ∥I − γΥ ∥
t

= K exp

t log

κ (Υ )− 1
κ (Υ )+ 1


,

where we recall that x̂ denotes the global estimate of x, given by
(3). Then, we define the time constant τ(Υ ) of the distributedWLS
algorithm by

τ(Υ ) =
1

log κ(Υ )+1
κ(Υ )−1

. (19)
Hence, a natural question is whether the preconditioning matrices
Πi, i = 1, . . . , I , can be chosen so that τ(Υ ) is minimized. While
we are not able to answer this question, we have the following re-
sult, which follows using an argument similar to the one in Dem-
mel (1983, Theorem 2).

Theorem 8. If Πi = Ψ−1
i,i , for all i = 1, . . . , I , then

κ (Υ ) ≤ βκ⋆,

where

β = max
i

|Bi|,

κ⋆ = min
Π̃∈P

κ

Π̃1/2Ψ Π̃1/2 ,

with P denoting the set of positive definite block diagonal matrices
of the form (4).

Theorem 8 states that, if the preconditioning matrices Πi, i =

1, . . . , I , are chosen as

Πi = Ψ−1
i,i (20)

then κ(Υ ) is at most β times bigger than the smallest possible
value κ⋆ achievable using block diagonal preconditioningmatrices.
Notice that Bi =


j : Ii ∩ Ij ≠ ∅


⊆

j : Ni ∩ Nj ≠ ∅


. Hence, β

is bounded by the maximum number of two-hop neighbors over
the whole network. Hence, it does not necessarily grow with the
network size.

Now, we have

lim
κ→∞

κ log

κ + 1
κ − 1


= 2.

Hence, from Theorem 8, for large κ (Υ ), we have

τ (Υ ) ≃
κ (Υ )

2

≤
β

2
min
Π̃

κ

Π̃1/2Ψ Π̃1/2

≃ βτ⋆, (21)

where

τ⋆ = min
Π̃∈P

τ

Π̃1/2Ψ Π̃1/2 .

Hence, if Πi, i = 1, . . . , I , are chosen as in (20), and κ (Υ ) is
large, then the time constant τ (Υ ) is at most β times bigger than
the minimum value τ⋆.

Remark 9. In view of (20) and (10),

Πi =


k∈Ii

Ψ
(k)
i,i

−1

.

Hence, its computation requires the matrices Ψ (k)
i,i , k ∈ Ii, to be

transmitted from Node k to Node i during an initialization stage.

4. Finite-time method for WLS estimation

In thismethodwe replace the definition of neighborhood by the
following one:

Definition 10. Node j is a neighbor of Node i if j ∈ Bi.

Consequently, we replace the connectivity Assumption 5 by the
following one:
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Assumption 11. For each i = 1, . . . , I , Node i can send/receive
information to/from all its neighbors. Also, Ψj,i, for all j ∈ Bi, and
αi are available at Node i.

To illustrate the idea behind the proposed algorithm, we
consider a network with two nodes. The next lemma states how
to obtain the global optimal solution, at each node, in this simple
case.

Lemma 12. Consider the network (1) together with Assumption 2. If
there are only two nodes, labeled by a and b, then Ψa,a − Ψa,bΣ̌bΨb,a
is an invertible matrix and the global estimate x̂a of the components
xa associated to Node a is given by

x̂a = Σa

αa − Ψa,bx̌b


,

Σa =


Ψa,a − Ψa,bΣ̌bΨb,a

−1
,

where

x̌b = Σ̌bαb,

Σ̌b = Ψ−1
b,b .

Our next result is an immediate generalization of the one above,
to a network with a star topology, i.e., in which all nodes are only
possibly connected to a single one.

Lemma 13. Consider the network (1) together with Assumption 2.
Suppose that Ψj,k = 0, for all j, k ∈ {1, . . . , I} \ {i} and j ≠ k
(i.e., all nodes are only possibly connected to Node i). Then Ψi,i −

j∈Bi\{i}
Ψi,jΣ̌jΨj,i is an invertible matrix and x̂i is given by

x̂i = Σi


αi −


j∈Bi\{i}

Ψi,jx̌j


,

Σi =


Ψi,i −


j∈Bi\{i}

Ψi,jΣ̌jΨj,i

−1

,

where

x̌j = Σ̌jαj,

Σ̌j = Ψ−1
j,j .

Then, using (11), (9) and Lemma 13, we obtain the following
algorithm:

Algorithm 4 - distributed WLS estimation:
Initialization: For each i = 1, · · · , I ,

(1) Node i computes

x̌i(0) = Σ̌i(0)αi,

Σ̌i(0) = Ψ−1
i,i .

and for each j ∈ Bi \ {i},

x̌i,j(0) = x̌i(0),

Σ̌i,j(0) = Σ̌i(0).

Main loop: For each i = 1, · · · , I , and time t ∈ N

(1) Node i computes, for each j ∈ Bi \ {i},

γi,j(t) = Ψj,ix̌i(t − 1),

Γi,j(t) = Ψj,iΣ̌i(t − 1)Ψi,j,

and sends

γi,j(t),Γi,j(t)


to Node j.
(2) Node i computes

x̌i(t) = Σ̌i(t)


αi −


j∈Bi\{i}

γj,i(t − 1)


,

Σ̌i(t) =


Ψi,i −


j∈Bi\{i}

Γj,i(t − 1)

−1

,

and, for each j ∈ Bi \ {i},

x̌i,j(t) = Σ̌i,j(t)


αi −


j∈Bi\{i,j}

γj,i(t − 1)


,

Σ̌i,j(t) =


Ψi,i −


j∈Bi\{i,j}

Γj,i(t − 1)

−1

.

Our next step is to show that Algorithm 4 converges in finite
time to the global WLS solution.

Definition 14. Each pair (i, j), i, j ∈ {1, . . . , I}, is called an edge
if Ψi,j ≠ 0. A path is a concatenation of contiguous edges, and its
length is the number of edges forming it. For each i, j ∈ {1, . . . , I},
the distance di,j between Nodes i and j is defined as the minimum
length of a path joining these two nodes. The radius ρi of Node i is
defined as the maximum distance between Node i and any other
node in the network. The diameter of the network is the maximum
radius between all its nodes. A network is called acyclic if it does
not contain a path forming a cycle.

The next theorem states that, if the network is acyclic, then the
algorithm above yields the global estimate at each node in finite
time.

Theorem 15. Consider the network (1) together with Assumptions 2
and 11. If the network is acyclic, then, for each i ∈ {1, . . . , I}, j ∈

Bi \ {i} and t ∈ N, the matrices Ψi,i −


j∈Bi\{i}
Γj,i(t − 1) and

Ψi,i −


j∈Bi\{i,j}
Γj,i(t − 1) are invertible, and for all t ≥ ρi,

x̌i(t) = x̂i. (22)

5. Simulations

5.1. State estimation in power systems

In the first simulationwe use the proposed distributedmethods
for state estimation in smart electricity networks, involving multi-
area interconnected power systems (Huang et al., 2012). To this
end, we use the IEEE 118-bus test system, whose specifications
are given in Christie (1993). The system’s diagram is shown in
Fig. 1, where buses are represented by circles and lines by edges.
Some buses have a phasor measurement unit (PMU) installed.
These buses are shown in gray. Each PMU measures the voltage
of the bus where it is installed, as well as the currents of the
lines attached to that bus. The goal is to estimate the state vector
x, containing voltage (a complex phasor) at each bus. For the
purposes of state estimation, the buses are clustered in nodes. Two
clustering examples as shown in Tables 1 and 3.

Let P denote the number of PMUs in the whole system. For each
p = 1, . . . , P , let Lp denote the number of lines attached to the

bus where PMU p is installed. Let also BT
p =


eTp , y

T
p,1, . . . , y

T
p,Lp


,

where the vectors ep and yp,l, l = 1, . . . , Lp, are defined such that
epx is the voltage of the installation bus, and yp,lx is the current
of the p-th attached line (the value of yp,l is taken from Christie,
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Fig. 1. Diagram of the IEEE 118-bus test system.
Table 1
Nodes forming a cyclic network topology.

Node Buses

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 117
2 13, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 113, 114, 115
3 24, 38, 70, 71, 72, 73, 74
4 34, 35, 36, 37, 39, 40, 41, 42, 43
5 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 77, 80, 81, 100, 116
6 75, 76, 78, 79, 82, 95, 96, 97, 98, 118
7 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94
8 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112
1993). Then, matrix A in (2) is given by AT
=

AT
1, . . . , A

T
I


, where,

for each i = 1, . . . , I , the block of rows Ai corresponding to Node
i is formed by stacking the matrices Bp corresponding to all PMUs

contained in Node i, i.e., AT
i =


BT
p1 , . . . , B

T
pPi


, where p1, . . . , pPi

denote the indexes of those PMUs.
We place the PMUs using the method in Tai et al. (2013). This

guarantees that matrix A has full column rank. We also assume
that the noise covariance is R = σ 2I , with σ = 0.05. Notice that
voltage and current values in the test system are per unit values,
i.e., they appear divided by the nominal voltage V0 and the nominal
current I0, respectively. Hence, σ = 0.05 means that voltage
measurements have a standard deviation of 0.05 × V0 volts, and
current measurements have one of 0.05 × I0 amperes. This leads
to a global estimate x̂ having a relative estimation error of

e = 20 log10

x − x̂


∥x∥
= −17.45 dB. (23)

In the simulations below, we use

r(t) = 20 log10

x̂ − x̂(t)
x̂ , (24)

to measure the relative difference between the global estimate x̂
and the one yielded, at time step t , by the proposed distributed
algorithms.

5.1.1. Cyclic network topology
In the first simulation we cluster the buses into eight nodes, as

shown in Table 1. From the definition of Ni, it follows that j ∈ Ni
Fig. 2. Cyclic network topology induced by the nodes in Table 1.

if there is a bus in either, Node i or j, with a PMU installed, having
an attached line coming from a bus inside the other node. Fig. 2
shows the topology of the communication network induced by the
clustering given in Table 1.

Fig. 3 shows the convergence of the asymptotic method with-
out preconditioning. To this end, we show the modulus of the
estimated voltage of each bus at each step. We see that the con-
vergence is very slow, with a relative difference of r


106

=

−37 dB, between the global estimate and the one obtained by the
distributed algorithm at t = 106. The reason for the slow conver-
gence is that the condition number of Ψ is 478972. The precon-
ditioning matrix in (20) gives a condition number of 700, which
leads to a much faster convergence. This is shown in Fig. 4, where
r

2 × 103

= −52.47 dB. Fig. 5 shows that the convergence of the

estimation of ∥Υ ∥ and
Υ −1

−1, at each node, is much faster than
that of the WLS estimation algorithm. Finally, Table 2 shows the
complexity at each node. To this end, we measure the number of
multiplications in a whole cycle of Algorithms 1–3.



34 D.E. Marelli, M. Fu / Automatica 51 (2015) 27–39
Table 2
Complexity at each node, in number of multiplications per iteration, for the cyclic network topology.

Node 1 2 3 4 5 6 7 8

Complexity 5202 8613 10469 14848 26054 11810 14352 10628
Table 3
Nodes forming an acyclic network topology.

Node Buses

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 117
2 23, 25, 26, 27, 28, 29, 31, 32, 113, 114, 115
3 5, 16, 17, 18, 19, 20, 21, 22, 24, 30, 33, 34, 35, 36, 37, 39, 40, 71, 72, 73
4 38, 41, 42, 43, 44, 45, 46, 47, 48, 69, 70, 74, 75, 76, 77, 118
5 49, 50, 51, 54, 65, 66, 68, 78, 79, 80, 81, 82, 95, 96, 97, 98, 99, 116
6 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 67
7 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112
Fig. 3. Convergence of the asymptoticmethod, without preconditioning, in a cyclic
network.

Fig. 4. Convergence of the asymptotic method, with preconditioning, in a cyclic
network.

Fig. 5. Convergence of the distributed eigenvalue estimation algorithm.
Fig. 6. Acyclic network topology induced by the nodes in Table 3.

Fig. 7. Convergence of the asymptotic method (with preconditioning) in an acyclic
network.

5.1.2. Acyclic network topology
In the second simulation we do the clustering such that the

induced topology is acyclic. From the definition of Bi, it follows
that j ∈ Bi if there is a bus (possibly neither in Node i nor in j), with
a PMU installed, having one neighbor bus (i.e., a bus connected to
it via an attached line), including possibly itself, in each node, i and
j. The clustering and its induced topology are shown in Table 3 and
Fig. 6, respectively.

The convergence of the asymptoticmethod (with precondition-
ing) is shown in Fig. 7, with a final relative difference with the
global estimate of r


20 × 103

= −69.67 dB. In this case, we wait
for 100 steps before starting with the distributed estimation. The
gap caused by this delay can be seen at the beginning of the graph.
We introduced this late start so as to give time for Algorithm 2
and 3 to obtain reasonable approximations of ∥Υ ∥ and

Υ −1
−1,

respectively. We see that the asymptotic method presents an os-
cillating behavior between time steps 1500 and 3500. This is be-
cause the transients in the estimation of the scaling factor γ (t)
cause the recursions (8) to become temporarily unstable. We also
see that the asymptotic method requires about 20 × 103 steps to
converge. This is because in this case, preconditioning leads to a
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 0

Fig. 8. Convergence of the finite-time method (in an acyclic network).

Table 4
Complexity at each node, in a number ofmultiplications per iteration, for the acyclic
network topology.

Node Asymptotic method Finite-time method

1 4985 1912
2 3645 786
3 14088 4400
4 10400 2304
5 17802 3240
6 3891 1267
7 8919 8437

condition number of 5264. On the other hand, the convergence of
the finite-time method does not depend on the condition number,
but on the network diameter,which in this case is four. Fig. 8 shows
the convergence of this method in four steps, with a final error of
r (4) = −223.7 dB, caused by numerical inaccuracy.

Table 4 shows the complexity at each node. To this end,
we consider that solving the positive-definite linear system for
computing x̌i,j(t), using the Cholesky decomposition, requires
n3/3 + 2n2 multiplications (n3/3 for the decomposition and 2n2

for solving two triangular linear systems). Also, computing the
inverse of thematrix Σ̌i(t), using also the CholeskyDecomposition,
requires n3/2 multiplications (Krishnamoorthy & Menon, 2011).

5.2. Sensor localization

Sensor localization refers to the problem of obtaining the
locations of each node in a network, based on the knowledge of
the locations of a few anchor nodes, a well as the mutual distances
between neighbor nodes. A distributed method for carrying out
this task is proposed in Khan et al. (2009). This method requires
that, for each i = 1, . . . , I , Node i lies inside of at least one
triangle defined by three of its neighbors Ni = {j, k, l}. Then, the
coordinates xi of Node i can be written as

xi =


j∈Ni

ci,jxi,j, (25)

where the barycentric coordinates ci,j are given by

ci,j =
S (i ∪ Ni \ j)

S (Ni)
,

with S(i, j, k) denoting the area of the triangle formed by Nodes
i, j and k. The latter can be computed using the Cayley–Menger
determinant as follows

S2 (i, j, k) = −
1
16


0 1 1 1
1 0 d2i,j d2i,k
1 d2i,j 0 d2j,k
1 d2i,k d2j,k 0

 ,
Fig. 9. Node positions and estimates.

Fig. 10. Convergence of the node coordinate estimates.

where di,j =
xi − xj

 denotes the distance between Nodes i
and j.

For each i = 1, . . . , I , we have one equation of the form (25), for
each triangle containing Node i. We assume that N such triangles
exist for each node. Hence, we have N × I equations. Let xi ∈ R2,
i = 1, . . . , I , denote thenode coordinates and aj ∈ R2, j = 1, . . . , J ,
denote those of the anchor nodes. Let also xT =


xT1, . . . , x

T
I


and

aT =

aT1, . . . , a

T
J


. Then, the aforementioned N × I equations can

be written as

x = (C ⊗ I2) x + (D ⊗ I2) a,

or equivalently,

y = Ax, (26)

with y = (D ⊗ I2) a and A = I − C ⊗ I2. Due to inaccuracy in
distance measurements, (26) can be approximately expressed as
in (2). In that case, we can use our proposed distributed method to
obtain, at each node, a WLS estimation of its coordinates.

The experiment setup is shown in Fig. 9. It includes three an-
chor nodes, defining a triangle containing I = 20 randomly placed
nodes. We use a noise covariance matrix R = σ 2Id, where Id de-
notes the identity matrix, and σ =

√
10−3 ≃ 31.62 centimeters.

With this setup, the global estimate x̂ yields a relative localization
error of e = −33.39 dB, defined as in (23). The convergence of
the coordinate estimates at each node, using the proposedmethod,
with preconditioning, is shown in Fig. 10. As before, we wait for 10
steps before starting the iterations, to give time for Algorithms 2
and 3 to obtain reasonable approximations of ∥Υ ∥ and

Υ −1
−1,

respectively. The convergences of these estimates are shown in
Fig. 11. Finally, the complexity at each node is shown in Table 5.

For comparison, we also consider the distributed iterative
localization algorithm (DILOC) proposed in Khan et al. (2009). This
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Table 5
Complexity at each sensor node, in a number of multiplications per iteration.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Complexity 170 282 282 426 170 282 602 602 282 426 282 426 282 170 170 426 426 426 426 426
Fig. 11. Convergence of the estimated eigenvalues.

Fig. 12. Relative difference with the global estimate x̂ vs. iteration t .

method solves (26) using Richardson’s recursions to invert matrix
A. This requires that N = 1, i.e., only one equation of the form
(25) is considered for each node. In this case, the recursions are
guaranteed to converge because, as the authors show, ∥I − A∥ < 1
holds in this problem. Fig. 12 shows the evolution of the relative
difference r(t) (defined as in (24)) between the estimates of each
method, and the global estimate x̂. We see that the DILOC method
has a faster convergence. This is because the condition number of A
is smaller than that of A∗R−1A, which is the matrix inverted by our
proposed method. However, at t = 500, the DILOC method yields
r(500) = −29.44 dB, while the proposed one gives r (500) =

−72.71 dB. This difference results from the fact that the DILOC
method does not produce the WLS solution on the limit.1

6. Conclusion

We proposed two methods for weighted least squares estima-
tion in large-scale systems. Both methods converge to the global
solution and aim to maximize the convergence speed. The first
method converges asymptotically and involves a distributed es-
timation of the scaling parameter upon which the convergence

1 Notice that, in the scenario considered in this work, noisy inter-node distances
are only measured once, and they remain unchanged during the whole iteration
process. This is in contrast to the scenario considered in Khan et al. (2009), where
these distances are re-measured at each iteration.
speed depends. To further speed up the convergence, we also
use a practically feasible preconditioning method, for which we
bounded the speed difference with respect to the fastest theoret-
ically achievable. The second proposed method has an even faster
convergence, as it achieves the global optimal in finite time. How-
ever, it is only suitable for applications where the graph produced
by the communication network contains no loops.

Appendix A. Proofs of Section 3

A.1. Proof of Theorem 6

Fix t ∈ N. Let ki(t) ∈ R and

b̄i(t) = ki(t)bi(t). (A.1)

From (14), we have

b̄i(t + 1) =
ki(t + 1)
ki(t)

Π
1/2
i


k∈Ii


j∈Ok

ki(t)
kj(t)

Ψ
(k)
i,j Π

1/2
j b̄j(t).

Let ki(0) = 1 and

ςi(t) =
ki(t)

ki(t − 1)
,

so that

ki(t) =

t
τ=1

ςi(τ ).

Then,

b̄i(t + 1) = ςi(t + 1)b̃i(t + 1), (A.2)

with

b̃i(t + 1) = Π
1/2
i


k∈Ii


j∈Ok

υi,j(t)Ψ
(k)
i,j Π

1/2
j b̄j(t),

υi,j(t) =

t
τ=1

ςi(τ )

ςj(τ )
.

We need to design ki(t + 1), or equivalently ςi(t + 1), to avoid
the indefinite increase or decrease of b(t). In principle, this could
be achieved by choosing

ki(t) = ∥bi(t)∥−1 ,

so that
b̄i(t) = 1, for all t ∈ N. From (A.2), this would lead to

ςi(t + 1) =

b̃i(t + 1)
−1

.

However, the question then arises as to whether some of the
scalars υi,j(t)would grow to infinity. Notice that

υi,j(t) =
ki(t)
kj(t)

.

Hence, this could only happen if some vector in the eigenspace
associated to the largest eigenvalue of Υ has zero components
in the entries corresponding to bj(t). We call a matrix satisfying
this property, ill-posed. Although the set of ill-posed matrices is
nowhere dense, (i.e., it is unlikely to have an ill-posed matrix Υ ),
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we can avoid the indefinite growth of υi,j(t) by choosing ςi(t + 1)
so that

b̄i(t + 1)
 ≤ 1 and, for all j ∈ Bi =


j : Ψi,j ≠ 0


,

ςi(t + 1)υi,j(t) ≤ 1.
This leads to

ςi(t + 1) = min
b̃i(t + 1)

−1
, υ−1

i,j (t), j ∈ Bi


= max

b̃i(t + 1)
 , υi,j(t), j ∈ Bi

−1
.

From (15) and (A.1), the estimate Ῡi(t) of ∥Υ ∥ at t is

Ῡi(t) =
∥bi(t)∥

∥bi(t − 1)∥

= ς−1
i (t)

b̄i(t)b̄i(t − 1)
 .

However, if Υ is ill-posed,
b̄i(t) will tend to zero. In such case,

Ῡi(t) can be computed by

Ῡi(t) = ς−1
j (t)

b̄j(t)b̄j(t − 1)
 ,

for some neighbor node j for which
b̄j(t) does not tend to zero.

Notice that such a neighbor always exists, for otherwise Node i
would be isolated from all other nodes.

A.2. Proof of Theorem 7

We need use the following result.

Lemma 16. Let M =

Mi,j


i,j=1,...,I be a block symmetric matrix.

Then

∥M∥ ≤ max
i
ψi,

where

ψi =

I
j=1

Mi,j
 .

Proof. Let y = Mx, with x = [x1, . . . , xI ] and y = [y1, . . . , yI ]. We
have

∥yi∥ ≤

I
j=1

Mi,j
 xj

=

I
j=1

Mi,j
1/2 Mi,j

 xj21/2
≤


I

j=1

Mi,j
1/2  I

j=1

Mi,j
 xj21/2

.

Let ψ = maxi ψi. Then,

∥y∥2
=

I
i=1

∥yi∥2

≤

I
i=1


I

j=1

Mi,j
 I

j=1

Mi,j
 xj2

≤ ψ

I
i=1

I
j=1

Mi,j
 xj2

≤ ψ2
I

j=1

xj2
= ψ2

∥x∥2 ,

and the result follows.
Proof of Theorem 7. Using Lemma 16 we have

∥Υ ∥ ≤ max
i
ψi,

with

ψi =

I
j=1

Π1/2
i Ψi,jΠ

1/2
j


=

I
j=1

 
k:i,j∈Ok

Π
1/2
i Ψ

(k)
i,j Π

1/2
j


≤

I
j=1


k:i,j∈Ok

Π1/2
i Ψ

(k)
i,j Π

1/2
j


=


k∈Ii


j∈Ok

Π1/2
i Ψ

(k)
i,j Π

1/2
j

 .
Hence,

∥Υ ∥ ≤ max
i
φi,

and the result follows.

A.3. Proof of Theorem 8

We need the following lemma.

Lemma 17. If M =


I C
C∗ I


≥ 0, then ∥C∥ ≤ 1.

Proof. Let uT
=

xT yT


. Then, for any u,

u∗Mu = ∥x∥2
+ ∥y∥2

+ 2yTCx
≥ 0.

Choose x and y such that ∥x∥ = ∥y∥ = 1 and y∗Cx = −∥C∥. Then,
the inequality above becomes 1− ∥C∥ ≥ 0, and the result follows.

Proof of Theorem 8. Recall that Π = diag {Π1, . . . ,ΠI} and let
D = Π̃Π−1, with Π̃ ∈ P . Then,

Π̃1/2Ψ Π̃1/2
= D1/2Υ D1/2,

and we have

κ

Π̃1/2Ψ Π̃1/2

= κ

D1/2Υ D1/2

= κ2 (Υ D)1/2

. (A.3)

Let σ (A) and σ (A) denote the largest and smaller singular values
of A, respectively. Now

σ

(Υ D)1/2


= max

x≠0

(Υ D)1/2 x


∥x∥

= max
x≠0

Υ 1/2x
D−1/2x


≥

Υ 1/2x0
D−1/2x0
 ,

for any x0 ≠ 0. Similarly,

σ

(Υ D)1/2


≤

Υ 1/2y0
D−1/2y0
 ,
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for any y0 ≠ 0. Let x0 and y0 have unit norm and be such that
D−1/2x0 = σ


D−1/2


x0 and Υ 1/2y0 = σ


Υ 1/2


y0. Then,

κ

(Υ D)1/2


=
σ

(Υ D)1/2


σ

(Υ D)1/2


≥

D−1/2y0


σ

D−1/2

 Υ 1/2x0


σ

Υ 1/2


≥

Υ 1/2x0


σ

Υ 1/2

 .
Now, since D−1/2 is block diagonal, x0 can be chosen so that its
nonzero components correspond to only one block ofD−1/2. Let x0,b
denote the entries of x0 in that block, andΥ 1/2

b denote the columns
of Υ 1/2 corresponding to the same block. Then,Υ 1/2x0

2 =

Υ 1/2x0
∗
Υ 1/2x0


=

x∗

0,bΥ
1/2
b Υ

1/2
b x0,b


=
x∗

0,bx0,b


= ∥x0∥2

= 1.

Then,

κ

(Υ D)1/2


≥

1
σ

Υ 1/2


=
κ

Υ 1/2


σ

Υ 1/2

 .
Let Υ =


Υi,j

i,j=1,...,I be the block partition of Υ . From Lemma 17,Υi,j

 ≤ 1, for all i, j = 1, . . . , I . Then, from Lemmas 16 and 17

σ (Υ ) ≤ max
i

I
j=1

Υi,j


≤ max
i

|Bi|

= β.

Hence, from (A.3),

κ

Π̃1/2Ψ Π̃1/2

≥
κ (Υ )

σ (Υ )

≥
κ (Υ )

β
.

The result follows since the inequality above holds for any Π̃ .

Appendix B. Proofs of Section 4

Proof of Lemma 12. From Kailath, Sayed, and Hassibi (2000,
A.1(v)), we have Ψa,a − Ψa,bΣ̌bΨb,a and Ψb,b − Ψb,aΨa,aΨa,b are
invertible, and

Ψ−1
=


Σa −ΣaΨa,bΨ

−1
b,b

−ΣbΨb,aΨ
−1
a,a Σb


with Σa = (Ψa,a − Ψa,bΨ

−1
b,b Ψb,a)

−1 and Σb = (Ψb,b − Ψb,a

Ψ−1
a,a Ψa,b)

−1. The result then follows from (3).

Proof of Lemma 13. Follows immediately by applying Lemma 12
with xa = x1 and xTb = [x2, . . . , xI ].

Before proving Theorem 15, we introduce some notation.
Notation 18. For each i ∈ I = {1, . . . , I}, and j ∈ Bi, let Mi(0) =

Mj,i(0) = {i}. Then, for each t ∈ N, define recursively the following
two sequences of sets

Mi(t) =


k∈Mi(t−1)

Bk,

Mj,i(t) =


k∈Mj,i(t−1)

Bk \ {j}.

I.e., Mi(t) is the set of indexes of nodes which are t edges away from
Node i, and Mj,i(t) is the set resulting after removing from Mi(t) the
indexes of those nodes which are linked to Node i through Node j. For
each t ∈ N0 = N ∪ {0} and i ∈ I, let ξ Ti (t) =


xTk : k ∈ Mi(t)


,

ξ Ti,j(t) =

xTk : k ∈ Mi,j(t)


, Ωi(t) =


Ak,l

k∈I,l∈Mi(t)

and Ωi,j(t) =
Ak,l

k∈I,l∈Mi,j(t)

. Also, let

ξ̂i(t),Ξi(t)


be the WLS solution of the

reduced system

y = Ωi(t)ξi(t)+ v, (B.1)

i.e.,

ξ̂i(t) = Ξi(t)Ω∗

i (t)R
−1y

Ξi(t) =

Ω∗

i (t)R
−1Ωi(t)

−1

and

ξ̂i,j(t),Ξi,j(t)


be WLS the solution of

y = Ωi,j(t)ξi,j(t)+ v.

Proof of Theorem 15. Suppose that, at time t ∈ N, and for each
i ∈ I and j ∈ Bi \ {i}, Node i is able to compute the compo-
nents


x̌i(t), Σ̌i(t)


, corresponding to the state xi, of the solution

ξ̂i(t), Ξ̂j(t)

, and the components


x̌i,j(t), Σ̌i,j(t)


, correspond-

ing to the same state, of

ξ̌i,j(t), Ξ̌i,j(t)


. Since the network is

acyclic, for each i ∈ I and each t ∈ N, we have

Mi(t + 1) = {i} ∪


j∈Bi\{i}

Mi,j(t).

Then, given that Node i receives γi,j(t) and Γi,j(t), from each j ∈

Bi \{i}, |Bi|−1 applications of Lemma 13 (|S| denotes the number
of elements in the set S), gives that Ψi,i −


j∈Bi\{i}

Γj,i(t − 1) is in-

vertible, andNode i is able to compute

x̌i(t + 1), Σ̌i(t + 1)


. Also,

|Bi| − 2 applications of Lemma 13 give that, for each j ∈ Bi \ {i},
Ψi,i −


j∈Bi\{i,j}

Γj,i(t − 1) is invertible and Node i can compute
x̌i,j(t + 1), Σ̌i,j(t + 1)


. Then, the result follows after initializing

the induction above using

x̌i(0), Σ̌i(0)


, at each i ∈ I, for which

no information exchange is required.
At each t ∈ N0 and i ∈ I,


x̌i(t), Σ̌i(t)


is the WLS solution

of the sub-system (B.1). Since (B.1) is obtained by considering only
the nodes in Mi(t), and Mi(t) = I, for all t ≥ ρi, (22) follows.
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