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a b s t r a c t

This paper is concerned with optimal filter problems for networked systems with random transmission
delays, while the delay process is modeled as a multi-state Markov chain. By defining a delay-free obser-
vation sequence, the optimal filter problems are transformed into ones of theMarkov jumping parameter
system.We first present an optimal Kalman filter,which iswith time-varying, path-dependent filter gains,
and the number of the paths grows exponentially in time delay. Thus an alternative optimalMarkov jump
linear filter is presented, in which the filter gains just depend on the present value of the Markov chain.
Further, an optimal filter with constant-gains is developed, the existence condition for the stabilizing so-
lutions to the filter is given, and it can be shown that the proposed Markov jump linear filter converges
to the constant-gain filter under appropriate assumptions.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In networked systems, data travels through different networks.
It may suffer a time delay or may be lost completely due to some
reasons such as data collisions, transmission errors and network
congestion (Zhang & Yu, 2008). These phenomena will deteriorate
the performance of the controllers and filters if they are not con-
sidered in the design procedure. Many researchers have studied
the filter design for systems with packet losses. Recently, Kalman
filtering for systemswith intermittent observations was studied in
Sinopoli et al. (2004). The stability of the Kalman filter in relation
to the data arrival rate was investigated. It was shown that there
existed a critical data arrival rate for an unstable system so that
the mean filtering error covariance would be bounded for any ini-
tial condition. Further, less restrictive conditionswere presented in
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Kar, Sinopoli, andMoura (2012). In You, Fu, and Xie (2011), the sta-
bility of Kalman filtering with Markovian packet losses was stud-
ied. The stability criteria were expressed by simple inequalities in
terms of the largest eigenvalue of the open loop matrix and transi-
tion probabilities of theMarkov process. In Sun, Xie, Xiao, and Chai
Soh (2008), a multiple packet dropout modeling method has been
presented, and an optimal linear estimator was computed recur-
sively in terms of a Riccati difference equation.

For the state estimation of systems with independent random
sensor delays, several results have been developed in Shi, Xie,
and Murray (2009), Shen, Wang, Shu, and Wei (2009) and Wang,
Ho, and Liu (2004) under different criteria, where the random
delays were described as a set of distributed Bernoulli variables.
Further, the relevant estimation results for systems with corre-
lated transmission delays can be found in Han and Zhang (2009)
where the process was modeled as a two-state Markov chain. In a
very recent study, optimal filtering problems Sahebsara, Chen, and
Shah (2007), Schenato (2008) and the Robust H∞ filtering prob-
lem (Dong, Wang, & Gao, 2010) associated respectively with pos-
sible delay, uncertain observations and multiple packet dropouts
were studied under a unified framework, respectively. It should
be pointed out that there exist few results on multiple Markovian
delayed systems, and few results considered the convergence and
stability issues. Thismotivates us to study this interesting and chal-
lenging problem.

This paper studies the optimal filtering problems for networked
systems with random observation delays. The delay process is
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modeled as a multi-state Markov chain which incorporates the
packet losses naturally. A new delay-free observation sequence is
first defined to denote the received observations, and thus the fil-
tering problems can be converted into ones of a delay-free system
with jumping parameters. An optimal linear mean square filter is
presented based on the innovation analysis method, in which the
filter gains are time-varying and sample path dependent. However,
the convergence analysis to this filter is difficult. Alternatively, an
optimal Markov jump linear filter is presented, in which the fil-
ter gains are just dependent on the present value of the Markov
chains, but not the entire mode history. And at each time, just r̄
filter gains are derived (where r̄ is the maximum delay step). As
a low-complexity solution, we further design a stationary Markov
jump linear filter. The existence conditions for the stabilizing solu-
tions to the filter are presented, and by a product, we show that the
optimalMarkov jump linear filter converges to the stationary filter.
Notations: Throughout this paper, Rn denotes the n-dimensional
Euclidean space, B(Rn, Rm) denotes the norm bounded linear
space of all m × n matrices with B(Rn) = B(Rn, Rn). For L ∈

B(Rn), L′ stands for the transpose of L. As usual, L ≥ 0(L > 0)
will mean that the symmetric matrix L ∈ B(Rn) is positive semi-
definite (positive definite), respectively. We set B(Rn)+ = {L ∈

B(Rn); L = L′
≥ 0}. In addition, we denote Hm,n

= {V =

(V0, . . . , Vr̄+1), Vi ∈ B(Rn, Rm)}, and define Hn
= Hn,n, Hn+

=

{V = (V0, . . . , Vr̄+1) ∈ Hn
; Vi ∈ B(Rn)+, i = 0, . . . , r̄ + 1}. For

any Banach space X, we denote B(X) as the Banach space of all
bounded linear operators of X into X, and set rσ (T ) the spectral
radius of T ∈ B(X). Moreover, 1{.} stands for the Dirac measure.

2. Problem formulations and preliminaries

2.1. Problem formulations

Consider the following discrete-time systems
x(k + 1) = Ax(k) + Cw(k), x(0) = x0, (1)
z(k) = Hx(k) + Gv(k), (2)
where x(k) ∈ Rn is the state sequence, z(k) ∈ Rm is the out-
put sequence, w(k) ∈ Rp is the system noise, and v(k) ∈ Rq is
the output noise. The initial state x0, w(k) and v(k) are null mean
second-order independent wide sense stationary sequences with
covariancematrices V , Ip and Iq, respectively. x0, w(k) and v(k) are
mutually independent, and GG′ > 0.

The measurement z(k) is time-stamped, and transmitted
through a communication network. Let r(k) denote the transmis-
sion delay of themeasurement z(k), where r(k) is of aMarkov pro-
cess, and takes values in a finite state space {0, 1, . . . , r̄, ∞}.When
r(k) = i (i = 0, . . . , r̄), it means that z(k)will be received within r̄
time steps. If the measurement is transmitted to the receiver with
a delay larger than r̄ , it will be considered as one lost completely.
And for this case, the random delay is set to be ∞. For the conve-
nience of discussions, we introduce an index η to denote the delay
steps, and define ηi = i for i = 0, 1, . . . , r̄ and ηr̄+1 = ∞. De-
note the transition probability matrix of r(k) as Λ = [(λij)], where
λij , Prob(r(k + 1) = ηj|r(k) = ηi) (i, j = 0, . . . , r̄, r̄ + 1), and
set π(k) = [π0(k) . . . πr̄(k), πr̄+1(k)]′ with πi(k) , Prob(r(k) =

ηi) (i = 0, . . . , r̄, r̄ + 1), then π(k) and Λ satisfy the Kolmogorov
difference equation π(k + 1) = Λ′π(k). We assume that r(k) is
independent of x0, w(k) and v(k).

Given the above statement, we know that the possible received
observations at time k are
φk,0z(k − 0) = φk,0Hx(k − 0) + φk,0v(k − 0), (3)

φk,1z(k − 1) = φk,1Hx(k − 1) + φk,1v(k − 1), (4)
...

φk,r̄z(k − r̄) = φk,r̄Hx(k − r̄) + φk,r̄v(k − r̄), (5)
where

φk,i ,


1, if z(k − i) is received at the time k;
0, if z(k − i) is not received at the time k, (6)

for i = 0, 1, . . . , r̄ . Actually, φk+i,i (i = 0, 1, . . . , r̄) is the indicator
function of r(k), and φk+i,i = 1 represents the fact that the output
z(k) will be observed at the time k + i subject to random delay i.
As is well known, in a real-time control system, the output z(k) can
only be observed atmost one time, and thusφk+i,i (i = 0, 1, . . . , r̄)
must satisfy the following relation

φk+i,i φk+j,j = 0, i ≠ j. (7)

Let

y(k) = col{φk,0z(k − 0), . . . , φk,r̄z(k − r̄)}, (8)

φk = col{φk,0 . . . φk,r̄}, (9)

then the filtering problems considered in this paper can be stated
as:

Problem 1 (Optimal Kalman Filter). Given the observations
{y(s)|0≤s≤k} and the information {φs|0≤s≤k}, find an optimal linear
minimum mean square error (LMMSE) filter x̂o(k|k) of the state
x(k), such that

E{∥x(k) − x̂o(k|k)∥|y(0), . . . , y(k); φ0, . . . , φk} (10)

is minimized, while the filter gain is stochastic.

Problem 2 (Optimal Markov Jump Filter). Given the observations
{y(s)|0≤s≤k} and the present-time value of φk, find an optimal
recursive Markov jump linear (MJL) filter x̂e(k|k) of the state x(k),
such that

E{∥x(k) − x̂e(k|k)∥|y(0), . . . , y(k); φk} (11)

is minimized, while the filter gain is deterministic.

Problem 3 (StationaryMarkov Jump Filter).Given the observations
{y(s)|0≤s≤k} and the present-time value of φk, find a stationary MJL
filter x̂(k|k) of the state x(k), such that

E{∥x(k) − x̂(k|k)∥|y(0), . . . , y(k); φk} (12)

is minimized, while the filter gain is constant.

Remark 1. As for the three problems, the filter developed in Prob-
lem 1 has the smallest linear minimum mean square error com-
pared to the latter two filters, but the filter gain to this filter is
stochastic, and thus the performance analysis for this filter is dif-
ficult. The filter developed in Problem 3 is with constant gains,
and thus less on-line computation is required. Compared to the
proceeding two filters, this filter has the largest estimation error
covariance. The filter developed in Problem 2 is in between. The
precise definitions to the three problems will be given below.

2.2. Preliminaries

Now we rearrange the observations received up to time k, and
define a new sequence

y(s, r̄) , col{φs+0,0z(s), . . . , φs+r̄,r̄z(s)}, 0 ≤ s ≤ k − r̄, (13)
y(s, k − s) , col{φs+0,0z(s), . . . , φk,k−sz(s), 0, . . . , 0},

k − r̄ < s ≤ k. (14)

It can be shown that {{y(s, r̄)}k−r̄
s=0; {y(s, k − s)}ks=k−r̄+1} is a delay-

free sequence, and contains the same information as that of
{{y(s)}ks=0} (Han & Zhang, 2009).
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For 0 ≤ s ≤ k − r̄ , define

θ(s, r̄) , col{φs+0,0, . . . , φs+r̄,r̄}. (15)

We know from (7) that only one element of φs+i,i(i = 0, 1, . . . , r̄)
is equal to 1 at most, so θ(s, r̄) will take values in the finite set

S(r̄) = {e0(r̄), . . . , ei(r̄), . . . , er̄(r̄), er̄+1(r̄)},

where ei(r̄) (i = 0, 1, . . . , r̄) is an (r̄ + 1) × 1-vector with all its
components null except for the (i + 1)th which is equal to one,
and er̄+1(r̄) is an (r̄ + 1) × 1-vector with all elements being zeros.
It can be seen that θ(s, r̄) = ei(r̄) represents the fact that the
output z(s) transmitted through the communication networkwith
random delay r(s) = ηi. That means θ(s, r̄) is a Markov chain and
has the same probability distribution and transition probability
matrix as r(s).

For k − r̄ < s ≤ k, define

θ(s, k − s) , col{φs+0,0, . . . , φk,k−s, 0, . . . , 0}. (16)

Similarly, atmost one element ofφs+i,i (i = 0, 1, . . . , k−s) is equal
to 1, so θ(s, k − s) will take values in the finite set

S(k − s) = {e0(k − s), . . . , ek−s(k − s), . . . , er̄+1(k − s)},

where ei(k − s) (i = 0, 1, . . . , k − s) is an (r̄ + 1) × 1-vector with
all its components null except for the (i + 1)th which is equal to
one, and ei(k− s) (i = k− s+1, . . . , r̄ +1) is an (r̄ +1)×1-vector
with all elements being zeros. Obviously, θ(s, k − s) = ei(k − s)
represents the fact that the output z(s) transmitted through the
communicationnetworkwith randomdelay r(s) = ηi, so θ(s, k−s)
has the same probability distribution and transition probability
matrix as r(s).

In view of (15) and (16), the observation equations for (13) and
(14) can be written as

y(s, r̄) = H(θ(s, r̄))x(s) + G(θ(s, r̄))v(s), 0 ≤ s ≤ k − r̄, (17)

y(s, k − s) = H(θ(s, k − s))x(s)
+G(θ(s, k − s))v(s), k − r̄ < s ≤ k, (18)

where

H(θ(s, r̄)) = θ(s, r̄) ⊗ H,

G(θ(s, r̄)) = θ(s, r̄) ⊗ G,

H(θ(s, k − s)) = θ(s, k − s) ⊗ H,

G(θ(s, k − s)) = θ(s, k − s) ⊗ G.

For the convenience of discussions, we set ι = min{r̄, k − s}.
Note that H(θ(s, ι)) and G(θ(s, ι)) are block matrices partitioned
according to the elements of θ(s, ι) respectively, and will take
values in the following set

H(θ(s, ι)) ∈ {H0(ι),H1(ι), . . . ,Hr̄+1(ι)},

G(θ(s, ι)) ∈ {G0(ι),G1(ι), . . . ,Gr̄+1(ι)},

whereHi(ι) (or Gi(ι), i = 0, 1, . . . , ι) is a blockmatrix with dimen-
sionm(r̄+1)×n (orm(r̄+1)×q) and all entries being zeros except
for the (i + 1)th block-row being H (or G), i.e.

Hi(ι) =

 i blocks  
0, . . . , 0,H ′, 0 . . . , 0  

r̄+1 blocks

′

, i = 0, 1, . . . , ι,

Gi(ι) =

 i blocks  
0, . . . , 0,G′, 0 . . . , 0  

r̄+1 blocks

′

, i = 0, 1, . . . , ι,

and Hi(ι) (or Gi(ι), i = ι + 1, . . . , r̄ + 1) is with the dimension of
m(r̄ + 1) × n (orm(r̄ + 1) × q) and has all entries being zeros.

In view of (17) and (18), we know that the estimation problems
for random delayed systems can be converted into ones of MJL
systems without delays.
3. Optimal Kalman filter

In this section, we will design an optimal LMMSE filter x̂o(k|k)
of the state x(k) via the projection formula, where

x̂o(k|k) , E{x(k)|y(0, r̄), . . . , y(k, 0); θ(0, r̄), . . . , θ(k, 0)}.

According to Problem 1, we now present the following definition.

Definition 2. Consider the given time k. For 0 ≤ s ≤ k − r̄ , the
LMMSE estimator of x(s) is defined as

x̂o(s, r̄) , E{x(s)|y(0, r̄), . . . , y(s − 1, r̄);
θ(0, r̄), . . . , θ(s − 1, r̄)},

while its error covariance matrix P(s, r̄) is defined as

P(s, r̄) , E{(x(s) − x̂o(s, r̄))(x(s) − x̂o(s, r̄))′

|y(0, r̄) . . . , y(s − 1, r̄); θ(0, r̄), . . . , θ(s − 1, r̄)}.

For k − r̄ < s ≤ k, the LMMSE estimator of x(s) is defined as

x̂o(s, k − s + 1) , E{x(s)|y(0, r̄), . . . , y(s − 1, k − s + 1);
θ(0, r̄), . . . , θ(s − 1, k − s + 1)},

while its error covariance matrix P(s, k − s + 1) is defined as

P(s, k − s + 1) , E{(x(s) − x̂(s, k − s + 1))(x(s)
− x̂(s, k − s + 1))′|y(0, r̄), . . . , y(s − 1, k
− s + 1); θ(0, r̄), . . . , θ(s − 1, k − s + 1)}.

Then the LMMSE estimation can be derived as:

Theorem 3. Consider the system (1), (17) and (18), the LMMSE
estimation x̂o(k|k) is given by

x̂o(k|k) = x̂o(k, 1) + φk,0K(k)(z(k) − Hx̂o(k, 1)), (19)

where K(k) is the solution to the following equation

K(k) = P(k, 1)H ′(HP(k, 1)H ′
+ GG′)−1, (20)

and x̂o(k, 1) is computed by the following steps.
• Step 1 For 0 ≤ s ≤ k − r̄ , calculate x̂o(s, r̄)

x̂o(s + 1, r̄) = Ax̂o(s, r̄) +

r̄
i=0

φs+i,iK(s)(z(s)

−Hx̂o(s, r̄)), x̂o(0, r̄) = 0, (21)

where

K(s) = AP(s, r̄)H ′(HP(s, r̄)H ′
+ GG′)−1, (22)

P(s + 1, r̄) = AP(s, r̄)A′
−

r̄
i=0

φs+i,iK(s)HP(s, r̄)A′
+ CC ′,

P(0, r̄) = V . (23)

• Step 2 For k − r̄ < s ≤ k, calculate x̂o(s + 1, k − s)

x̂o(s + 1, k − s) = Ax̂o(s, k − s + 1) +

k−s
i=0

φs+i,iK(s)

× (z(s) − Hx̂o(s, k − s + 1)), (24)

where

K(s) = AP(s, k − s + 1)H ′(HP(s, k − s + 1)H ′
+ GG′)−1, (25)

P(s + 1, k − s) = AP(s, k − s + 1)A′
−

k−s
i=0

φs+i,iK(s)

×HP(s, k − s + 1)A′
+ CC ′. (26)

• Step 3 Set s + 1 = k in (24), then x̂o(k, 1) is obtained.
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Proof. FromDefinition 2,we know that the LMMSE filter subject to
Problem 1 is indeed a Kalman filter. Based on the standard Kalman
filter theory and the observations in (17), (18), we will obtain the
results. �

4. Optimal Markov jump linear filter

We consider in this section the optimal MJL filter in the recur-
sive form for systems (1), (17) and (18). First, we present the fol-
lowing definition.

Definition 4. Consider the given time k, the optimal MJL filter
x̂e(k|k) of x(k) is defined as

x̂e(k|k) , E{x(k)|y(0, r̄), . . . , y(k, 0); θ(k, 0)}, (27)

and for 0 ≤ s ≤ k − r̄ , the optimal MJL filter x̂e(s|s − 1) of x(s) is
defined as

x̂e(s, r̄) , E{x(s)|y(0, r̄), . . . , y(s − 1, r̄); θ(s − 1, r̄)}, (28)

while for k− r̄ < s ≤ k, the optimal MJL filter x̂e(s|s−1) is defined
as

x̂e(s, k − s + 1) , E{x(s)|y(0, r̄), . . . , y(s − 1, k − s + 1);
θ(s − 1, k − s + 1)}. (29)

Denote

x̃e(k|k) = x(k) − x̂e(k|k),
x̃e(s, r̄) = x(s) − x̂e(s, r̄), 0 ≤ s ≤ k − r̄,
x̃e(s, k − s + 1) = x(s) − x̂e(s, k − s + 1), k − r̄ < s ≤ k,
Yi(k|k) = E{x̃e(k|k)x̃e(k|k)′1θ(k,0)=ei(0)}, i = 0, 1, . . . , r̄ + 1,
Yi(s, r̄) = E{x̃e(s, r̄)x̃e(s, r̄)′1θ(s,r̄)=ei(r̄)}, i = 0, 1, . . . , r̄ + 1,

Yi(s, k − s + 1) = E{x̃e(s, k − s + 1)x̃e(s, k − s + 1)′

× 1θ(s,k−s)=ei(k−s)}, i = 0, 1, . . . , r̄ + 1,

then the filter x̂e(k|k) is obtained in the following result.

Lemma 5. Consider the system (1), (17) and (18) and given the time
k > r̄ , the minimum mean square error solution to the MJL filter
x̂e(k|k) is given by

x̂e(k|k) = x̂e(k, 1) − F(k, θ(k, 0))(y(k) − H(θ(k, 0))x̂e(k, 1)), (30)

where the filter gain F(k, θ(k, 0)) is denoted as Fi(k, 0) for θ(k, 0) =

ei(0) (i = 0, 1, . . . , r̄ + 1), which is determined by

Fi(k, 0)(Hi(0)Yi(k, 1)Hi(0)′ + πi(k)Gi(0)Gi(0)′)

= −Yi(k, 1)Hi(0)′, (31)

and x̂e(k, 1) and Yi(k, 1) are computed as follows:
• Step 1 Calculate x̂e(s, r̄) and Yi(s, r̄) for 0 ≤ s ≤ k − r̄

x̂e(s + 1, r̄) = Ax̂e(s, r̄) − F(s, θ(s, r̄))(y(s, r̄)

−H(θ(s, r̄))x̂e(s, r̄)), x̂e(0, r̄) = 0, (32)

where the filter gain F(s, θ(s, r̄)) denoted by Fi(s, r̄) for θ(s, r̄) =

ei(r̄) (i = 0, 1, . . . , r̄ + 1) is calculated by

Fi(s, r̄)(Hi(r̄)Yi(s, r̄)Hi(r̄)′ + πi(s)Gi(r̄)Gi(r̄)′)

= −AYi(s, r̄)Hi(r̄)′, (33)

and Yi(s, r̄) (i = 0, 1, . . . , r̄ + 1) satisfies the following coupled
Riccati difference equation

Yj(s + 1, r̄) =

r̄+1
i=0

λij{AYi(s, r̄)A′
+ πi(s)CC ′

+ Fi(s, r̄)Hi(r̄)Yi(s, r̄)A′
}, (34)

with the initial value Yj(0, r̄) = πj(0)V .
• Step 2 Calculating x̂e(s + 1, k − s) and Yi(s + 1, k − s) for
k − r̄ < s ≤ k

x̂e(s + 1, k − s) = Ax̂e(s, k − s + 1)
− F(s, θ(s, k − s))(y(s, k − s)

−H(θ(s, k − s))x̂e(s, k − s + 1)), (35)

where the filter gain F(s, θ(s, k − s)) is denoted as Fi(s, k − s) for
θ(s, k − s) = ei(k − s) (i = 0, 1, . . . , r̄ + 1), which is calculated
by

Fi(s, k − s)(Hi(k − s)Yi(s, k − s + 1)Hi(k − s)′

+ πi(s)Gi(k − s)Gi(k − s)′)

= −AYi(s, k − s + 1)Hi(k − s)′, (36)

and Yi(s, k − s + 1) (i = 0, 1, . . . , r̄ + 1) satisfies the following
coupled Riccati difference equation

Yj(s + 1, k − s) =

r̄+1
i=0

λij{AYi(s, k − s + 1)A′
+ πi(s)CC ′

+ Fi(s, k − s)Hi(k − s)Yi(s, k − s + 1)A′
}. (37)

• Step 3 Set s + 1 = k in Step 2, then x̂e(k, 1) and Yi(k, 1) (i =

0, 1, . . . , r̄ + 1) are obtained.

Proof. First, for 0 ≤ s ≤ k− r̄ , we have from (1), (32) and note the
definition of x̃e(s, r̄) that

x̃e(s + 1, r̄) = (A + F(s, θ(s, r̄))H(θ(s, r̄)))x̃e(s, r̄)
+ Cw(s) + F(s, θ(s, r̄))G(θ(s, r̄))v(s). (38)

In view of (38), we get

Yj(s + 1, r̄) =

r̄+1
i=0

λij{AYi(s, r̄)A′
+ πi(s)CC ′

+ AYi(s, r̄)Hi(r̄)′

× Fi(s, r̄)′ + Fi(s, r̄)Hi(r̄)Yi(s, r̄)A′
+ Fi(s, r̄)(Hi(r̄)

× Yi(s, r̄)Hi(r̄)′ + πi(s)Gi(r̄)Gi(r̄)′)Fi(s, r̄)′}. (39)

It follows from ∂Yi(s,r̄)
∂Fi(s,r̄)

= 0 that

Fi(s, r̄)(Hi(r̄)Yi(s, r̄)Hi(r̄)′ + πi(s)Gi(r̄)Gi(r̄)′) = −AYi(s, r̄)Hi(r̄)′.

The minimum mean square jump filter gain (33) is obtained, and
thus (39) becomes like (34).

Next, following a procedure similar to the determination of
Fi(s, r̄) and Yi(s, r̄) for 0 ≤ s ≤ k − r̄ , we will obtain (36), (37)
and (31) immediately. �

Wecan show that the filter presented in Lemma5 is the optimal re-
alization of the general recursive MJL filters (Han & Zhang, 2009).
However, it is somewhat complicated for the filter implementa-
tion. Note that θ(s, ι) = ei(ι) (0 ≤ s ≤ k, i = 0, 1, . . . , ι) repre-
sents the same fact that φs+i,i = 1 (0 ≤ s ≤ k, i = 0, 1, . . . , ι),
and θ(s, ι) = ei(ι) (0 ≤ s ≤ k, i = ι + 1, . . . , r̄ + 1) is equivalent
to φs+i,i = 0 (0 ≤ s ≤ k, i = ι + 1, . . . , r̄ + 1). Then the filter gain
F(s, θ(s, ι)) for θ(s, ι) = ei(ι) (0 ≤ s ≤ k, i = ι+1, . . . , r̄+1) does
not need to be determined, since there is no observation received
for this case. Further,most entries ofH(θ(s, ι)),G(θ(s, ι)) (0 ≤ s ≤

k, i = 0, 1, . . . , ι) are zeros, thus the result of Lemma5 can be sim-
plified.

Theorem 6. The minimum mean square error solution to the MJL
filter x̂e(k|k) can be rewritten as

x̂e(k|k) = x̂e(k, 1) − F0(k, 0)[φk,0z(k) − φk,0Hx̂e(k, 1)], (40)

where the filter gain F0(k, 0) is determined by

F0(k, 0) = −Y0(k, 1)H ′(HY0(k, 1)H ′
+ π0(k)GG′)−1, (41)

and x̂e(k, 1) and Y0(k, 1) are computed by the following steps:
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• Step 1 When 0 ≤ s ≤ k − r̄ , calculate x̂e(s, r̄) and Yi(s, r̄)
x̂e(s + 1, r̄) = Ax̂e(s, r̄) − Fi(s, r̄)[φs+i,iz(s) − φs+i,iHx̂e(s, r̄)],
i = 0, 1, . . . , r̄,

x̂e(0, r̄) = 0, (42)
where the filter gain Fi(s, r̄) (i = 0, 1, . . . , r̄) is calculated by

Fi(s, r̄) = −AYi(s, r̄)H ′(HYi(s, r̄)H ′
+ πi(s)GG′)−1, (43)

and Yi(s, r̄) (i = 0, 1, . . . , r̄ + 1) satisfies the coupled Riccati
difference equation
Yj(s + 1, r̄)

=

r̄
i=0

λij{AYi(s, r̄)A′
+ πi(s)CC ′

+ Fi(s, r̄)HYi(s, r̄)A′
}

+ λr̄+1,j{AYr̄+1(s, r̄)A′
+ πr̄+1(s)CC ′

}, (44)
with Yj(0, r̄) = πj(0)V .

• Step 2 When k − r̄ < s ≤ k, calculate x̂e(s + 1, k − s) and
Yi(s + 1, k − s)
x̂e(s + 1, k − s) = Ax̂e(s, k − s + 1) − Fi(s, k − s)

× [φs+i,iz(s) − φs+i,iHx̂e(s, k − s + 1)],

i = 0, . . . , k − s, (45)
where the filter gain Fi(s, k− s) (i = 0, 1, . . . , k− s) is calculated
by
Fi(s, k − s) = −AYi(s, k − s + 1)H ′(HYi(s, k − s + 1)

×H ′
+ πi(s)GG′)−1, (46)

and Yi(s, k − s + 1) (i = 0, 1, . . . , r̄ + 1) satisfies the coupled
Riccati difference equation

Yj(s + 1, k − s) =

k−s
i=0

λij{AYi(s, k − s + 1)A′
+ πi(s)CC ′

+ Fi(s, k − s)HYi(s, k − s + 1)A′
}

+

r̄+1
i=k−s+1

λij{AYi(s, k − s + 1)A′
+ πi(s)CC ′

}. (47)

• Step 3 Set s + 1 = k in Step 2, then x̂e(k, 1) and Y0(k, 1) are
obtained from (45) and (47), respectively.

Remark 7. In Theorem6,we still use the notation Fi(s, ι) to denote
the filter gain, which is different from that of Lemma 5. In addition,
the Riccati equations (44) and (47) differ from the standard coupled
Riccati equation developed in Costa, Fragoso, and Marques (2005),
which involve additional terms that depend on the transition
probability of the packet dropouts, and the extra terms would be
zero for the case without packet losses.

Remark 8. For the case in which A, C,H,G and λij in (1) and (2)
are time invariant and {r(k)} satisfies the ergodic assumption, so
that πi(k) converges to πi > 0 as k goes to infinity, the filtering
coupled difference Riccati equations (CDREs) (44) and (47) lead to
the following coupled algebraic Riccati equations (CAREs)

Yj(r̄) ,

r̄
i=0

λij{AYi(r̄)A′
+ πiCC ′

− AYi(r̄)H ′

× (HYi(r̄)H ′
+ πiGG′)−1HYi(r̄)A′

},

+ λr̄+1,j{AYr̄+1(r̄)A′
+ πr̄+1CC ′

}, (48)

Yj(l) ,

l
i=0

λij{AYi(l + 1)A′
+ πiCC ′

− AYi(l + 1)H ′

× (HYi(l + 1)H ′
+ πiGG′)−1HYi(l + 1)A′

}

+

r̄+1
i=l+1

λij{AYi(l + 1)A′
+ πiCC ′

}, l = r̄ − 1, . . . , 0. (49)
In the next section we present a sufficient condition for the exis-
tence of a unique set of solutions Y (l) = (Y0(l), . . . , Yr̄+1(l)) for
(48) and (49), and the convergence of Y (s, l) to Y (l), so that a sta-
tionary filter would be obtained.

5. Stationary Markov jump linear filter

In this section, we consider all matrices in (1) and (2) time in-
variant, and we will develop a stationary MJL filter for system (1)
and (2). Assume that the random delay {r(k)} is ergodic, so that
there exist limit probabilities πi > 0; i = 0, 1, . . . , r̄ + 1, withr̄+1

i=0 πi = 1, such that πi(k) → πi, is exponentially fast, as
k → ∞. The filter considered in this section is
x̂(k|k) , x̂(k, 1) − F0(0)[φk,0z(k) − φk,0Hx̂(k, 1)], (50)
x̂(s + 1, r̄) , Ax̂(s, r̄) − Fi(r̄)[φs+i,iz(s) − φs+i,iHx̂(s, r̄)],

x̂(0, r̄) = 0, 0 ≤ s ≤ k − r̄, i = 0, . . . , r̄, (51)
x̂(s + 1, l) , Ax̂(s, l + 1) − Fi(l)[φs+i,iz(s) − φs+i,iHx̂(s, l + 1)],

l = r̄ − 1, . . . , 0, k − l ≤ s < k − l + 1, i = 0, . . . , l. (52)
The goal is to find the filter gains Fi(l)(l = r̄, . . . , 0), such that
the proposed filter is mean square stable and minimizes its cor-
responding estimation error. The solution of the filtering problem
developed above is closely related to the stabilizing solutions for
the CAREs (48) and (49). It is noted that if there exists a stabiliz-
able solution to (48), the future finite iterations (49) will be stable
as well. Thus we just need to show the stability condition of (48).

For Y = (Y0, . . . , Yr̄+1) ∈ Hn, Γ = (Γ0, . . . , Γr̄+1) ∈ Hn, we
define the linear operator T (Y ) = (T0(Y ), . . . , Tr̄+1(Y )) as

Tj(Y ) ,

r̄+1
i=0

λijΓiYiΓ
∗

i . (53)

Further, for ease of notation, we denote Ai = A(i = 0, . . . , r̄ +

1), Ci = C(i = 0, . . . , r̄ + 1), Hi = H(i = 0, . . . , r̄),Hr̄+1 = 0,
Gi = G(i = 0, . . . , r̄),Gr̄+1 = 0, and define Ā = (A0, . . . , Ar̄+1) ∈

Hn, C̄ = (C0, . . . , Cr̄+1) ∈ Hp,n, H̄ = (H0, . . . ,Hr̄+1) ∈ Hn,m,
Ḡ = (G0, . . . ,Gr̄+1) ∈ Hq,m. Two structural concepts turn out
to be essential: mean square stabilizability and mean square de-
tectability.

Definition 9 (Costa & Fragoso, 1995). For Ā ∈ Hn, C̄ ∈ Hp,n.
We say that (Ā, C̄, Λ) is mean square stabilizable if there is L̄ =

(L0, L1, . . . , Lr̄+1) ∈ Hn,p such that rσ (T ) < 1 when Γi = Ai + CiLi
in (53) for i = 0, 1, . . . , r̄ + 1. In this case, L̄ is said to stabilize
(Ā, C̄, Λ).

Definition 10 (Costa & Fragoso, 1995). For Ā ∈ Hn, H̄ ∈ Hn,m.
We say that (Λ, H̄, Ā) is mean square detectable if there is L̄ =

(L0, L1, . . . , Lr̄+1) ∈ Hm,n such that rσ (T ) < 1whenΓi = Ai+LiHi
in (53) for i = 0, 1, . . . , r̄ + 1. In this case, L̄ is said to stabilize
(Λ, H̄, Ā).

In addition, for Y (r̄) = (Y0(r̄), . . . , Yr̄+1(r̄)) ∈ Hn, define the
linear operators

f (r̄)(Y (r̄), π) , (f (r̄)
0 (Y (r̄), π), . . . , f (r̄)

r̄+1(Y (r̄), π))

as

f (r̄)
j (Y (r̄), π) ,

r̄+1
i=0

λij{(Ai + Li(Y (r̄), π)Hi)Yi(r̄)

× (Ai + Li(Y (r̄), π)Hi)
′

+ πi(CiC ′

i + Li(Y (r̄), π)GiG′

iLi(Y (r̄), π)′)}, (54)
where

Li(Y (r̄), π) =

−AiYi(r̄)H ′

i (HiYi(r̄)H ′

i + πiGiG′

i)
−1,

i = 0, . . . , r̄;
0, i = r̄ + 1.

(55)
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Let f (r̄)
j (Y (r̄), π) = f (r̄)

j (Y (r̄)), Li(Y (r̄), π) = Li(Y (r̄)), the CARE
(48) can be expressed as

Yj(r̄) = f (r̄)
j (Y (r̄)), j = 0, . . . , r̄ + 1. (56)

Several results are presented in Appendices A and B in connection
to the following definition related to (56).

Definition 11 (Costa & Fragoso, 1995). Y (r̄) = (Y0(r̄), . . . ,
Yr̄+1(r̄)) ∈ Hn+ is the stabilizing solution for (56), if Y (r̄) satisfies
(56), and L(Y (r̄)) , (L0(Y (r̄)), . . . , Lr̄(Y (r̄)), Lr̄+1(Y (r̄))) stabilize
(Λ, Ā, H̄), where Li(Y (r̄)) (i = 0, . . . , r̄ + 1) is as in (55).

The next result will show the sufficient condition for the existence
of mean square stabilizing solution.

Lemma 12. If (Ā, C̄, Λ) is mean square stabilizable and (H̄, Ā, Λ) is
mean square detectable, then there exists a unique solution Ŷ (r̄) =

(Ŷ0(r̄), . . . , Ŷr̄+1(r̄)) ∈ Hn for the CARE (56), which will coincide
with the mean square stabilizing solution.

Proof. See Appendix A. �

In the following, we will show that the CDREs (44) and (47)
converge to the CAREs (48) and (49), respectively.

Lemma 13. If (Ā, C̄, Λ) is mean square stabilizable and (Λ, H̄, Ā)
is mean square detectable. Then Y (s, r̄)(0 ≤ s ≤ k − r̄) and
Y (s, k− s+1)(k− r̄ +1 < s ≤ k) defined in (44) and (47) converge
to a unique set of Ŷ (l), l = r̄, . . . , 0 as k goes to infinity whenever
Y (0, r̄) ∈ Hn+. Furthermore, Ŷ (l), l = r̄, . . . , 0 are the stabilizing
solutions to the CAREs (48) and (49), respectively.

Proof. See Appendix B. �

Now we will present the main result of this section.

Theorem 14. If (Ā, C̄, Λ) is mean square stabilizable and (H̄, Ā, Λ)
is mean square detectable, then an optimal solution for the stationary
filter posed in (50)–(52) is given by

Fi(r̄) = −AŶi(r̄)H ′(HŶi(r̄)H ′
+ πiGG′)−1, i = 0, . . . , r̄, (57)

Fi(l) = −AŶi(l + 1)H ′(HŶi(l + 1)H ′
+ πiGG′)−1,

i = 0, . . . , l, l = r̄ − 1, . . . , 0, (58)

where Ŷ (l) = (Ŷ0(l), . . . , Ŷr̄+1(l)) ∈ Hn+, l = r̄, . . . , 0 are the
mean square stabilizing solutions of (48) and (49), respectively.

Proof. From Lemma 13 and Theorem 5.8 in Costa et al. (2005), we
can show that the optimal solutions for the stable filters are as in
(57) and (58). �

6. Numerical examples

In this section, we present a numerical example to illustrate the
previous theoretical results. Consider a second-order dynamic sys-
tem described in (1)–(2) with the following specifications:

A =


2 1.1

−1.7 −0.8


, C =


1
1


,

H =

4 2


, G = 1,

where {w(k)} and {v(k)} are mutually independent zero-mean
noises with covariance matrices Qw = 1 and Qv = 1, respectively.
r(k) is the random jump delaywhich ismodeled as a discrete-state
Markov chain taking values in a finite set S = {0, 1, 2, 3} with
Fig. 1. The root mean square estimation errors of the first state component x1(k).

Fig. 2. The root mean square estimation errors of the second state component
x2(k).

transition probability matrix

Λ =

0.9 0.1 0 0
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

 .

The initial distribution of r(k) is π(0) = [0.7 0.1 0.1 0.1]′, the
initial state x(0) is a random variable with E(x(0)) = 0 and
E(x(0)x(0)′) = I2. In the actual system we use x(0) = [30 30]′
for the simulation.

In this example, the time horizon is set to N = 100. Without
loss of generality, we run 50 Monte Carlo simulations from k = 0
to 100. The simulation results are subject to the same parameters
and noise sequences {w(k)}, {v(k)}. The LMMSE filter, the MJL fil-
ter, and the stationaryMJL filter are designed via Theorems 3, 6 and
14, respectively, and the performance of the proposed three filters
are compared. In Figs. 1 and 2, RMS errors in state estimation are
compared for the three cases. It can be seen from the simulation
results that the obtained linear estimators for systems with ran-
dom delays track well and the estimation scheme proposed in this
paper produces a good performance.

7. Conclusion

Three kinds of optimal filters have been developed in this paper.
The first one is the optimal Kalman filtering, which requires high
computation and does not converge to a steady state in general.
The second one is an alternative Markov jump linear filter which
just depends on the present value of the Markov chain, and thus
requires less pre-computed gains. Under natural assumptions, this
filter is convergent to a constant-gain filter which is viewed as
the third designed filter. The existence condition on stabilizing
solutions to the constant-gain filter is discussed.
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Appendix A. Proof of Lemma 12

Proof. From the hypothesis (Λ, H̄, Ā) is detectable, we get from
Theorem A.10 in Costa et al. (2005) that there exists a maximal
solution Ȳ (r̄) ∈ Hn+ subject to (56). Denote L̄i(r̄) = Li(Ȳ (r̄)) (i =

0, . . . , r̄), L̄r̄+1(r̄) = 0, Āi(r̄) = Ai + L̄i(r̄)Hi(i = 0, . . . , r̄ + 1),
and for any Y (r̄) ∈ Hn+ satisfying f (r̄)(Y (r̄)) ≥ Y (r̄), denote
Li(r̄) = Li(Y (r̄)) (i = 0, . . . , r̄), Lr̄+1(r̄) = 0, Ri(r̄) = HiYi(r̄)H ′

i +

πiGiG′

i (i = 0, . . . , r̄ + 1). Then we can find δ > 0 such that

(Ȳj(r̄) − Yj(r̄)) −

r̄+1
i=0

λijĀi(r̄)(Ȳi(r̄) − Yi(r̄))Āi(r̄)′

≥ δ((f (r̄)
j (Y (r̄)) − Yj(r̄)) +

r̄+1
i=0

λij(L̄i(r̄) − Li(r̄))

× (L̄i(r̄) − Li(r̄))′). (A.1)

On the other hand, from the stabilizability of (Ā, C̄, Λ), we can find
K(r̄) = (K0(r̄), . . . , Kr̄+1(r̄)) such that rσ (T ) < 1, when Γi =

Ai + π
1
2
i CiKi(r̄), i = 0, . . . , r̄ + 1.

Define

Ξi =


π

1
2
i Ci π

1
2
i Li(r̄)


, i = 0, . . . , r̄ + 1,

Ξ̄i =


0 π

1
2
i L̄i(r̄)


, i = 0, . . . , r̄ + 1,

K̄i(r̄) =


Ki(r̄)

π
−

1
2

i Hi


, i = 0, 1, . . . , r̄,

K̄i(r̄) =


Ki(r̄)
0


, i = r̄ + 1.

Then

Ai + ΞiK̄i(r̄) = (Ai + Li(r̄)Hi) + π
1
2
i CiKi(r̄). (A.2)

Ai + Ξ̄iK̄i(r̄) = Ai + L̄i(r̄)Hi = Āi(r̄), (A.3)

and
r̄+1
i=0

λij(Ξi − Ξ̄i)(Ξi − Ξ̄i)
′
= (f (r̄)

j (Y (r̄)) − Yj(r̄))

+

r̄+1
i=0

λij(Li(r̄) − L̄i(r̄))(Li(r̄) − L̄i(r̄))′ (A.4)

for Y (r̄) = 0. It follows from (A.2) that (Ā, Ξ , Λ) is stabilizable
when Y (r̄) = 0. In view of (A.1) and (A.4), we have that

δ


r̄+1
i=0

λij(Ξi − Ξ̄i)(Ξi − Ξ̄i)
′



≤ (Ȳj(r̄) − Yj(r̄)) −

r̄+1
i=0

λij(Ai + Ξ̄ K̄i(r̄))

× (Ȳi(r̄) − Yi(r̄))(Ai + Ξ̄ K̄i(r̄))′ (A.5)

for Y (r̄) = 0. Under the stabilizability of (Ā, Ξ , Λ) and the con-
dition of (A.5), and following a similar derivation procedure as
Lemma 8 in Costa et al. (2005), we can conclude that (Ā, Ξ̄ , Λ)

is stabilizable. Further, it follows from (A.3) that L̄(r̄) stabilizes
(Ā, H̄, Λ), so that Ȳ (r̄) is the stabilizing solution to (56). From
Lemma A.14 in Costa et al. (2005), we know that Ȳ (r̄) ∈ H (n+)

is the unique solution for the CARE (56). �
Appendix B. Proof of Lemma 13

Proof. First, we know from Lemma 12 that there exists a unique
set of stabilizing solutions Ŷ (l), l = r̄, . . . , 0 subject to the CAREs
(48) and (49), respectively.

Next, we will show the convergence of the CDREs (44) and (47).
It is noted that if the Riccati equation (44) for Y (s, r̄)(0 ≤ s ≤

k − r̄) converge, the future finite iterations (47) for Y (k − r̄ +

1, r̄ − 1), . . . , Y (k, 1) are convergent as well. Thus we just need to
analyze the asymptotic convergence of the Riccati equation (44).
Based on the definitions of f (r̄)(.), and Ai, Ci,Hi, and Gi, the CDRE
(44) can be rewritten as

Yj(s + 1, r̄) = f (r̄)
j (Y (s, r̄), π(s)), 0 ≤ s ≤ k − r̄. (B.1)

Further, we define the upper bound function U(s, r̄) , (U0(s, r̄),
. . . ,Ur̄+1(s, r̄)) as

Uj(s + 1, r̄) =

r̄+1
i=0

λij{(Ai + Li(Ŷ (r̄))Hi)Ui(s, r̄)

× (Ai + Li(Ŷ (r̄))Hi)
′
+ πi(s)(CiC ′

i + Li(Ŷ (r̄))

×GiG′

iLi(Ŷ (r̄))′)}, 0 ≤ s ≤ k − r̄, (B.2)

where U(0, r̄) = Y (0, r̄), Li(Ŷ (r̄)) is as in (55).
And for i = 0, 1, . . . , r̄ + 1, αi(k) = infs∈R+{πi(k + s)} > 0, we

define the lower bound V (s, r̄) , (V0(s, r̄), . . . , Vr̄+1(s, r̄)) as

V (s + 1, r̄) = f (r̄)(V (s, r̄), α(s)), 0 ≤ s ≤ r̄. (B.3)

with V (0, r̄) = 0. It can be shown by induction on s that

0 ≤ V (s, r̄) ≤ V (s + 1, r̄), 0 ≤ s ≤ k − r̄, (B.4)
V (s, r̄) ≤ Y (s, r̄) ≤ U(s, r̄), 0 ≤ s ≤ k − r̄. (B.5)

From Proposition 3.36 in Costa et al. (2005), and the fact that
L(Ŷ (r̄)) stabilizes (Λ, H̄, Ā), we have that U(s, r̄) converges to a
U(r̄) ∈ Hn+, which is the unique solution of thematrical equations
in Y (r̄) = (Y0(r̄), . . . , Yr̄+1(r̄)) ∈ Hn+

Yj(r̄) =

r̄+1
i=0

λij{(Ai + Li(Ŷ (r̄))Hi)Yi(r̄)(Ai + Li(Ŷ (r̄))Hi)
′

+ πi(CiC ′

i + Li(Ŷ (r̄))GiG′

iLi(Ŷ (r̄))′)}. (B.6)

Since Ŷ (r̄) also satisfies the above equation, we have from the
uniqueness of (B.6) that Ŷ (r̄) = U(r̄).

From (B.4), (B.5), the sequence V (s, r̄)(0 ≤ s ≤ k − r̄) is
monotine increasing, and bounded above by Ŷ (r̄). Thus there exists
V (r̄) = (V0(r̄), . . . , Vr̄(r̄)) ∈ Hn+ such that V (s, r̄) converges to
V (r̄) and V (r̄) = f (r̄)(V (r̄)). From the uniqueness of the solutions
of (48), it follows that V (r̄) = Ŷ (r̄). This and (B.5) show that Y (s, r̄)
converges to Ŷ (r̄). �

References

Costa, O. L. V., & Fragoso, M. D. (1995). Discrete-time LQ-optimal control problems
for infinite Markov jump parameter systems. IEEE Transactions on Automatic
Control, 40(12), 2076–2088.

Costa, O. L. V., Fragoso, M. D., & Marques, R. P. (2005). Discrete time Markov jump
linear systems. New York: Springer-Verlag.

Dong, H., Wang, Z., & Gao, H. (2010). Robst H∞ filtering for a class of nonlinear
networked systemswithmultiple stochastic communication delays and packet
dropouts. IEEE Transactions Signal Processing , 58(4), 1957–1966.

Han, C., & Zhang, H. (2009). Linear optimal filtering for discrete-time systems with
random jump delays. Signal Processing , 89, 1121–1128.

Kar, S., Sinopoli, B., & Moura, J. M. F. (2012). Kalman filtering wit intermittent
observations: weak convergence to a stationary distribution. IEEE Transactions
on Automatic Control, 57(2), 405–420.

Sahebsara, M., Chen, T., & Shah, S. L. (2007). Optimal H2 filtering with random
sensor delay,multiple packet dropout and uncertain observations. International
Journal of Control, 80(2), 292–301.

http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref1
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref2
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref3
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref4
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref5
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref6


3104 C. Han et al. / Automatica 49 (2013) 3097–3104
Schenato, L. (2008). Optimal estimation in network control systems subject to
random delay and packet drop. IEEE Transactions on Automatic Control, 53(5),
1311–1317.

Shen, B.,Wang, Z., Shu, H., &Wei, G. (2009).H∞ filtering for nonlinear discrete-time
stochastic systems with randomly varying sensor delays. Automatica, 45(4),
1032–1037.

Shi, L., Xie, L., & Murray, R. M. (2009). Kalman filtering over a packet-delaying
network: a probabilistic approach. Automatica, 45(9), 2134–2140.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M. I., & Sastry, S. S.
(2004). Kalman filtering with intermittent observations. IEEE Transactions on
Automatic Control, 49(9), 1453–1464.

Sun, S., Xie, L., Xiao,W., & Chai Soh, Y. (2008). Optimal linear estimation for systems
with multiple packet dropouts. Automatica, 44(5), 1333–1342.

Wang, Z., Ho, D. W. C., & Liu, X. (2004). Robust filtering under randomly varying
sensor delay with variance constraints. IEEE Transactions on Circuits and
Systems, II. Express Briefs, 51(6), 320–326.

You, K., Fu, M., & Xie, L. (2011). Mean square stability for Kalman filtering with
Markovian packet losses. Automatica, 47(12), 2647–2657.

Zhang, W., & Yu, L. (2008). Modeling and control of networked control systems
with both network-induced delay and packet-dropout. Automatica, 44(12),
3206–3210.

Chunyan Han received her Ph.D. in Control Theory and
Control Engineering from Shandong University in 2010.
She is currently a lecturer at the School of Electrical
Engineering, University of Jinan. Her research interests
cover optimal control and estimation, time delay systems,
and Markov jump linear systems.
Huanshui Zhang graduated in mathematics from the
Qufu Normal University in 1986 and received his M.Sc.
and Ph.D. in control theory from Heilongjiang University,
China, and Northeastern University, China, in 1991 and
1997, respectively. He worked as a postdoctoral fellow
at Nanyang Technological University from 1998 to 2001
and as a Research Fellow at Hong Kong Polytechnic
University from2001 to 2003. He is currently a Changjiang
Professorship at Shandong University, China. He was a
Professor in Harbin Institute of Technology from 2003
to 2006. He also held visiting appointments as Research

Scientist and Fellow with Nanyang Technological University, Curtin University of
Technology and Hong Kong City University from 2003 to 2006. His interests include
optimal estimation and control, time-delay systems, stochastic systems, signal
processing and wireless sensor networked systems.

Minyue Fu received his Bachelor’s Degree in Electrical En-
gineering from theUniversity of Science andTechnology of
China, Hefei, China, in 1982, and M.S. and Ph.D. degrees in
Electrical Engineering from the University of Wisconsin-
Madison in 1983 and 1987, respectively. From 1987 to
1989, he served as an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering,Wayne State
University, Detroit, Michigan. He joined the Department
of Electrical and Computer Engineering, the University of
Newcastle, Australia, in 1989. Currently, he is a Chair Pro-
fessor in Electrical Engineering. He has served as a Head

of School at the University of Newcastle. In addition, he was a Visiting Associate
Professor at University of Iowa in 1995–1996, a Senior Fellow/Visiting Professor
at Nanyang Technological University, Singapore, 2002, and a Visiting Professor at
Tokyo University in 2003. He has held a ChangJiang Visiting Professorship at Shan-
dong University, China. Currently, he holds a Qian-ren Professorship at Zhejiang
University, China. His main research interests include control systems, signal pro-
cessing and communications.

http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref7
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref8
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref9
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref10
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref11
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref12
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref13
http://refhub.elsevier.com/S0005-1098(13)00366-X/sbref14

	Optimal filtering for networked systems with Markovian communication delays
	Introduction
	Problem formulations and preliminaries
	Problem formulations
	Preliminaries

	Optimal Kalman filter
	Optimal Markov jump linear filter
	Stationary Markov jump linear filter
	Numerical examples
	Conclusion
	Acknowledgments
	Proof of Lemma 12
	Proof of Lemma 13
	References


