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a b s t r a c t

This paper concentrates on the formation merging control problem for a leader–follower network. The
objective is to control a team of agents called followers such that they are merged with another team
of agents called leaders to form a single globally rigid formation. A method based on graph Laplacian is
introduced to address this problem. Each follower selects its interactionneighbors and interactionweights
according to the given target configuration. The graphmodeling the interaction topology of all the agents
is directed and time-varying. First, by assuming that the synchronized velocity of the leaders is known to
all the followers, a necessary and sufficient condition is derived to ensure uniform asymptotic formation
merging. Second, we relax this assumption and consider that the velocity of the leaders is known to only
a subset of followers, for which the same necessary and sufficient condition is obtained with the help of
an internal model for velocity synchronization.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

For multi-agent systems, maneuvering in a formation is often
a basic requirement in many cooperative tasks such as source
seeking, exploration, and map construction (Murray, 2007). The
goal is to control the agents to achieve and maintain a desired
formation (Bai, Arcak, & Wen, 2008; Krick, Broucke, & Francis,
2009; Wang, Han, & Lin, 2012).

In this paper, we consider a leader–follower network and the
formation merging problem in the three-dimensional space. By
formation merging we mean that two sub-formations are merged
to form one single globally rigid formation. We assume that a
group of agents called leaders move as a whole in a globally rigid
formation while the other group of agents called followers are

✩ Theworkwas supported byNational Natural Science Foundation of China under
Grant 61273113 and supported by Zhejiang University K.P. Chaos High Technology
Development Foundation. The material in this paper was partially presented at the
19th IFACWorld Congress, August 24–29, 2014, Cape Town, South Africa. This paper
was recommended for publication in revised form by Associate Editor Wei Ren
under the direction of Editor Christos G. Cassandras.

E-mail addresses: hantingrui@zju.edu.cn (T. Han), linz@zju.edu.cn (Z. Lin),
minyue.fu@newcastle.edu.au (M. Fu).
1 Tel.: +86 571 8795 1637; fax: +86 571 8795 2152.

http://dx.doi.org/10.1016/j.automatica.2015.04.027
0005-1098/© 2015 Elsevier Ltd. All rights reserved.
initially in an arbitrary configuration. The objective is to control the
followers in a distributed way such that they merge into a single
globally rigid formation with the leaders.

One approach addressing the formation merging problem is to
figure out how many new distance constraints should be imposed
for agent pairs in the two groups in order to form a single globally
rigid formation and then work out a distributed control law to
make the agents meet these new distance constraints. From this
perspective, Eren, Anderson, Whiteley, Morse, and Belhumeur
(2004) considermerging two globally rigid formations into a single
globally rigid one; Yu, Fidan, and Anderson (2006) aim to control
the merging efficiently and optimally in the sense of minimizing
the number of newly added distance constraints. For directed
graphs, the concept of persistent connectivity is introduced to
address the feasibility problemofmerging two sub-formations into
a single one (Hendrickx, Yu, Fidan, & Anderson, 2008). However,
in Eren et al. (2004), Hendrickx et al. (2008) and Yu et al. (2006), the
formation merging control problem is studied by exploring how
many distance constraints should be imposed in order to merge
two sub-formations into one, but no distributed control scheme is
proposed.

Another approach addressing the formation merging problem
is to consider the displacement constraints between agent pairs
and use relative positions as feedback information for the design
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of coordination laws (Lin, Broucke, & Francis, 2004; Lin, Ding, Yan,
Yu, & Giua, 2013). In Lin et al. (2013), a complex Laplacian based
control law is introduced to solve the leader-following formation
control problem in the plane under a directed and fixed graph
setting. Lin, Chen, and Fu (2013) extend this idea solving affine
formation control problems in arbitrary higher dimensional space.

To our best knowledge, little work has been reported for for-
mation merging control under directed and switching topologies.
However, it is more practical butmore challengingwhen the inter-
action graph is directed and time-varying (Cao, Anderson, Morse,
& Yu, 2008; Guo, Lin, Cao, & Yan, 2010). As a first step towards
the general formation merging control problem, we assume in
this paper that the target formation of followers lies in the three-
dimensional convex hull spanned by the leaders, which is im-
portant for convergence analysis. Under this assumption, we first
study the formation merging control problem for the case that the
synchronized velocity of the leaders is known to all the followers,
for which a necessary and sufficient condition for uniform asymp-
totic formation merging is obtained. That is, every follower should
frequently have a joint path from at least one leader. Second, to
cope with the case that the synchronized velocity is known only
to a subset of followers, an internal model (Wieland, Sepulchre, &
Allgower, 2011) based velocity synchronization scheme is adopted,
for which the same necessary and sufficient condition is obtained.

To some extent, the formation merging control problem is
similar to the containment control, set tracking and shape control
problems (Cao, Ren, & Egerstedt, 2012; Cheah,Hou, & Slotine, 2009;
Shi, Hong, & Johansson, 2012; Yan, Chen, & Sun, 2012). However,
the distinct feature of formation merging control is that the target
formation needs to be globally rigid. On the other hand, compared
to Eren et al. (2004), Hendrickx et al. (2008) and Yu et al. (2006), the
contribution of our work is that we not only derive a necessary and
sufficient condition on how many links are required for formation
merging in terms of relative displacement constraints, but also
provide a distributed control law for directed and time-varying
networks to merge the followers with the leaders. We show in this
paper that the key to solve the formationmerging control problem
is the selection of neighbors and interaction weights. This paper
presents the rules for the selection of neighbors and interaction
weights, and shows that under such construction, the followers can
achieve uniform asymptotic formationmergingwith the leaders as
desired.
Notation: R denotes the set of real numbers. Let C− represent the
closed left-half complex plane. 1n represents the n-dimensional
vector of ones and In represents the identity matrix of order n. The
symbol ⊗ denotes the Kronecker product.

2. Preliminaries

A directed graph G = (V, E) consists of a non-empty finite set
V of elements called nodes and a finite set E of ordered pairs of
nodes called edges. Let U ⊂ V be a subset of nodes in G = (V, E).
We say a node v ∈ V − U is reachable from U if there exists a
path from a node in U to v. A subset of nodes U is called closed if
any node in U is not reachable from V − U. A time-varying graph
G(t) = (V, E(t)) is a graph whose edge set changes over time. For
a time-varying graph G(t), a node v is said to be uniformly jointly
reachable from U ⊂ V if there exists T > 0 such that for all t , v is
reachable from U in the union graph G([t, t + T )), whose edge set
is the union of the edge set of G(t) over the time interval [t, t + T ).
For a directed graph G, the associated Laplacian L is a matrix such
that its (i, j)th entry (i ≠ j) is the negative weight on edge (j, i)
and 0 otherwise, and its (i, i)th entry is the negative sum of all off-
diagonal entries in the same row.

A squarematrix E ∈ Rn×n is nonnegative if all its entries are non-
negative. Moreover, E is called (row) stochastic if it is nonnegative
and every row sum equals 1. In addition, the associated graph G(E)
is defined to be one consisting of n nodes v1, . . . , vn where an edge
leads from vj to vi if and only if the (i, j)th entry of E is nonzero.
3. Formation merging control problem

Consider a leader–follower network of N = m + n agents with
m leaders labeled 1, . . . ,m and n followers labeled m + 1, . . . ,N .
Consider a target configuration pa = [p1T, . . . , pmT

]
T for the

leaders and pb = [pm+1
T, . . . , pNT

]
T for the followers. Moreover,

we assume that agents do not overlap each other in the target
configuration.

Denote by zi the 3D position of agent i. We say the leadersmove
in a globally rigid formation pa with vr(t) if

zi(t) −

 t

t0
vr(τ )dτ = Api + c, for i = 1, . . . ,m,

where A ∈ R3×3 is a unitarymatrix, and c ∈ R3 is a constant vector.
This definition says that the configuration {zi(t)−

 t
t0

vr(τ )dτ , i =

1, . . . ,m} is obtained from pa via a rigid-body transformation.
We assume m ≥ 4 since at least four agents are needed to

form a three-dimensional formation. Suppose the m leaders move
in a globally rigid formation pa and are governed by the following
dynamics

żi(t) = vr(t), i = 1, . . . ,m, (1)

where vr(t) is the synchronized velocity of the leaders.
This paper aims to merge a group of followers with another

group of leaders and form one single large rigid formation. The
precise definition of uniformly asymptotic formation merging is
given as follows.

Definition 3.1. A globally rigid formation p = [paT, pbT]T is said
to be uniformly asymptotically merged if for any δ > 0 and for
any ε > 0 there exists T > 0 such that for any t0 and any zi(t0)
satisfying ∥zi(t0) − Api − c∥ ≤ δ,

(∀t ≥ t0 + T )(∀i)
zi(t) − Api − c −

 t

t0
vr(τ )dτ

 ≤ ε,

where A and c are determined by the leaders.

The single-integrator model is assumed for the followers,

żi = ui, i = m + 1, . . . ,N, (2)

where ui ∈ R3 represents the velocity control input.
Suppose that every agent is equippedwith an onboard sensor to

measure relative positions of its neighbors. We use a time-varying
graph Ḡ(t) = (V, Ē(t)) to model the information flow, where
V = Va ∪ Vb with Va = {1, . . . ,m} and Vb = {m + 1, . . . ,N},
and (j, i) ∈ Ē(t) only if agent i can measure the relative position of
agent j. Moreover, it is assumed that when (j, i) ∈ Ē(t), agent j is
able to communicate to agent i about its identity and pj. Let N̄i(t)
be the set of neighbors of agent i, namely, j ∈ N̄i(t) if and only if
(j, i) ∈ Ē(t).

In order to derive a solution for the formation merging control
problem, we technically assume the following.

Assumption 3.1. The target formationof the followers entirely lies
in the three-dimensional convex hull spanned by the leaders.

4. Formation merging control with the reference velocity
available to all the agents

4.1. Distributed control law

We introduce a neighbor-selecting rule for the followers. That is
to say, the followers may not interact with all the neighbors in the
information flow graph Ḡ(t). They pick their neighbors to interact
with according to certain rules and then form the interaction graph
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Fig. 1. (a) Target configuration. (b) Information flow graph Ḡ(t). (Sensors such as
cameras have a cone-like field of view, so in this example, the information flow
graph is not determined based on vicinity.) (c) Interaction graph G(t).

G(t) = (V, E(t)). Let Ni(t) be the set of interaction neighbors of
agents i, namely, j ∈ Ni(t) if and only if (j, i) ∈ E(t). Denote by
co{x1, . . . , xn} the convex hull of x1, . . . , xn ∈ R3.
Neighbor-selecting rule: If pi ∉ co{pj : j ∈ N̄i(t)}, thenNi(t) = ∅.
Otherwise, Ni(t) = N̄i(t).

An example is given in Fig. 1 to demonstrate the neighbor-
selecting rule. In Fig. 1(a), p5 ∈ co{p1, p6, p7} and p6 ∉

co{p2, p3, p8}, so it follows that N5 = N̄5 and N6 = ∅. It is clear
that by this neighbor-selecting rule, pi ∈ co{pj : j ∈ Ni(t)}. This
fact is very important for the convergence analysis.

We consider the following control law for each follower i,

ui(t) = vr(t) +


j∈Ni(t)

kij(t)(zj(t) − zi(t)), (3)

where kij(t)’s are the control parameters to be designed.
To avoid infinite switching within a finite time interval, we

assume the following.

Assumption 4.1. The interval between any two switching instants
satisfies a dwell time condition. That is to say, there exists τD > 0
such that

ti+1 − ti ≥ τD for all i = 0, 1, . . .

if the interaction graph G(t) switches at t0, t1, t2, . . . .

4.2. Design of control parameters kij’s

We design kij’s in this subsection for (3). By Assumption 4.1,
one knows that Ni(t) is piecewise constant. Since kij’s are different
for different neighbor sets Ni, kij(t) is thus piecewise constant. In
the sequel, we omit t for kij(t) and Ni(t) for simplicity unless it is
necessary.

By the neighbor-selecting rule, for each agent there are four
possible cases:

(i) It has no neighbor;
(ii) co{pj : j ∈ Ni} is one-dimensional (a line segment);
(iii) co{pj : j ∈ Ni} is two-dimensional (a convex polygon);
(iv) co{pj : j ∈ Ni} is three-dimensional (a convex polyhedron).

We consider these four cases in the following for the design of
kij’s. That is, for agent i, kij’s are chosen to be the barycentric
coordinates about its neighbors in the target configuration. The
barycentric coordinate was introduced by August Ferdinand
Möbius in 1827 (Coxeter, 1969).
(i) If i has no neighbor, (3) degenerates to ui = vr(t).
(ii) If co{pj : j ∈ Ni} is one-dimensional, then we take kij = αj for
j ∈ Ni, where αj is calculated as follows.
First, consider that i has only two neighbors, say i1 and i2. Then we
obtain pi = α1pi1 +α2pi2 , where α1 =

∥pi2−pi∥
∥pi2−pi1∥

and α2 =
∥pi1−pi∥
∥pi2−pi1∥

.
It is clear that α1, α2 > 0 and α1 + α2 = 1.

Second, if agent i has more than two neighbors, then we can
take any two of them containing pi inside and obtain the same
formula, i.e., pi = αl

1pil1 + αl
2pil2 , where l enumerates all possible
12 3 4

Fig. 2. An example of case (ii).

combinations of two neighbors containing pi inside. Then consider
a convex combination of all these representations for pi, i.e.,

pi =


l

γ l(αl
1pil1 + αl

2pil2) :=


j∈Ni

αjpj,

where γ l
∈ (0, 1) and


l γ

l
= 1. It is certain that αj > 0 for all

j ∈ Ni and


j∈Ni
αj = 1.

An example is given in Fig. 2. For agent 1, p1 can be repre-
sented as p1 = α1

2p2 + α1
3p3 and also can be represented as

p1 = α2
2p2 + α2

4p4. Then consider a convex combination of these
two representations p1 = γ 1(α1

2p2 +α1
3p3)+ γ 2(α2

2p2 +α2
4p4) :=

α2p2 + α3p3 + α4p4.
(iii) If co{pj : j ∈ Ni} is two-dimensional, then we take kij = αj for
j ∈ Ni, where αj is calculated as follows.

First, consider that i has only three neighbors, say i1, i2 and i3,
and co{pi1 , pi2 , pi3} is a triangle. Let the coordinates of pi1 , pi2 ,
and pi3 be pi1 = (xi1 , yi1 , zi1), pi2 = (xi2 , yi2 , zi2) and pi3 =

(xi3 , yi3 , zi3). Denote x = [xi1 , xi2 , xi3 ]
T, y = [yi1 , yi2 , yi3 ]

T and z =

[zi1 , zi2 , zi3 ]
T. Let Si1 i2 i3 be the area of co{pi1 , pi2 , pi3}, which can be

calculated as Si1 i2 i3 =
1
2


S21 + S22 + S23 , where S1 = det[x, y, 13]

T,
S2 = det[y, z, 13]

T and S3 = det[z, x, 13]
T. Then it holds that

pi = α1pi1 + α2pi2 + α3pi3 , where α1 =
Sii2 i3
Si1 i2 i3

, α2 =
Si1 ii3
Si1 i2 i3

and

α3 =
Si1 i2 i
Si1 i2 i3

. It is known that α1, α2, α3 > 0 and α1 + α2 + α3 = 1.
Second, if agent i has more than three neighbors, similar to

the procedure of case (ii) we can get the representation for pi as
pi =


j∈Ni

αjpj, where αj > 0 for all j ∈ Ni and


j∈Ni
αj = 1.

(iv) If co{pj : j ∈ Ni} is three-dimensional, then we take kij = αj
for j ∈ Ni, where αj is calculated as follows.

First, consider that i has only four neighbors, say i1, i2, i3 and
i4, and co{pi1 , pi2 , pi3 , pi4} is a tetrahedron. Denote by Vi1 i2 i3 i4
the signed volume of co{pi1 , pi2 , pi3 , pi4}. It can be calculated by
Vi1 i2 i3 i4 =

1
6 det([pi2 − pi1 , pi3 − pi1 , pi4 − pi1 ]

T). Then it is
obtained that pi = α1pi1 + α2pi2 + α3pi3 + α4pi4 , where α1 =
Vii2 i3 i4
Vi1 i2 i3 i4

, α2 =
Vi1 ii3 i4
Vi1 i2 i3 i4

, α3 =
Vi1 i2 ii4
Vi1 i2 i3 i4

, and α4 =
Vi1 i2 i3 i
Vi1 i2 i3 i4

. It is certain
that α1, α2, α3, α4 > 0 and α1 + α2 + α3 + α4 = 1.

Second, if agent i has more than four neighbors, similar to the
procedure of case (ii) we can get the representation for pi as pi =

j∈Ni
αjpj, where αj > 0 for all j ∈ Ni and


j∈Ni

αj = 1.

4.3. Stability analysis

In what follows, we show whether a globally rigid formation
p = [paT, pbT]T can be uniformly asymptotically merged for a
leader–follower network.

Let L(t) be the Laplacian matrix for the graph with weights
kij(t)’s associated to the edges (j, i)’s at time t . Define z =

[zaT, zbT]T as the aggregate state of all zi’s. Throughout the paper,
we use subscript a to represent the corresponding aggregate state
for the leaders and subscript b for the followers.

Under (1) and (3), the overall system can be written as

ż = −(L(t) ⊗ I3)z + 1N ⊗ vr(t), (4)

where L(t) has the following form

L(t) =


0m×m 0m×n
Ll(t) Lf (t)


. (5)
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Also, by the way how we design kij(t)’s, we know that

(L(t) ⊗ I3)p = 0 and L(t)1N = 0. (6)

The following theorem shows that a globally rigid formation
p = [paT, pbT]T is a stable steady-state formation under the pro-
posed control law.

Theorem 4.1. Suppose the leaders move in the globally rigid
formation pa. Then

z∗(t) = (IN ⊗ A)p + 1N ⊗


c +

 t

t0
vr(τ )dτ


,

where A and c are determined by the leaders, is a stable steady-state
solution of system (4).

Proof. Let y = z−1N⊗
 t
t0

vr(τ )dτ . Then system (4) is transformed
to

ẏ = −(L(t) ⊗ I3)y. (7)

To show z∗(t) is a steady-state solution of system (4) is equivalent
to show y∗

= (IN ⊗ A)p+ 1N ⊗ c is an equilibrium point of system
(7). Notice that (L(t) ⊗ I3)p = 0 in (6) yields

(L(t) ⊗ I3)[(IN ⊗ A)p + 1N ⊗ c]
= (L(t) ⊗ A)p = (IN ⊗ A)(L(t) ⊗ I3)p = 0,

which means y∗ is an equilibrium point of system (7).
Next, we show z∗(t) is a stable solution of system (4), which is

equivalent to show y∗ is a stable equilibrium point of system (7).
Suppose the switching time is t0, t1, t2, . . . . Consider any t > 0,
without loss of generality, say t ∈ [ti, ti+1). Thus, the transition
matrix is

Φ(t, ti) = exp[−(L(ti) ⊗ I3)(t − ti)] (8)

and the solution of system (7) can be described by y(t) = Φ(t, ti)
Φ(ti, ti−1) · · · Φ(t1, t0)y0 for the initial state y0. Note that every
transition matrix in the above formula is a stochastic matrix and
the product of stochastic matrices is also a stochastic matrix (Lin,
2008, page 34, 51). It follows that every state yi(t) is a convex com-
bination of y01, . . . , y

0
N . That is, yi(t) =

N
j=1 αjy

0
j
, where αj ≥

0 (j = 1, . . . ,N) and
N

j=1 αj = 1.
Then let us consider any arbitrary ε > 0 and choose δ = ε. Sup-

pose initially (∀i)∥y0i − y∗

i ∥ ≤ δ. Since y∗ is an equilibrium point, it
is known y∗

i =
N

j=1 αjy∗

j . Thus, we have for every i,

∥yi(t) − y∗

i ∥ =

 N
j=1

αj(y0j − y∗

j )

 ≤

N
j=1

αjδ = δ = ε.

The conclusion follows. �

The next result presents a necessary and sufficient graphical
condition to ensure that a globally rigid formation [paT, pbT]T can
be uniformly asymptotically merged.

Theorem 4.2. Suppose the leaders move in the globally rigid
formation pa. The globally rigid formation [paT, pbT]T can be uniformly
asymptotically merged under the distributed control law (3) if and
only if every follower is uniformly jointly reachable from Va.

The proof requires a lemma from graph theory.

Lemma 4.1 (Beineke & Wilson, 1997, page 87). Let E be a non-
negative matrix and denote e(k)

ij as the (i, j)th entry of Ek. Then e(k)
ij >

0 if and only if the associated graph G(E) has a walk from node vj to
node vi of length k.
Proof of Theorem 4.2. (⇐) Suppose the interaction graph G(t)
switches at t0, t1, t2, . . .. Recall that by our dwell time assumption,
ti+1 − ti ≥ τD for all i = 0, 1 . . .. Moreover, we are always able to
find a τm > τD large enough such that ti+1 − ti ≤ τm for all i =

0, 1, . . . . If for some interval [ti, ti+1) there is no such a τm, we can
partition [ti, ti+1) artificially.

Suppose now every follower is uniformly jointly reachable from
Va. Then by definition there exists T > 0 such that for all t in
the union graph G([t, t + T )) every follower is reachable from
Va. Now we generate a subsequence {tmk} of the sequence {ti} as
follows: (1) Set m0 = 0; (2) If tm0 + T ∈ (ti−1, ti], set m1 = i;
(3) If tm1 + T ∈ (ti−1, ti], set m2 = i; (4) And so on. Thus, for the
transformed system (7), we have

y(tmk+1) = Ψ (tmk)y(tmk) (9)

where Ψ (tmk) =


exp


−
 tmk+1
tmk

L(t)dt


⊗ I3. Denote by Ξ the
set of all Ψ (tmk)’s derived above. We regard (9) as a discrete-time
switched system and rewrite it as

y(k + 1) = Ψ (k)y(k) with Ψ (k) ∈ Ξ . (10)

Note that, due to the special structure of L(t) described in (5),Ψ (k)
has the following form

Ψ (k) =


I3m×3m 03m×3n
Ψl(k) Ψf (k)


.

Nextwe show that for allΨ (k) ∈ Ξ , ∥Ψf (k)∥∞ is uniformly upper-
bounded by a constant less than one. For any L(t), we can de-
compose it as −L(t) = −D(t) + E(t), where D(t) is a diagonal
matrix and E(t) is a nonnegative matrix with all diagonal entries
zero. Thus,

Ψ (k) =


exp


−

 tmk+1

tmk

D(t)dt


exp

 tmk+1

tmk

E(t)dt


⊗ I3.

We denote Σ =
 tmk+1
tmk

E(t)dt and it is noted that Σ = E(tmk)

(tmk+1 − tmk)+· · ·+ E(tmk+1−1)(tmk+1 − tmk+1−1). By the condition
that every follower is uniformly jointly reachable from Va, we can
then know that every follower is reachable from Va in the associ-
ated graph G(Σ). Then, considering the equality

exp(Σ) = I + Σ +
Σ2

2!
+ · · ·

and the fact that exp

−
 tmk+1
tmk

D(t)dt

is a positive diagonal ma-

trix,we can infer by Lemma4.1 that each rowofΨl(k)has anonzero
entry because each row in the corresponding block of exp(Σ) has
a nonzero entry. On the other hand, as shown in Theorem 4.1, we
know that Ψ (k) is a stochastic matrix. The above two conclusions
together imply that ∥Ψf (k)∥∞ < 1. Moreover, recall that τD ≤

ti+1 − ti ≤ τm and L(ti)’s are taken in a finite set due to finite kij’s.
Therefore, from the formula of Ψ (k) above, there is a positive con-
stant σ < 1 such that ∥Ψf (k)∥∞ is uniformly upper-bounded by σ .

Since the m leaders move in the globally rigid formation pa,
from (10) we then have

yb(k + 1) = Ψf (k)yb(k) + Ψl(k)y∗

a, (11)

where y∗
a = (Im⊗A)pa+1m⊗c. Due to the fact that ∥Ψf (k)∥∞ < 1,

we know that I − Ψf (k) is invertible. Thus, the system (11) has a
unique equilibrium point y∗

b = (In ⊗ A)pb + 1n ⊗ c . So by the co-
ordinate transformation qb(k) = yb(k) − y∗

b and applying the fact
y∗

b = Ψf (k)y∗

b + Ψl(k)y∗
a , we get

qb(k + 1) = Ψf (k)qb(k). (12)
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As we just showed that ∥Ψf (k)∥∞ is uniformly upper-bounded by
σ < 1, it follows straightforward that q(k) asymptotically con-
verges to 0. So we can reach the conclusion that limj→∞ yb(tmj) =

y∗

b .
Finally, let us look at the evolution of the continuous state yb(t)

in the interval between any two consecutive switching instants.
From the proof of Theorem 4.1, we know that for any t ∈ [ti, ti+1)
and any arbitrary ε > 0

(∀i)∥yi(ti) − y∗

i ∥ ≤ ε ⇒ ∥yi(t) − y∗

i ∥ ≤ ε.

Thus, we get limt→∞ yb(t) = y∗

b .
From ∥Ψf (k)∥∞ ≤ σ < 1, it is certain that ∀δ > 0 and ∀ε > 0

there exists T ′ > 0 (large enough) such that for any t0 and any
zi(t0) satisfying ∥zi(t0) − Api − c∥ ≤ δ,

(∀t ≥ t0 + T ′)(∀i)
zi(t) − Api − c −

 t

t0
vr(τ )dτ

 ≤ ε.

(⇒) We prove it in a contrapositive way. Assume that there exists
a follower, say bi, that is not uniformly jointly reachable from Va.
That is, for any T > 0 there exists t∗ ≥ 0 such that in the union
graph G([t∗, t∗ + T )), bi is not reachable from Va. Let Θ be the
set including all such followers that are not reachable from Va in
G([t∗, t∗ + T )). Then it can be known that Θ is a closed set. We
choose δ large enough and ε > 0. Then for all T > 0, there exists
t0 = t∗ and choose zi(t0) (i ∈ Θ) such that the distance between
co{zi(t0) : i ∈ Θ} and co{zi(t0) : i ∈ Va} is bigger than ε. SinceΘ is
a closed set, the states of these followers at t ∈ [t0, t0 + T ) remain
in the convex hull of their states at t0. We have thus found δ > 0
and ε > 0 such that, for all T > 0, there exists t0 = t∗ and zi(t0)
satisfying ∥zi(t0) − Api − c∥ ≤ δ,

(∃t = t0 + T )(∃i)
zi(t) − Api − c −

 t

t0
vr(τ )dτ

 > ε.

Thus, the conclusion follows. �

Remark 4.1. Theorem 4.2 shows that every follower only needs to
have a joint path from at least one leader. The graph condition is
mild such that the method can be extended to deal with multiple
follower groups. As an illustration, we denote by Va the group
of leaders and denote by Vb1 , Vb2 , . . . , Vbm multiple groups of
followers. The condition in Theorem 4.2 can then be generalized
and stated as follows. Multiple follower groups can be uniformly
asymptotically merged with the leader group to form a single
globally rigid formation if every follower in each group Vbi is
uniformly jointly reachable from Va in the graph G = (V, E) with
V = Va ∪ Vb1 ∪ · · · ∪ Vbm .

5. Formationmerging controlwith the reference velocity avail-
able to a subset of followers

In this section, we discuss how to cope with the situation that
vr(t) is known only to a subset of followers.

Suppose the leaders are governed by the dynamics
żi(t) = vr(t), i = 1, 2, . . . ,m,
v̇r(t) = Γ vr(t),

(13)

where Γ ∈ R3×3 with its spectrum σ(Γ ) ⊂ C−.

Remark 5.1. Since Γ is a constant matrix, it is assumed that it can
be known by all the followers via communications.

In this scenario, we propose the following alternative dis-
tributed formation merging control law for each follower:

ui(t) = ηi(t) +


j∈Ni(t)

kij(t)(zj(t) − zi(t))

η̇i(t) = Γ ηi(t) +


j∈Ni(t)

aij(t)(ηj(t) − ηi(t))
(14)
where a ≤ aij(t) ≤ a for some a > 0 and a > 0, and ηi is the
estimation of the reference velocity by follower i. For the leaders,
we have η1 = · · · = ηm = vr(t).

The next result shows that a globally rigid formation [paT, pbT]T
can be uniformly asymptotically merged under the same graphical
condition.

Theorem 5.1. Suppose the leaders move in the globally rigid
formation pa. The globally rigid formation [paT, pbT]T can be uniformly
asymptotically merged under the distributed control law (14) if and
only if every follower is uniformly jointly reachable from Va.

The proof requires a lemma concerning a cascade system.

Lemma 5.1 (Loria, Panteley, Popovic, & Teel, 2005). For a cascade
system

ẋ = f (t, x, z), (15)
ż = g(t, z). (16)

If each initial condition (x0, z0) produces trajectories that are bounded
uniformly in the initial time, the functions f and g are locally Lipschitz
uniformly in t, and the origins of (16) and ẋ = f (t, x, 0) are
globally uniformly asymptotically stable, then the origin of the cascade
system (15)–(16) is globally uniformly asymptotically stable.

Proof of Theorem 5.1. (⇐) Rewrite (13) and (14) as
ż
η̇


=


−L(t) ⊗ I3 I3N

0 IN ⊗ Γ − H(t) ⊗ I3

 
z
η


(17)

where H(t) is also a Laplacian matrix with the same form as L(t),
i.e.,

H(t) =


0m×m 0m×n
Hl(t) Hf (t)


. (18)

Define y = z−1N ⊗
 t
t0

vr(τ )dτ , q = y−y∗, and δ = η−1N ⊗vr(t).
Note that the leadersmove in a globally rigid formation, i.e., q∗

a = 0
and δ∗

a = 0. So (17) can be regarded as a cascade system

q̇b = −(Lf (t) ⊗ I3)qb + δb, (19)

δ̇b = (IN ⊗ Γ − Hf (t) ⊗ I3)δb. (20)

According to Lemma 5.1 to prove the uniform asymptotic stability
of (17), it remains to prove the uniform asymptotic stability of the
subsystem (20).

Let ζi = e−Γ (t−t0)ηi. Recall that v̇r(t) = Γ vr(t) and η1 = · · · =

ηm = vr(t). So ζi = vr(t0) (i = 1, . . . ,m). For the followers, we
have

ζ̇i = −Γ e−Γ (t−t0)ηi + e−Γ (t−t0)Γ ηi

+ e−Γ (t−t0)


j∈Ni(t)

aij(t)(ηj(t) − ηi(t))

=


j∈Ni(t)

aij(t)(ζj(t) − ζi(t)),

or equivalently in a compact form ζ̇ = −(H(t) ⊗ I3)ζ , which
has the same form as (7). With the same proof of Theorem 4.2,
we derive that ζi(t) uniformly asymptotically converges to
vr(t0). Moreover, for the switched linear system, global uniform
asymptotic stability implies global uniform exponential stability
(Liberzon, 2003, page 22). Thus there exist positive constants α1
and α2 such that for all t > t0,

∥ζi(t) − vr(t0)∥ ≤ α1e−α2(t−t0)∥ζi(t0) − vr(t0)∥,

which implies for all t > t0,

∥ηi(t) − eΓ (t−t0)vr(t0)∥ ≤ α1e−α2(t−t0)∥eΓ (t−t0)∥

× ∥ηi(t0) − vr(t0)∥.
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Fig. 3. The target formation with 8 leaders and 12 followers.

Fig. 4. A periodic switching graph G(t) that switches among three different
topologies G1 , G2 and G3 .

Because σ(Γ ) ⊂ C−, there exist positive constants α3 and α4 such
that

∥ηi(t) − vr(t)∥ ≤ α3e−α4(t−t0)∥ηi(t0) − vr(t0)∥,

or equivalently ∥δi(t)∥ ≤ α3e−α4(t−t0)∥δi(t0)∥, which proves the
uniform asymptotic stability of (20).

(⇒) The proof is the same as for Theorem 4.2. �

6. Simulation

In this section, we present a simulation to validate our theoretic
results. Consider 8 leaders moving in a globally rigid formation
and consider 12 followers with any initial states. Denote the set of
leaders by Va = {1, 2, . . . , 8} and the set of followers by Vb =

{9, 10, . . . , 20}. Suppose the target formation [paT, pbT]T be the
one shown in Fig. 3.

In the simulation, we consider a periodic switching interaction
graph G(t) that switches among three different topologies as
shown in Fig. 4. It can be checked that every follower is
uniformly jointly reachable from Va. Moreover, suppose that Γ =

0 1 0
−1 0 1
0 0 0


. Then under the control law (14), the simulation

result is presented in Fig. 5, from which we see the followers are
uniformly asymptotically merged with the leaders to form a single
globally rigid formation.

7. Conclusion

This paper developed adistributed control law for the formation
merging control problem. We showed that a group of followers
can be asymptotically merged with another group of leaders if
–1 0 1 2 3 4 5 6 7 8
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Fig. 5. Asymptotical formation merging.

and only if every follower is jointly reachable from a leader
over any time interval of certain length. However, there are still
several interesting issues remaining open. For example, how can
we remove the convex assumption about the neighbors, how to
analyze the asymptotic convergence property under switching
topologies, and how can we preserve the graph connectivity
condition as the system evolves?

References

Bai, H., Arcak,M., &Wen, J. T. (2008). Adaptive design for reference velocity recovery
in motion coordination. Systems & Control Letters, 57(8), 602–610.

Beineke, L. W., &Wilson, R. J. (1997). Graph connections: relationships between graph
theory and other areas of mathematics. Clarendon Press.

Cao,M., Anderson, B. D. O., Morse, A. S., & Yu, C. (2008). Control of acyclic formations
of mobile autonomous agents. In Proceedings of the 47th IEEE conference on
decision and control (pp. 1187–1192). Cancun, Mexico.

Cao, Y., Ren, W., & Egerstedt, M. (2012). Distributed containment control with
multiple stationary or dynamic leaders in fixed and switching directed
networks. Automatica, 48(8), 1586–1597.

Cheah, C. C., Hou, S. P., & Slotine, J. J. E. (2009). Region-based shape control for a
swarm of robots. Automatica, 45(10), 2406–2411.

Coxeter, H. (1969). Introduction to geometry. John Wiley & Sons, Inc..
Eren, T., Anderson, B. D. O., Whiteley, W., Morse, A. S., & Belhumeur, P. N. (2004).

Merging globally rigid formations of mobile autonomous agents. In Proceedings
of the third international joint conference on autonomous agents and multiagent
systems (pp. 1260–1261). Washington, DC, USA.

Guo, J., Lin, Z., Cao, M., & Yan, G. (2010). Adaptive control schemes for mobile robot
formations with triangularized structures. IET Control Theory & Applications,
4(9), 1817–1827.

Hendrickx, J. M., Yu, C., Fidan, B., & Anderson, B. D. O. (2008). Rigidity and
persistence for ensuring shape maintenance of multi-agent meta-formations.
Asian Journal of Control, 10(2), 131–143.

Krick, L., Broucke, M. E., & Francis, B. A. (2009). Stabilisation of infinitesimally
rigid formations of multi-robot networks. International Journal of Control, 82(3),
423–439.

Liberzon, D. (2003). Switching in systems and control. Boston.Basel.Berlin: Birkjauser.
Lin, Z. (2008). Distributed control and analysis of coupled cell systems. Germany:

VDM-Verlag.
Lin, Z., Broucke, M. E., & Francis, B. A. (2004). Local control strategies for groups

of mobile autonomous agents. IEEE Transactions on Automatic Control, 49(4),
622–629.

Lin, Z., Chen, Z., & Fu,M. (2013). A linear control approach to distributedmulti-agent
formations in d-dimensional space. In Proceedings of the 52th IEEE conference on
decision and control (pp. 6049–6054). Florence, Italy.

Lin, Z., Ding, W., Yan, G., Yu, C., & Giua, A. (2013). Leader-follower formation via
complex laplacian. Automatica, 49(6), 1900–1906.

Loria, A., Panteley, E., Popovic, D., & Teel, A. R. (2005). A nested matrosov
theorem and persistency of excitation for uniform convergence in stable
nonautonomous systems. IEEE Transactions on Automatic Control, 50(2),
183–198.

Murray, R. M. (2007). Recent research in cooperative control of multivehicle
systems. Journal of Dynamic Systems, Measurement, and Control, 129(5),
571–583.

Shi, G., Hong, Y., & Johansson, K. H. (2012). Connectivity and set tracking of
multi-agent systems guided by multiple moving leaders. IEEE Transactions on
Automatic Control, 57(3), 663–676.

Wang, L., Han, Z., & Lin, Z. (2012). Formation control of directed multi-agent
networks based on complex laplacian. In Proceedings of the 51st IEEE conference
on decision and control (pp. 5292–5297). Hawaii, USA: Maui.

Wieland, P., Sepulchre, R., & Allgower, F. (2011). An internal model principle is
necessary and sufficient for linear output synchronization. Automatica, 47(5),
1068–1074.

http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref1
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref2
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref4
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref5
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref6
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref8
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref9
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref10
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref11
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref12
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref13
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref15
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref16
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref17
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref18
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref19
http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref20


T. Han et al. / Automatica 58 (2015) 99–105 105
Yan, X., Chen, J., & Sun, D. (2012). Multilevel-based topology design and shape
control of robot swarms. Automatica, 48(12), 3122–3127.

Yu, C., Fidan, B., & Anderson, B. D. O. (2006). Principles to control autonomous
formation merging. In Proceedings of the 2006 American control conference (pp.
762–768). Minneapolis, MN, USA.

Tingrui Han received the B.S. degree in Automation from
Zhejiang University, Hangzhou, China, in 2012. He is cur-
rently pursuing the Ph.D. degree in Control theory and
Control engineering at the College of Electrical Engineer-
ing, Zhejiang University. His research interests focus on
multi-agent formation control, distributed optimization,
and distributed localization.

Zhiyun Lin received his Bachelor degree in Electrical
Engineering from Yanshan University, China, in 1998,
Master degree in Electrical Engineering from Zhejiang
University, China, in 2001, and Ph.D. degree in Electrical
and Computer Engineering from the University of Toronto,
Canada, 2005.

From 2005 to 2007, he was a Postdoctoral Research
Associate in the Department of Electrical and Computer
Engineering, University of Toronto, Canada. He joined
the College of Electrical Engineering, Zhejiang University,
China, in 2007. Currently, he is a Professor of Systems

Control in the same college. He is also affiliated with the State Key Laboratory of
Industrial Control Technology at Zhejiang University. He held visiting professor
positions at several universities including The Australian National University
(Australia), University of Cagliari (Italy), University of Newcastle (Australia), and
University of Technology Sydney (Australia).

His research interests focus on distributed control, estimation and optimization,
coordinated and cooperative control of multi-agent systems, hybrid and switched
system theory, and locomotion control of biped robots.

He is a senior member of IEEE. He is currently an associate editor for Hybrid
systems: Nonlinear Analysis and International Journal of Wireless and Mobile
Networking.

Minyue Fu received his Bachelor’s degree in Electrical En-
gineering from theUniversity of Science and Technology of
China, Hefei, China, in 1982, and theM.S. and Ph.D. degrees
in Electrical Engineering from theUniversity ofWisconsin-
Madison in 1983 and 1987, respectively.

From 1987 to 1989, he served as an Assistant Professor
in theDepartment of Electrical and Computer Engineering,
Wayne State University, Detroit, Michigan. He joined the
Department of Electrical and Computer Engineering, the
University of Newcastle, Australia, in 1989. Currently, he is
a Chair Professor in Electrical Engineering. He was a Visit-

ing Associate Professor at University of Iowa in 1995–1996, a Senior Fellow/Visiting
Professor at Nanyang Technological University, Singapore, 2002, and Visiting Pro-
fessor at Tokyo University in 2003. He has held a ChangJiang Visiting Professorship
at Shandong University, a visiting Professorship at South China University of Tech-
nology, and a Qian-ren Professorship at Zhejiang University in China.

He was elected to a Fellow of IEEE in 2003. His main research interests in-
clude control systems, signal processing and communications. His current research
projects include networked control systems, smart electricity networks and super-
precision positioning control systems. He has been an Associate Editor for the IEEE
Transactions on Automatic Control, Automatica, IEEE Transactions on Signal Pro-
cessing, and Journal of Optimization and Engineering.

http://refhub.elsevier.com/S0005-1098(15)00187-9/sbref21

	Three-dimensional formation merging control under directed and switching topologies
	Introduction
	Preliminaries
	Formation merging control problem
	Formation merging control with the reference velocity available to all the agents
	Distributed control law
	Design of control parameters  kij 's
	Stability analysis

	Formation merging control with the reference velocity available to a subset of followers=-1
	Simulation
	Conclusion
	References


