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a b s t r a c t

Distributed parameter estimation for large-scale systems is an active research problem. The goal is to
derive a distributed algorithm in which each agent obtains a local estimate of its own subset of the
global parameter vector, based on local measurements as well as information received from its neighbors.
A recent algorithm has been proposed, which yields the optimal solution (i.e., the one that would be
obtained using a centralized method) in finite time, provided the communication network forms an
acyclic graph. If instead, the graph is cyclic, the only available alternative algorithm, which is based on
iterative matrix inversion, achieving the optimal solution, does so asymptotically. However, it is also
known that, in the cyclic case, the algorithm designed for acyclic graphs produces a solution which,
although non optimal, is highly accurate. In this paper we do a theoretical study of the accuracy of this
algorithm, in communication networks forming cyclic graphs. To this end, we provide bounds for the
sub-optimality of the estimation error and the estimation error covariance, for a class of systems whose
topological sparsity and signal-to-noise ratio satisfy certain condition. Our results show that, at each node,
the accuracy improves exponentially with the so-called loop-free depth. Also, although the algorithm no
longer converges in finite time in the case of cyclic graphs, simulation results show that the convergence
is significantly faster than that of methods based on iterative matrix inversion. Our results suggest that,
depending on the loop-free depth, the studied algorithmmay be the preferred option even in applications
with cyclic communication graphs.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the fast development of sensor networks and wireless
communications, the scale of systems is becoming increasingly
large. Since centralized estimation requires a fusion center to
process all the information from the whole graph, the compu-
tation and communication burden increases with the system’s
size. Thus, the centralized estimation approach is not suitable for
large-scale systems, and distributed approaches are needed. The
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development of distributed estimation has attracted a great deal
of attention (Garin & Schenato, 2010; Gupta, Dana, Hespanha,
Murray, & Hassibi, 2009; Li & Alregib, 2009; Ribeiro & Giannakis,
2006a, b). It finds applications in industrial monitoring, multi-
agent systems, the smart grid, etc.

The distributed estimation problem consists of a network of
interconnected nodes, each of which aims to obtain an estimate of
certain vector of interest. This is achieved through an iterative pro-
cedure in which each node processes its available information, and
exchange relevant information with its neighbors, in order to suc-
cessively compute the required estimate as accurately as possible.
The existing distributed estimation problems can be broadly classi-
fied into four classes. These classes are: static fully reconstructive,
static partially reconstructive, dynamic fully reconstructive and
dynamic partially reconstructive. A fully reconstructive system is
one in which each node aims to obtain an estimate of the same
vector. In contrast, in a partially reconstructive system, each node
aims to obtain an estimate of its own partial sub-vector of interest.
Also, a static system is one in which prior knowledge of the state at
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a certain time is independent of the knowledge of the same state
at previous times. A dynamic system refers to the complementary
case. We point out that methods for dynamic estimation can be
readily used for static problems, by choosing the dynamic model
in a way such that the state stays constant over time.

In the static fully reconstructive problem, the most popular
distributed estimation algorithm is consensus (Garin & Schenato,
2010). By running average consensus on the information vector
and informationmatrix of each node, in view of the weighted least
squares (WLS) formula, the final estimate of each node converges
to the one obtained via WLS (Olfati-Saber, 2005). Although the
average consensus algorithm is simple, it has two main disad-
vantages: First, the communication burden is large, as each node
communicates n×(n+3)

2 scalars to its neighbors, where n is the
dimension of the estimated vector. Second, the convergence of
average consensus requires infinite iterations, and the stopping
criterion is still an open problem. To avoid these two disadvan-
tages, many algorithms have been proposed (Ajgl & Šimandl,
2014; Calafiore & Abrate, 2009; Chen, Arambel, & Mehra, 2002;
Pasqualetti, Carli, & Bullo, 2012). One of the most important works
is the one in Pasqualetti et al. (2012), where using the space
structure of measurements and doing kernel projection, each node
achieves its minimum norm solution in a finite number of steps.

In the static partially reconstructive problem, since each node
considers its own partial state, the consensus algorithm is not
applicable. For the case in which the graph induced by the com-
munication network is acyclic (i.e., without loops), an algorithm
is proposed in Tai, Lin, Fu, and Sun (2013). In this algorithm,
each node obtains a WLS estimate on its own state in a finite
number of steps.When the graph is cyclic (i.e., with loops), Marelli
and Fu (2015) gave a novel method which, based on Richardson
iterations, solves the WLS estimation problem. However, it does
so asymptotically, i.e., in infinite iterations. We point out that
most estimation algorithms for large-scale systems are partially
reconstructive, since the whole state of the system is often of very
high dimension.

In the dynamic fully reconstructive problem, the consensus
algorithm is also a popular option. In Matei and Baras (2012),
one consensus algorithm is run at each sampling time, using
the partial estimates obtained at each node, based on their local
measurements. Building on this line, a study on the number of
consensus iterations required at each sampling time to guarantee
the stability of the estimator, under the observability condition,
is done in Acikmese, Mandić, and Speyer (2014). Also, the so-
called diffusion Kalman filter (Cattivelli & Sayed, 2010) runs
consensus on the estimates obtained at each sensor, using local
measurements as well as those from neighbors. As opposite to
doing consensus on the estimates, the authors of Battistelli and
Chisci (2014) found that, by running consensus on the information
matrices and vectors, observability is sufficient for the estimation
stability.

Concerning the dynamic partially reconstructive problem, in-
formation passing and processing methods guaranteeing a stable
estimate are proposed in Farina, Ferrari-Trecate, and Scattolini
(2010), Khan and Moura (2008), Zhou (2013) and Zhou (2015).
Also, the authors of Haber and Verhaegen (2013) study systems
with banded dynamic state transition matrices, concluding that
the contribution from faraway nodes decreases with the increase
of their distance. The authors also propose the moving horizon
estimation approach as an approximation to the optimal state
estimate.

In this paper we focus on the static partially reconstructive
problem. Also, as typically done in static problems, we assume
that the vector to be estimated is deterministic. More precisely, we
consider the algorithm in Tai et al. (2013), which, as mentioned,
yields the optimal solution in finite-time, only when the commu-
nication graph is acyclic. For cyclic graphs, this algorithm is not

guaranteed to produce the optimal solution. Nevertheless, inmany
applications, even in the presence of loops, it delivers very good
approximations to the optimal solution, in only a very few steps.
For those applications, this makes the algorithm a valid alternative
to the method in Marelli and Fu (2015) even for cyclic networks.
This is because, while the later guarantees the optimal solution, the
former one convergesmuch faster. Motivated by this, we study the
accuracy of the estimate produced by the algorithm in Tai et al.
(2013), under the general setting of a cyclic graph.

For a class of systems whose topological sparsity and signal-
to-noise ratio satisfy certain condition, we are able to determine
the accuracy of the estimates and their associated estimation error
covariances, with respect to those achievable via a centralized
WLS method. Our formulas clearly show how accuracy depends
on the so-called loop-free depth of each node. More precisely, the
estimates and estimation error covariances approach those from
the centralized solution, exponentially on the loop-free depth.

The rest of this paper is organized as follows. In Section 2, we
give the problem formulation and introduce the distributed WLS
algorithm under study. In Section 3, we show how to convert a
given graph into other equivalent ones, which are instrumental
for analyzing the behavior of the algorithm in cyclic graphs. In
Section 4, we introduce our notation, as well as the definition of
the Riemannian Distance between matrices, together with some of
its properties. The accuracy of the information matrices (i.e., the
inverses of the error covariances) and state estimates produced by
the distributed WLS algorithm are analyzed in Sections 5 and 6,
respectively. In Section 7,weprovide some simulations to illustrate
our results. Finally, concluding remarks are stated in Section 8. Due
to space constraints, some complementarymathematicalmaterial,
including most proofs and some additional lemmas, appears in the
extended version (Sui, Marelli, Fu, & Lu, 2018), which is available
online.

2. Problem formulation

Consider a system observed by I sensing nodes. Associated to
this system, there is a deterministic vector xT =

[
xT1, x

T
2, . . . , x

T
I

]
∈

Rn, with
∑I

i=1ni = n, called the global state. For any i = 1, . . . , I ,
node i aims to estimate the sub-vector xi ∈ Rni . There are also two
kinds of measurements. The so-called self measurements for node i

zi = Cixi + vi, (1)

and the (pair-wise) joint measurements between nodes i and j

zi,j = Ci,jxi + Cj,ixj + vi,j. (2)

In the above, the matrices Ci, Ci,j and Cj,i are known, and vi and
vi,j are independent measurement noises with known covariances
Ri > 0 and Ri,j > 0, respectively. Note that (1) the pair (i, j) is
unordered, i.e., (i, j) = (j, i); (2) zi,j = zj,i and vi,j = vj,i; (3) It is
not necessary for all nodes to have self measurements or all node
pairs to have joint measurements. In fact, joint measurements are
typically sparse for large graphs.

We assume that node i and node j could communicate if zi,j
exists. Furthermore, we call node j a neighbor of node i (i.e., j ∈

Ni) and node i a neighbor of node j (i.e., i ∈ Nj) if there is
communication between them. In view of this, communication
between nodes is always two-ways; and therefore, the associated
communication graph (which will be formally introduced later) is
always undirected.

The target of distributedWLS estimation is to compute theWLS
estimate for each xi, and its associated estimation error covariance,
using a fully distributed algorithm. The algorithm summarized in
Algorithm 1, achieves this goal. In this algorithm, at iteration N ,
node i computes a local estimate x̂i(N) of its sub-vector of interest,
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Algorithm 1 Distributed WLS algorithm.
1) Initialization: At time k = 0, node i defines:

αj→i(0) = 0, Qj→i(0) = 0. (3)

2)Main loop: At time N = 1, 2, · · ·, do:
2.1) Each node i computes

αi(N) = CT
i R

−1
i zi +

∑
j∈Ni

αj→i(N − 1),

Qi(N) = CT
i R

−1
i Ci +

∑
j∈Ni

Qj→i(N − 1), (4)

and

x̂i(N) = Q−1
i (N)αi(N), Σi(N) = Q−1

i (N). (5)

2.2) Each node i sends to each connected node j with j ∈ Ni:

αi→j(N) = CT
j,iR

−1
i→j(N)zi→j(N),

Qi→j(N) = CT
j,iR

−1
i→j(N)Cj,i, (6)

where

zi→j(N) =zi,j − Ci,j
(
Qi(N) − Qj→i(N − 1)

)−1

· (αi(N) − αj→i(N − 1)), (7)

Ri→j(N) =Ri,j + Ci,j(Qi(N) − Qj→i(N − 1))−1CT
i,j. (8)

and its associated covariance Σi(N), using its local information
vector αi(N) and informationmatrixQi(N). Then, for each neighbor
j ∈ Ni, it removes from αi(N) and Qi(N) the information vector
αj→i(N −1) andmatrix Qj→i(N −1), respectively, which it received
at the previous iteration from neighbor j, to built the information
vector αi→j(N) andmatrix Qi→j(N), that it sends to the same neigh-
bor at the current iteration.

Algorithm 1 requires Assumption 2, which is given below. This
assumption implies that each node is able to obtain an (possibly
coarse) estimate of its sub-vector of interest, using only its self
measurements. Notice that, if this assumption is not met, we have,
at time N = 1, and node i, that Qi(1) − Qj→i(0) = CT

i R
−1
i Ci. Hence,

Qi(1) − Qj→i(0) cannot be inverted in (7) and (8) .
Before stating Assumption 2 we introduce some required nota-

tion.

Notation 1. The superscript T denotes vector or matrix transposition.
For a matrix A, ∥A∥ denotes the induced operator norm, i.e., the
maximum singular value of A. Also, A > 0 (A ≥ 0) means that A
is positive definite (semi-definite), i.e., xTAx > 0 (xTAx ≥ 0), for all
x ̸= 0. For a second matrix B, A > B (A ≥ B) means that A − B > 0
(A − B ≥ 0).

Assumption 2. For every i = 1, 2, . . . , I , we have

CT
i R

−1
i Ci > 0.

It is known that Algorithm 1 converges to the correct estimates
in a finite number of iterations, when its associated communica-
tion graph is acyclic (Tai et al., 2013). In fact, the required number
of iterations equals the diameter of the graph, i.e., the maximum
number of edges connecting one node to another over the whole
graphs. The fundamental challenge in our study is to understand
how the algorithm performs for cyclic graphs. As mentioned in
Section 1, the goal of this paper is to quantify the accuracy of
the estimate when the graph is cyclic, i.e., quantify the difference

between the distributed estimate and the centralized one.We split
our accuracy analysis in that of the information matrix (Section 5)
and that of the state estimate (Section 6). In the rest of paper, with-
out loss of generality, we concentrate our study on the accuracy of
an arbitrary node, which is labeled as node 1.

3. Graph representations

In the network described above, nodes have only self and pair-
wise joint measurements. This permits using a simple connec-
tivity (undirected) graph, called canonical graph, to describe the
nodes and their measurements. This is explained in Section 3.1. A
drawback of this representation for our intended analysis is that
this graph is cyclic in general. In Section 3.2 we describe how
to convert this cyclic graph into an acyclic one, with an infinite
number of nodes. It turns out that this is an equivalent graph, as
far as distributed estimation is concerned. Then, in Section 3.3,
we explain how to further convert the acyclic graph into another
equivalent one, whose topology is that of a single line. For a
more detailed presentation of equivalent graph transformations,
the reader is referred to Tatikonda and Jordan (2002), Tatikonda
(2003) and Weiss (2000). We point out that all the above graphs
are undirected.

3.1. Canonical graph representation

The canonical graph G has a node associated with each sensing
node i = 1, . . . , I . Also, nodes i and j are connected by an undi-
rected edge if they can communicate with each other, i.e., j ∈ Ni.

3.2. Acyclic graph representation

We start the section with the following definition.

Definition 3. A rooted tree graph is an acyclic connected graph,
in which a node is assigned as its root. For a node i different from
the root one, we let p(i) denote its parent (i.e., the next node when
moving towards the root) and Si denote the set of its children
(i.e., all the nodes j with i = p(j)). Also, node i is called a leaf if
Si is empty.

Given a cyclic canonical graph G, we can convert it into an
acyclic one A, having a rooted tree topology, with any arbitrary
node as its root one. Since, as pointed out before, we concentrate
our study on the accuracy at node 1,we choose this node as the root
one. This graph enjoys the property that, if Algorithm 1 is applied
to both graphs, it will produce at node 1 and iteration N , the same
result.

Graph A has an infinite number of nodes. Each of its nodes is
associated to a node in G. With some abuse of notation, we use
G(n) to denote the node in G associated to node n in A, and A(i)
to denote the set of nodes in A associated to node i in G. Graph A
is constructed as the limit of the following iterative procedure. We
start by definingA0 as the empty graph andA1 as the graph having
no edges, and having a single node, which is associated to node 1
of G. Then, at each step N ≥ 2, we do the following steps:

(1) Find all leaf nodes l of the tree AN−1.
(2) Find all neighbors j of G(l) in G, excluding all nodes inA(p(l))

(i.e., associated to the parent of l in A).
(3) For each l and j:

(a) Add a node n to the tree.
(b) Add the undirected edge from l to n to the tree.
(c) Associate n in A to j in G.

(4) Define AN as the resulting graph.
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Our next step is to associate a system ofmeasurement equations to
the acyclic graphA, in away similar to theway inwhich the system
of Eqs. (1)–(2) is associated with G. These equations need to satisfy
two conditions. First, their canonical graph should be A. Second,
the aforementioned equivalence at node 1 should be preserved.
As explained in Ihler, Iii, and Willsky (2005), Tatikonda (2003),
Tatikonda and Jordan (2002) andWeiss (2000), both conditions are
satisfied if

z̄i = C̄ix̄i + v̄i, (9)

z̄i,j = C̄i,jx̄i + C̄j,ix̄j + v̄i,j (10)

for all i ∈ A and j ∈ Si, with v̄i ∼ N
(
0, R̄i

)
and v̄i,j ∼

N
(
0, R̄i,j

)
. The values of the quantities in (9)–(10) are given by

those corresponding to the nodes in G which are associated to
nodes i and j in A, i.e.,

z̄i = zG(i), v̄i = vG(i), C̄i = CG(i),

R̄i = RG(i), z̄i,j = zG(i),G(j), v̄i,j = vG(i),G(j),

C̄i,j = CG(i),G(j), R̄i,j = RG(i),G(j).

Also, all noises v̄i and v̄i,j, i = 1, . . . , I , j ∈ Ni, are pairwise
uncorrelated.

Remark 4. Recall that, in an acyclic graph, Algorithm 1 produces,
at each node, the same estimate that would be obtained using
the centralized WLS method. Since the graph AN is acyclic, the
outcomes of both methods will be the same on AN . Moreover, its
measurements (9)–(10), are designed so that, at node 1 and itera-
tionN , this outcome equals that resulting from applying Algorithm
1 to graph G. Hence, G andAN are equivalent graphs only from the
point of view of Algorithm 1 (at node 1 and iteration N), but not
from that of centralized WLS.

3.3. Representation as a line graph

Let AN be the N-layer acyclic graph with root node 1 and
measurement equations (9)–(10), as described above. We now
describe how to convert AN into a line graph LN such that the
aforementioned equivalence is still preserved.

Indeed, LN is formed by simply grouping all the nodes in AN ,
which are exactly n − 1 hops away from node 1, into a super node
Tn, for all n = 1, 2, . . . ,N . In particular, T1 is just node 1.

Again,we need to associate a systemofmeasurement equations
toLN satisfying the conditions described in Section 3.2. This is done
by grouping all themeasurement equations for each super node Tn,
as detailed below.

Denote the size of any finite set S by |S| and its elements by
S(1), S(2), . . . , S(|S|). For each n ∈ N, the state of Tn is given by

x̃n =
[
x̄TTn(1), x̄TTn(2), . . . , x̄TTn(|Tn|)

]T
,

and its measurement equations are given by

z̃n = C̃nx̃n + ṽn, (11)

z̃n,n+1 = C̃n,n+1x̃n + C̃n+1,nx̃n+1 + ṽn,n+1. (12)

That is, z̃n consists of all themeasurements z̄i with i ∈ Tn, and z̃n,n+1
consists of all the measurements z̄i,j with i ∈ Tn and j ∈ Tn+1. Note
that ṽn ∼ N (0, R̃n) and ṽn,n+1 ∼ N (0, R̃n,n+1). The matrices C̃n, R̃n,
C̃n,n+1 and R̃n,n+1 are naturally related to C̄i, R̄i, C̄i,j and R̄i,j through
the above construction. More precisely,

z̃n =
[
z̄TTn(1), z̄TTn(2), . . . , z̄TTn(|Tn|)

]T
,

C̃n = diag{C̄Tn(1), C̄Tn(2), . . . , C̄Tn(|Tn|)},

R̃n = diag{R̄Tn(1), R̄Tn(2), . . . , R̄Tn(|Tn|)}.

Similarly,

z̃n,n+1 =
[
z̀TTn(1), z̀TTn(2), . . . , z̀TTn(|Tn|)

]T
,

C̃n,n+1 = diag{C̀Tn(1), C̀Tn(2), . . . , C̀Tn(|Tn|)},

C̃n+1,n = diag{ĆTn+1(1), ĆTn+1(2), . . . , ĆTn+1(|Tn+1|)},

R̃n,n+1 = diag{R̀Tn(1), R̀Tn(2), . . . , R̀Tn(|Tn|)},

with

z̀i =
[
z̄Ti,Si(1), z̄Ti,Si(2), . . . , z̄Ti,Si(|Si|)

]T
,

C̀i =
[
C̄T
i,Si(1), C̄T

i,Si(2), . . . , C̄T
i,Si(|Si|)

]T
,

Ći = diag{C̄Si(1),i, C̄Si(2),i, . . . , C̄Si(|Si|),i},

R̀i = diag{R̄i,Si(1), R̄i,Si(2), . . . , R̄i,Si(|Si|)}.

Remark 5. Note that the statement in Remark 4 also holds for
LN . More precisely, the centralized WLS estimate at node 1 in LN
equals to that of Algorithm 1, when applied to G, at the same nodes
and iteration N .

In view of the above analysis, the problem of studying the
dynamics of Algorithm 1 becomes the problem of studying the
centralized WLS estimate at node 1 for the graph LN , as N → ∞.

4. Preliminaries

In our analysis below,wewillmake use of the so-called Rieman-
nian distance between matrices (Bougerol, 1993).

Definition 6. For n × n matrices P,Q > 0, their Riemannian
distance is defined by

δ (P,Q ) =

√ n∑
k=1

log2σk
(
PQ−1

)
,

where σ1 (X) ≥ · · · ≥ σn (X) denote the singular values of
matrix X .

The following proposition states a number of properties of
the Riemannian distance. Its proof appears in Sui et al. (2018,
Appendix).

Proposition 7. For any n × n positive definite matrices P and Q , the
following results hold:

(1) δ(P, P) = 0.
(2) δ

(
P−1,Q−1

)
= δ (Q , P) = δ (P,Q ) .

(3) If B has full row rank, δ
(
BPBT , BQBT

)
≤ δ (P,Q ), and the

equality holds if B is invertible.
(4) If P ≥ Q and W ≥ 0, then δ (P + W ,Q ) ≥ δ (P,Q ) .
(5) For anym × m matrix W > 0 andm × nmatrix B, we have

δ(W + BP−1BT ,W + BQ−1BT ) ≤
α

α + β
δ(P,Q ),

where α = max{∥BP−1BT
∥, ∥BQ−1BT

∥} and β = σmin (W ),
with σmin(W ) denoting the smallest singular value ofW .

(6) If P > Q , then ∥P − Q∥ ≤
(
eδ(P,Q ) − 1

)
∥Q∥ .

We now introduce some notation that will be used in the rest
of the paper.

Notation 8. For a graph C, we use x̂i(C), Qi(C) and αi(C) to denote the
final (after convergence) state estimate, informationmatrix and infor-
mation vector, respectively, obtained by running Algorithm 1 on C.
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Notation 9. Let Q(i,j),0 ≥ 0, for each i = 1, . . . , I , j ∈ Ni, and define
the set Q =

{
Q(i,j),0 : i = 1, 2, . . . , I, j ∈ Ni

}
. Suppose that we run

Algorithm 1 on the network G, but replacing the initialization (3) by
Qj→i(0) = Q(i,j),0, for all i = 1, . . . , I , j ∈ Ni. We use x̂1(N,Q) and
Q1(N,Q) to denote the estimate and information matrix, respectively,
yielded by such algorithm at node 1 and step N.

Notation 10. If zi,j exists, the pair (i, j) is called an (undirected) edge.
Notice that since edges are undirected, the pairs (i, j) and (j, i) denote
the same edge. A path is a concatenation of contiguous edges, and its
length is the number of edges forming it. A cycle is a path with no
repetitions of vertices and edges, except for the necessary repetition
of the starting and ending vertices. For each i, j ∈ {1, . . . , I}, the
distance between nodes i and j is defined as the minimum length of
a path joining these two nodes. Let N1(l) denote the subgraph of G
formed by nodes whose distance from node 1 is less than or equal to l.
The loop-free depth l1 of node 1 is the largest integer such that N1(l1)
is acyclic (i.e., without cycles).

We also introduce the following constants

ū := max
i

|Ni| − 1, n̄ := max
i

dim xi,

m̄ := max{max
i

dim zi,max
i,j

dim zi,j}.

5. Accuracy analysis for the information matrix

In this section we derive a bound for the difference between
the information matrix yielded by Algorithm 1 and that obtained
using the centralized WLS method. For a class of systems, we
provide a lower bound for the time after which the difference falls
within this bound. Moreover, this bound decreases exponentially
with the increase of the loop free-depth. Our main result is given
in Section 5.1. Its proof appears in Section 5.2.

5.1. Main result

The main result on the accuracy of the information matrix is
given below.

Theorem11. Let CovWLS
1 be the estimation error covariance obtained

at node 1 when using centralized WLS. If ρ < 1, then there exists a
constantϖ (only dependent on the system parameters ū, n̄, Ci,j, Ci, Ri,j
and Ri) such that, for any N ≥ l1 + 1,

∥CovWLS
1 − Q−1

1 (N)∥ ≤ ϖρ l1 ,

where

ρ = λ
√
ū, λ =

α1

α1 + β1

α2

α2 + β2
,

α1 = ūmax
i,j

∥CT
i,jR

−1
i,j Ci,j∥, β1 = min

i
σmin(CT

i R
−1
i Ci),

α2 = max
i,j

∥Ci,j(CT
i R

−1
i Ci)−1CT

i,j∥, β2 = min
i,j
σmin(Ri,j).

Remark 12. Theorem 11 states that, if the graph/system satisfies
ρ < 1, the inverse of the information matrix Q−1

1 (N) yielded by
Algorithm 1 at node 1, exponentially approaches the estimation
error covariance of centralized WLS, as its loop-free depth l1 in-
creases.

Remark 13. Since ρ = λ
√
ū, the result ismainly given for a class of

graphs with sparse connections (small ū) and where the ratio be-
tween the signal-to-noise-ratio (SNR) of local measurements and
the SNR of each joint measurement is small (small λ). Notice that
the later condition is relativelymild, since each jointmeasurement
typically has a lower SNR than the local one.

5.2. Proof of Theorem 11

Recall that, in view of the graph conversions described in
Section 3, we have Q1(N) = Q1(AN ) = Q1(LN ). The proof of
Theorem 11 uses this fact. It also requires the following lemmas,
whose proofs appear in the (Sui et al. (2018) Appendix).

Lemma14. Let Q1 andQ2 be initial sets both satisfying 0 ≤ Q c
(i,j),0 ≤

CT
i,jR

−1
i,j Ci,j, for all Q c

(i,j),0 ∈ Qc and c ∈ {1, 2}. Then, in the notation of
Theorem 11, for all N ∈ N,

δ (Q1(N,Q1) − Q1(N,Q2)) ≤ ρN−1δ̄,

with

δ̄ =

√
(ū + 1)n̄

× max
i

log ∥I + (
∑
j∈Ni

CT
i,jR

−1
i,j Ci,j)(CT

i R
−1
i Ci)−1

∥.

Notation 15. Let

QM
=
{
QM
(i,j),0 : i = 1, . . . , I and j ∈ Ni

}
,

Q0
=
{
Q 0
(i,j),0 : i = 1, . . . , I and j ∈ Ni

}
,

with

QM
(i,j),0 = CT

i,jR
−1
i,j Ci,j, Q 0

(i,j),0 = 0.

In particular, notice that Q0 is the initialization used in Algorithm 1,
i.e., x̂1(N) = x̂1(N,Q0) and Q1(N) = Q1(N,Q0).

Lemma 16. Recall the definition of loop-free depth l1 from Nota-
tion 10. For any N ≥ l1 + 1, we haveQ−1

1 (N) − CovWLS
1


≤
Q−1

1 (l1 + 1,QM) − Q−1
1 (l1 + 1,Q0)

 . (13)

The proof of Theorem 11 uses the above property to provide an
upper bound for the difference between Q−1

1 (N) and CovWLS
1 .

Proof of Theorem 11. Since both QM and Q0 satisfy the condition
in Lemma 14, it follows that

δ(Q−1
1 (l1 + 1,Q0),Q−1

1 (l1 + 1,QM)) ≤ ρ l1 δ̄.

From Proposition 7,

∥Q−1
1 (l1 + 1,Q0),Q−1

1 (l1 + 1,QM)∥

≤ (eρ
l1 δ̄

− 1)∥Q−1
1 (l1 + 1)∥ ≤ (eρ

l1 δ̄
− 1)∥(CT

1 R
−1
1 C1)−1

∥

≤ β−1
1 (eδ̄ − 1)ρ l1 ,

where the last inequality follows from Sui et al. (2018, Lemma 30).
Since the quantity β−1

1 (eδ̄−1) depends only on ū, n̄ and the system
parameters Ci,j, Ci, Ri,j, Ri for some i and j, the result then follows
from (13).

6. Accuracy analysis for the state estimate

In this section, we derive a bound for the difference between
the estimate yielded by Algorithm 1 and that obtained using the
centralizedWLSmethod. For a class of systems, we provide a lower
bound for the time after which the difference falls within this
bound. Moreover, this bound decreases exponentially with the in-
crease of the loop-free depth. Ourmain result is given in Section 6.1
and its proof appears in Section 6.2.
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6.1. Main result

The main result on the accuracy of the estimate is given below.

Theorem 17. Let x̂WLS
1 be the estimate obtained at node 1 when using

centralized WLS. If κ < 1, then there exists a constant ϖ (only
dependent on the system parameters m̄, ū, n̄, Ci,j, Ci, Ri,j and Ri as well
as on the measurements zi,j, zi) such that, for all N ≥ l1 + 1,

∥x̂1(N) − x̂WLS
1 ∥ ≤ ϖκ l1+1

where with

κ = max{ū
√
ω,

√
ūι1/ζ }, ω =

a1
a1 + b1

a2
a2 + b2

,

a1 = r−1ūmax
i,j

Ci,j
2 , a2 = max

i,j
∥Ci,j∥

2 ūr̄
ε2
,

b1 = r̄−1ε2, b2 = r, ι =

√
q −

√
q√

q +
√
q
,

q = ε2r−1, q = ε2r−1
, ζ = 2 + log 1√

ω

(q/q).

r = max
i

{∥Ri∥, ∥Ri,j∥}, r = min
i

{σmin(Ri), σmin(Ri,j)},

ε = max
i,j

√
∥Ci∥

2
+ 4ū

Ci,j
2, ε = min

i
σmin(Ci).

Remark 18. From the definition of κ , the observation made in
Remark 13 also applies to Theorem 17. However, since κ ≥ ρ,
the condition required for Theorem 17 is stronger than that for
Theorem 11.

6.2. Proof of Theorem 17

We split the proof of Theorem 17 into three parts. In Sec-
tion 6.2.1we derive a bound for the increment x̂1(N+1)−x̂1(N) in a
graph with line topology. In Section 6.2.2 we generalize this result
for an arbitrary graph. Finally, in Section 6.2.3 we use this result
to bound the difference between the state estimate yielded by
Algorithm 1 and that obtained using the centralized WLS method.

6.2.1. Bound of the increment in a line graph
Consider a line graph LN with measurement equations given

by (11)–(12). Let

yi =
[
z̃Ti , z̃

T
i,i+1

]T
, wi =

[
ṽTi , ṽ

T
i,i+1

]T
,

Ai,i =

[
C̃i

C̃i,i+1

]
, Ai,i+1 =

[
0

C̃i+1,i

]
, Si =

[
R̃i 0
0 R̃i,i+1

]
for any i = 1, 2, . . . ,N − 1, and

yN = z̃N , wi = ṽN , AN,N = C̃N , SN = R̃N .

Then, (11) and (12) become

yi = Ai,ix̃i + Ai,i+1x̃i+1 + wi,

with wi ∼ N (0, Si). We also define

xN =
[
x̃T1, . . . , x̃

T
N

]T
, yN =

[
yT1, . . . , y

T
N

]T
,

wN =
[
wT

1 , . . . , w
T
N

]T
,

[AN ]n,m =

{
An,m, 0 ≤ m − n ≤ 1,
0, otherwise.

We then have

yN = ANxN + wN ,

with wN ∼ N (0, SN) and SN = diag {S1, . . . , SN}.

The WLS estimate x̂N of xN is given by

x̂N = Q−1
N qN ,

where qN = AT
NS

−1
N yN =

[
qT1, . . . , q

T
N

]T with

qi =

{
AT
i,iS

−1
i yi, i = 1,

AT
i,iS

−1
i yi + AT

i−1,iS
−1
i−1yi−1, i > 1,

(14)

and the (i, j)-th entry Qi,j of QN = AT
NS

−1
N AN given by

Qi,i =

{
AT
i,iS

−1
i Ai,i, i = 1,

AT
i,iS

−1
i Ai,i + AT

i−1,iS
−1
i−1Ai−1,i, i > 1,

Qi,i+1 = AT
i,iS

−1
i Ai,i+1, Qi+1,i = Q T

i,i+1, (15)
Qi,j = 0, |i − j| ≥ 2.

Let ΣN = Q−1
N and [ΣN ]i,j be its (i, j)-th block. From the inverse

formula for bandmatrices given in Theorem3.1 of Meurant (1992),
it follows that the first block row ofΣN is given by

[ΣN ]1,j =

( j−1∏
k=1

∆−1
k Qk,k+1

)
Φ−1

j (N) (16)

with

Φj(N) = Γj(N) − Qj,j−1∆
−1
j−1Qj−1,j, (17)

∆k =

{
Qkk, k = 1,
Qkk − Qk,k−1∆

−1
k−1Qk−1,k, k > 1,

Γk(N) =

{
Qkk, k = N,
Qkk − Qk,k+1Γ

−1
k+1(N)Qk+1,k, k < N,

for any j = 1, 2, . . . ,N . Then, the first entry
[
x̂N
]
1 of x̂N is given by

[
x̂N
]
1 =

N∑
j=1

[ΣN ]1,jqj. (18)

Recall that x̂1(LN ) =
[
x̂N
]
1, it then follows from (18) that

x̂1(LN+1) − x̂1(LN )
 ≤

N∑
j=1

[ΣN+1]1,j − [ΣN ]1,j
 qj

+
[ΣN+1]1,N+1

 ∥qN+1∥ . (19)

The main result of this section is given in Lemma 26. It bounds
the decay rate in (19). Its proof requires a number of lemmas,which
are stated below.

We start by stating bounds for certain quantities, namely, AN ,

QN ,∆k,Γk(N),Φk(N). This is done in Lemmas 19–21. Some of the
proofs are given in Sui et al. (2018, Appendix).

Lemma 19. For any N ∈ N,

ε̃I ≤ AN ≤ ε̃I,

with

ε̃ = max
i

(
C̃i

2 + 2max{∥C̃i−1,i∥
2, ∥C̃i,i−1∥

2
}

+ 2max{∥C̃i,i+1∥
2, ∥C̃i+1,i∥

2
})1/2,

ε̃ = min
i
σmin(C̃i).

Lemma 20. For any N ∈ N,

q̃I ≤ QN ≤ q̃I,
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with

q̃ =
ε̃
2

r̃
, ˜̄r = max

i

{R̃i

 , R̃i,i+1

} ,
q̃ =

ε̃
2

r̃
, r̃ = min

i

{
σmin(R̃i), σmin(R̃i,i+1)

}
.

Proof. Since QN = AT
NS

−1
N AN , from Lemma 19, it follows that

ε̃
2

σmax(SN )
I ≤ QN ≤

ε̃
2

σmin(SN )
I.

The result then follows from r̃ I ≤ SN ≤ r̃ I .

Lemma 21. For every 1 ≤ k ≤ N,

q̃I ≤ ∆k,Γk(N),Φk(N) ≤ q̃I.

Our next goal is to bound the difference ∥x̂1(LN+1) −

x̂1(LN )∥. From (16) and (19), this requires an upper bound forΦ−1
j (N + 1) −Φ−1

j (N)
. This is given in the following lemma,

whose proof also appears in Sui et al. (2018, Appendix).

Lemma 22. For any 1 ≤ j ≤ N, we haveΦ−1
j (N + 1) −Φ−1

j (N)
 ≤ q̃−1

(
eψ̃N λ̃

N−j
N − 1

)
with

ψ̃N =

√
n̄|TN |

˜̄ξN ,

˜̄ξN = max
i≤N

log σmax[I + (C̃T
i,i+1R̃

−1
i,i+1C̃i,i+1)

· (C̃T
i R̃

−1
i C̃i)−1

],

λ̃N =
α̃1,N

α̃1,N + β̃1,N

α̃2,N

α̃2,N + β̃2,N
,

where

α̃1,N = max
i≤N

∥C̃T
i,i+1R̃

−1
i,i+1C̃i,i+1∥,

α̃2,N = max
i≤N

∥C̃i+1,i(C̃T
i+1R̃

−1
i+1C̃i+1)−1C̃T

i+1,i∥,

β̃1,N = min
i≤N

σmin(C̃T
i R̃

−1
i C̃i), β̃2,N = min

i≤N
σmin(R̃i,i+1).

Combining the results in Lemmas 21–22 and (16),we can obtain
upper bounds for

[ΣN+1]1,j − [ΣN ]1,j
 and

[ΣN ]1,j
. These are

given in Lemmas 23 and 24, respectively.

Lemma 23. For any 1 ≤ j ≤ N,[ΣN+1]1,j − [ΣN ]1,j
 ≤ q̃

−1
r̃ j
(
eψ̃N λ̃

N−j
N − 1

)
with r̃ = q̃/q̃.

Proof. From Sui et al. (2018, Lemma 31), for all k ∈ N,Qk,k+1
 ≤ q̃.

We then have[ΣN+1]1,j − [ΣN ]1,j


=


( j−1∏

k=1

∆−1
k Qk,k+1

)(
Φ−1

j (N + 1) −Φ−1
j (N)

)
≤(

j−1∏
k=1

∆−1
k Qk,k+1

) Φ−1
j (N + 1) −Φ−1

j (N)


≤q̃
j−1

(
j−1∏
k=1

∆−1
k

) Φ−1
j (N + 1) −Φ−1

j (N)
 .

Then, using Lemmas 21 and 22, we get

[ΣN+1]1,j − [ΣN ]1,j
 ≤

1
q̃

(
q̃
q̃

)j−1 (
eψ̃N λ̃

N−j
N − 1

)
≤ q̃

−1
r̃ j
(
eψ̃N λ̃

N−j
N − 1

)
.

Lemma 24. For all 1 ≤ j ≤ N,[ΣN ]1,j
 ≤ c̃ ι̃j,

with

c̃ =
r̃ − 1

2q̃ι̃
, ι̃ =

√
r̃ − 1

√
r̃ + 1

.

Proof. Since QN is 2-banded (Sui et al., 2018 Definition 32), the
result it follows from Sui et al. (2018, Lemma 33), by letting a = q̃
and b = q̃.

It follows from (19) that, in addition to the bounds given in
Lemmas 23 and 24, we also need an upper bound for ∥qi∥. This is
given in the following lemma.

Lemma 25. For any N ∈ N,

max
n≤N

∥qn∥ ≤ η̃N ,

with

η̃N = max
i≤N

23/2ε̃
√
m̄|Ti|˜̄zN
r̃

,

˜̄zN = max
i≤N

{
∥z̃i∥∞, ∥z̃i,i+1∥∞

}
.

Proof. From (14),

∥qn∥ ≤
ε̃(∥yn∥ + ∥yn−1∥)

r̃
. (20)

For any n = 1, 2, . . . ,N , the result then follows from

∥yn∥ ≤ max
i≤N

√
2m̄|Ti|∥yn∥∞ ≤ max

i≤N

√
2m̄|Ti|˜̄zN .

We now state the main result of this subsection.

Lemma 26. For any 1 ≤ J ≤ N,x̂1(LN+1) − x̂1(LN )


≤η̃N+1

(
r̃ J

(r̃ − 1)q̃

(
eψ̃N λ̃

N−J
N − 1

)
+

2c̃
1 − ι̃

ι̃J
)
.

Proof. From Lemmas 23–25 and (19),x̂1(LN+1) − x̂1(LN )


≤

J−1∑
j=1

[ΣN+1]1,j − [ΣN ]1,j
 qj

+

N∑
j=J

[ΣN+1]1,j − [ΣN ]1,j
 qj

+
[ΣN+1]1,N+1

 ∥qN+1∥

≤η̃N+1

⎛⎝ J−1∑
j=1

q̃
−1

r̃ j
(
eψ̃N λ̃

N−j
N − 1

)
+ 2c̃

N∑
j=J

ι̃j + c̃ ι̃N+1

⎞⎠
≤η̃N+1

⎛⎝ J−1∑
j=1

q̃
−1

r̃ j
(
eψ̃N λ̃

N−J
N − 1

)
+ 2c̃

N+1∑
j=J

ι̃j

⎞⎠
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=η̃N+1

(
q̃

−1 (
eψ̃N λ̃

N−J
N − 1

) r̃ J − r̃
r̃ − 1

+ 2c̃
ι̃J − ι̃N+2

1 − ι̃

)
≤η̃N+1

(
q̃

−1 (
eψ̃N λ̃

N−J
N − 1

) r̃ J

r̃ − 1
+ 2c̃

ι̃J

1 − ι̃

)
.

6.2.2. Bound of the increment in an arbitrary graph
For each N , the value of x̂1(N) obtained by running Algorithm

1 on G equals the one x̂1(AN ) obtained by running the same
algorithm on the equivalent acyclic graph AN . The latter in turn
equals the one x̂1(LN ) obtained by running the algorithm on the
equivalent line graph LN . Then, from Lemma 26 we obtain the
following result, which applies to an arbitrary graph G, and whose
proof appears in Sui et al. (2018, Appendix).

Lemma 27. If κ̌ < 1, then, in the notation of Theorem 17, for all
N ∈ N,x̂1(N + 1) − x̂1(N)

 ≤ ˇ̄χκ̌N ,

where

ˇ̄χ =
ψ̌η̌

(q − q)λ
+

2η̌c
1 − ι

, κ̌ = max{ū
√
λ,

√
ūι1/ζ̌ },

with

ψ̌ =

(
eξ̄

√
n̄(ū+1)

− 1
)
, η̌ =

εz̄
√
8m̄(ū + 1)

r
,

ζ̌ = 2 + log 1√
λ

(q/q), c =
q − q

2qqι
,

ξ̄ = max
j

log ∥I + (
∑
k∈Nj

CT
j,kR

−1
j,k Cj,k)

(
CT
j R

−1
j Cj

)−1
∥,

z̄ = max
i,j

{
∥zi∥∞, ∥zi,j∥∞

}
.

Remark 28. The above lemma shows that, when κ̌ < 1, the
sequence of state estimates produced by Algorithm 1 converges
exponentially.

6.2.3. Accuracy analysis
Let x̂WLS

1 (N) denote the centralizedWLS estimate of x1 obtained
by considering only the subgraph N1(N − 1) (i.e., of nodes in G
which arewithinN−1 steps away fromnode 1). It follows from Tai
et al. (2013) that, in an acyclic graph, if Algorithm 1 is initialized
by Q0 (as done in (3)), it generates the true WLS estimate. Hence,
based on the definition of the loop-free depth l1 (see Notation 10),
for any N ≤ l1 + 1,

x̂1(N) = x̂WLS
1 (N). (21)

From Lemma 27, if κ̌ < 1, for any N ∈ N,x̂1(N + 1) − x̂1(N)
 ≤ ˇ̄χκ̌N . (22)

Let Ťk denote the set of nodes in G which are precisely k − 1
steps away from node 1. We collect all the nodes in Ťk and their
inner connections into a single node. This yields a graph Ľ having
line topology,whose structure is given in Sui et al. (2018, Appendix
H). The number of nodes in Ľ is given by

r1 = max
j

d1,j + 1,

where di,j is the minimum distance from node i to node j in G.
Recall that Lemma 27 provides a bound for the state estimate

increments for Algorithm 1. If we follow the steps of that proof,
but considering Ľ in place of LN , we would arrive to the following
result.

Lemma 29. Recall the notations in Theorem 17 and Lemma 27, for all
N ∈ N, if κ < 1,x̂WLS

1 (N + 1) − x̂WLS
1 (N)

 ≤

{
χ̄κN , N ≤ r1,
0, N > r1,

(23)

where

χ̄ =
ψ̄η̄

(q − q)ω
+

2η̄c
1 − ι

ψ̄ = eξ̄ (ū+1)
√
n̄
− 1, η̄ = εz̄(ū + 1)

√
8m̄r−1.

Combining (21)–(22) and Lemma 29, we can prove our main
result.

Proof of Theorem 17. Clearly, κ̌ ≤ κ < 1. Hence, from (21)–(23)

∥x̂1(N) − x̂WLS
1 ∥

=∥x̂1(N) − x̂1(l1 + 1) + x̂WLS
1 (l1 + 1) − x̂WLS

1 (r1)∥

≤∥x̂1(l1 + 1) − x̂1(N)∥ + ∥x̂WLS
1 (l1 + 1) − x̂WLS

1 (r1)∥

≤ ˇ̄χ

N−1∑
t=l1+1

κ̌ t
+ χ̄

r1−1∑
t=l1+1

κ t
≤

χ̄

1 − κ
κ l1+1

+

ˇ̄χ

1 − κ̌
κ̌ l1+1.

Since a1 ≥ α1, a2 ≥ α2, b1 ≤ β1 and b2 ≤ β2, it follows that ω ≥ λ

and ζ ≥ ζ̌ . We also have ˇ̄χ ≤ χ̄ and κ̌ ≤ κ . It then follows that

∥x̂1(N) − x̂WLS
1 ∥ ≤

2χ̄
1 − κ

κ l1+1.

Since the quantity 2χ̄
1−κ only depends on m̄, ū, n̄ and the system

parameters Ci,j, Ci, Ri,j, Ri, zi,j, zi for some i and j, the result then
follows.

7. Simulations

In this sectionwe present experimental evidence to support our
claims, namely, that in the case of cyclic communication graphs,
the studied distributed WLS algorithm (DWLS) converges faster
than the iterative matrix inversion (IMI) algorithm in Marelli
and Fu (2015), and that the accuracy of the DWLS algorithm at a
given node improves with the size of the loop-free depth of that
node. To this end, we use a network formed by 330 nodes, whose
communication graph is depicted in Fig. 1. In this network, all
nodes have the samemeasurements equations,which are given by

zi = xi + vi;

zi,j = 0.4xi + 0.4xj + vi,j.

with xi ∈ R3, Ri = Ri,j = 0.01, for all i = 1, 2, . . . , 330 and j ∈ Ni.
In the first simulation we compare the convergence rate of

the DWLS and IMI methods. As explained in Marelli and Fu
(2015), before starting with the matrix inversion iterations, the
IMI method needs to invest a number δIMI of iterations in order to
obtain estimates of the largest and smallest eigenvalues of certain
matrix. This delayed start is required in order to avoid that the
transients caused by too rough estimates of these eigenvalues
bring the estimation mismatch (with respect to the estimation
yielded by the centralized WLS method) to very big values from
which the algorithm would take a long time to converge. In Fig. 2
we show the combined estimationmismatch of all 330 nodes, yield
by the DWLS algorithm and the IMI algorithm with δIMI ranging
from0 to 6.We see that theDWLS algorithmconvergesmuch faster
than the IMI one, regardless of the value of δIMI used in the latter.

In the second simulation we evaluate the mismatches between
the estimation and its associated covariance, produced at each
node, and at time li + 1 (recall that li denotes the loop-free depth
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Fig. 1. Network communication graph.

Fig. 2. Comparison between DWLS and IMI algorithms. The delayed start δIMI of the
IMI algorithm ranges from 0 to 6.

of node i), with respect to those yielded by the centralized WLS
method. Figs. 3 and 4 show these differences for the covariance
and estimate, respectively, for each node, as a function of the loop-
free depth. We see how both differences decay exponentially with
the loop-free depths of each node. We also show in the same
figures the bound on these decays derived in Theorems 11 and 17,
respectively.

8. Conclusions

A recently proposed distributedWLS estimation algorithm con-
verges in finite time if the communication graph is acyclic. We
studied the accuracy of this algorithm, when used in cyclic graphs.
We showed that, for a class of systems satisfying certain require-
ments in terms of topological sparsity and signal-to-noise ratio,
the error between the state estimate yielded by this distributed
algorithm, and that from centralizedWLS, decreases exponentially
at each node, with the increase of its local loop-free depth. The
same property holds for the difference between the estimation
error covariance produced by the distributed algorithm and that
from centralized WLS. The derived expressions are explicit and
easy to interpret. An implication of our results is that, even in

Fig. 3. Covariance mismatch between DWLS and centralized WLS.

Fig. 4. Estimation mismatch between DWLS and centralized WLS.

applicationswhere the communication graphhas a cyclic topology,
due to its faster convergence, the studied algorithm may be a pre-
ferred option over algorithms based on iterative matrix inversion,
provided that the loop-free depths of those nodes of interest are
sufficiently large.
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