
Automatica 92 (2018) 133–142

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

A fast clock synchronization algorithm for wireless sensor networks✩

Kan Xie a, Qianqian Cai a,*, Minyue Fu b,a

a School of Automation, Guangdong University of Technology, and Guangdong Key Laboratory of IoT Information Technology, Guangzhou 510006, China
b School of Electrical Engineering and Computer Science, The University of Newcastle, NSW 2308, Australia

a r t i c l e i n f o

Article history:
Received 21 May 2016
Received in revised form 18 September
2017
Accepted 13 December 2017
Available online 23 March 2018

Keywords:
Wireless sensor networks
Clock synchronization
Average consensus
Consensus control
Distributed control

a b s t r a c t

This paper proposes a novel clock synchronization algorithm for wireless sensor networks (WSNs). The
algorithm is derived using a fast finite-time average consensus idea, and is fully distributed, meaning that
each node relies only on its local clock readings and reading announcements from its neighbours. For
networkswith an acyclic graph, the algorithm converges in only d iterations for clock rate synchronization
and another d iterations for clock offset synchronization, where d is the graph diameter. The algorithm
enjoys low computational and communicational complexities and robustness against transmission ad-
versaries. Each node can execute the algorithm asynchronously without the need for global coordination.
Due to its fast convergence, the algorithm is most suitable for large-scale WSNs. For WSNs with a cyclic
graph, a fast distributed depth-first-search (DFS) algorithm can be applied first to form a spanning tree
before applying the proposed synchronization algorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Rapid technological advances on wireless sensor design and
manufacturing have enabled wide applications of wireless sensor
networks (WSNs) in various fields including surveillance, envi-
ronmental monitoring, traffic monitoring, industrial automation,
autonomous vehicles, smart grid, transportation networks, and
so on. Wireless sensors are typically equipped with low-quality
crystals (due to low cost) and have stringent energy constraints,
and they are usually deployed in an ad hoc fashion. One of the great
challenges for WSNs is how to synchronize the sensor clocks. This
problem becomes more paramount as the size of the network gets
larger.

Unlike wired networks, such as the internet, which can use the
network Time Protocol (NTP) (Mills, 1991) to synchronize clocks in
a hierarchical way by using primary and secondary time servers,
WSNs cannot adopt this kind of synchronization approach due to
energy consumption and bandwidth constraints (Sundararaman,
Buy, & Kshemkalyani, 2005). Solutions which rely on accurate
reference clocks or expensive signalling sources (such as GPS sig-
nalling) are inappropriate due to cost and energy constraints as

✩ This work was supported by the National Natural Science Foundation of China
(Grant No. 61633014 and U1701264). The material in this paper was not presented
at any conference. This paper was recommended for publication in revised form
by Associate Editor Claudio De Persis under the direction of Editor Christos G.
Cassandras.

* Corresponding author.
E-mail addresses: kanxiegdut@gmail.com (K. Xie), qianqian.cai@outlook.com

(Q. Cai), minyue.fu@newcastle.edu.au (M. Fu).

well. Many conventional clock synchronization schemes are not
suitable for WSNs; see El Khediri, Nasri, Samet, Wei, and Kachouri
(2012), Rhee, Lee, Kim, Serpedin, and Wu (2009), Sarvghadi and
Wan (2014) and Sundararaman et al. (2005) for overviews on clock
synchronization for WSNs.

Three clock synchronization frameworks are available:master–
slave, peer-to-peer, and distributed. Synchronization is usually done
by either aligning the clock readings (called clock offset synchro-
nization, or simply clock synchronization in many references) or
aligning the clock rates (called clock rate synchronization, or skew
compensation) or both. The so-called drift compensation (aligning
the rate of a clock rate) is rarely done.

In a master–slave synchronization scheme, a ‘‘master’’ node is
chosen as the global reference clock and all other nodes are treated
as ‘‘slaves’’. Protocols for clock offset synchronization include flood-
ing schemes (Ferrari, Zimmerling, Thiele, & Saukh, 2011), IEEE
802.11 based clock synchronization protocol (Mock, Frings, Nett, &
Trikaliotis, 2000),DelayMeasurement Time Synchronization (DMTS)
(Ping, 2003), and Pairwise Broadcast Synchronization (PBS) (Noh,
Serpedin, & Qaraqe, 2008). Clock rate synchronization can also be
done under the master–slave framework. Protocols of this kind in-
clude Flooding Time Synchronization Protocol (FTSP) (Maróti, Kusy,
Simon, & Lédeczi, 2004), Tiny-Sync (Yoon, Veerarittiphan, & Sichi-
tiu, 2007), amaximum likelihood estimator-based scheme (Chaud-
hari, Serpedin, & Qaraqe, 2008), and feedback control based
approach (e.g., PI control (Chen, Yu, Zhang, Chen, & Sun, 2010),
FLOPSYNC (Leva, Terraneo, Rinaldi, Papadopoulos, & Maggio,
2016), Self-Correcting Time Synchronization (SCTS) protocol (Ren,
Lin, & Liu, 2008), and an asymmetric gossip communication algo-
rithm (Carli, D’Elia, & Zampieri, 2011)).

https://doi.org/10.1016/j.automatica.2018.03.004
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.03.004
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.03.004&domain=pdf
mailto:kanxiegdut@gmail.com
mailto:qianqian.cai@outlook.com
mailto:minyue.fu@newcastle.edu.au
https://doi.org/10.1016/j.automatica.2018.03.004

134 K. Xie et al. / Automatica 92 (2018) 133–142

Peer-to-peer synchronization schemes assume that any node
can communicate to any other node directly. Protocols of this kind
include Reference Broadcast Synchronization (RBS) (Elson, Girod, &
Estrin, 2002), Tiny-Sync and Mini-Sync (TS/MS) (Sichitiu & Simple,
2003), Timing-Sync Protocol for Sensor Networks (TPSN) (Ganeri-
wal, Kumar, & Srivastava, 2003), Lightweight Time Synchronization
(LTS) (Van Greunen & Rabaey, 2003), TSync (Dai & Han, 2004).
Although these schemes eliminate the risk of master node failure,
they are suitable for small networks only (Sundararaman et al.,
2005).

In a distributed synchronization scheme, no master or global
clock is assumed and each node is allowed to communicate
with only neighbouring nodes. The distributed approach has
been widely studied for many estimation and control applica-
tions (Cortés, 2006; Hendrickx et al., 2004; Kashyap, Basar, &
Srikant, 2007; Li, Fu, Xie, & Zhang, 2011; Xiao & Boyd, 2004; Xie,
Cai, Zhang, & Fu, 2018). Apart from the major attraction of having
no single point of failure and each node being autonomous, the
distributed approach tends to enjoy nice properties including al-
gorithmic simplicity, resilience against network adversaries, topo-
logical changes, and scalability to large networks. Unfortunately,
not many distributed algorithms for clock synchronizations are
available so far. A prominent approach is the average consensus-
based design, including the Average TimeSync (AST) protocol (Carli,
Chiuso, Schenato, & Zampieri, 2011; Carli & Zampieri, 2014; Kad-
owaki & Ishii, 2015; Schenato & Fiorentin, 2011; Simeone & Spag-
nolini, 2007). These algorithms enjoy simplicity, but the main
drawback is that consensus is achieved only asymptotically, re-
quiring too many iterations of computations and communica-
tions in practice. The belief propagation (or message passing) algo-
rithms (Ahmad, Zennaro, Serpedin, & Vangelista, 2012; Du & Wu,
2013; Leng &Wu, 2011; Zennaro et al., 2013) have good accuracies
and canbe implemented asynchronously. A recursive least-squares
estimation scheme is used in Solis, Borkar, and Kumar (2006)
for multi-hop WSNs. In Bolognani, Carli, Lovisari, and Zampieri
(2016), a randomized distributed algorithm is given to achieve
clock synchronization. A distributed Kalman filter is used in Luo
and Wu (2013) to track clock parameters.

In this paper, we study the problem of distributed clock syn-
chronization for large WSNs. Our general approach is similar to
those in average consensus-based algorithms (Carli et al., 2011;
Carli & Zampieri, 2014; Kadowaki & Ishii, 2015; Schenato &
Fiorentin, 2011; Simeone & Spagnolini, 2007), but with the main
aim of coming up with a fast algorithm for consensus. To allow
solutions truly scalable to large WSNs, we need to ensure: (1) In
each iteration of the algorithm, the available information at each
node should be limited to its own measurements and informa-
tion exchanged with its direct neighbours; (2) No master clock is
assumed and no synchronous sampling is used for all the nodes
(which would otherwise imply the existence of a master clock);
(3) The complexities of the algorithm should be bounded for each
node and each iteration, not growing as the size of the network
grows. Our clock synchronization properties include:

• Rate synchronization: All the local clocks should be synchro-
nized to a virtual clock with the rate equal to the geometric
mean of the all the local clock rates;

• Offset synchronization: After synchronization, all the local
clocks should achieve the same clock offset (i.e., the same
clock reading at any global time instant);

• Continuous transition: Each compensated local clock reading
should be continuous in time;

• Minimum clock rate: Each compensated local clock should
have a guaranteed minimum rate during the transition (to
avoid clock stalling or time reversal);

• Finite-time Convergence: Synchronization (for both rate and
offset) should be completed in a prescribed time period.

We propose a new fast clock synchronization algorithm for
both clock rate synchronization and clock offset synchronization.
The algorithm is fully distributed with the above synchronization
properties. We first consider WSNs with an acyclic graph (i.e., tree
graph) and give our algorithm in two parts: clock rate synchroniza-
tion (Algorithm 1) and clock offset synchronization (Algorithm 2).
Each part takes only d iterations, where d is the graph diameter.
The algorithm is resilient to transmission delay and packet loss and
admits asynchronous implementation. We then consider general
sensor networks (cyclic or not) and apply a fast distributed depth-
first-search (DFS) algorithm (Xie, Cai, Zhang, & Fu, 2018) (Algo-
rithm 0) first to construct and verify a spanning tree. Combined
with Algorithm 0, proposed Algorithms 1 and 2 apply to any WSN
with a connected and undirected graph, due to the fact that such a
graph always has a spanning tree.

The main advantage of the proposed algorithms is that we can
achieve fast and finite-time convergence for clock synchronization,
where the Laplacian matrix based approach gives only asymp-
totic convergence. Our convergence time depends on the graph
diameter and is independent of the graph topology, unlike the
Laplacianmatrix based approachwhich is greatly influenced by the
eigenvalues of the Laplacian matrix (Li et al., 2011).

The rest of the paper is organized as follows: Section 2 for-
mulates the clock synchronization problem; Section 3 gives the
proposed algorithm; Section 4 discusses the properties and modi-
fications; Section 5 gives three examples; Section 6 concludes the
paper.

2. Problem formulation

Consider a WSN with n sensing nodes. We model the WSN
using an undirected graph G = {V, E} with a set of nodes V =

{1, 2, . . . , n} and a set of edges E = {(i, j) : i, j ∈ V}. A graph is
called undirected if information can flow in two ways between the
two nodes on any edge. A graph is called acyclic if it is connected
and has no loops, i.e., it is a tree graph. Denote by Ni the set of
neighbouring nodes connected to node i, and denote by |Ni| the
cardinality ofNi.We focus on large graphswith sparse connectivity
and the property that |Ni| ≪ n. The local clock model for each
sensor (node) i ∈ V is given by

xi(t) = ait + bi (1)

where t is the global time, ai > 0 represents the clock rate, bi is the
initial time (i.e., value of xi(0)) and t represents the global time.We
denote by one unit of local time the time takes for xi(t) to advance
from one integer to the next (adjacent) integer. That is, one unit of
global time equals ai units of local time for node i. Without loss of
generality, we will call one unit of time oneminute.

We emphasize that the parameters ai and bi and the global
time t are all unknown to all the nodes. However, each local clock
announces (i.e., broadcasts) its local time τ ∈ Z (the set of inte-
gers) every local minute. It is assumed that only the neighbouring
nodes will receive these announcements. It is also assumed that
transmission time between nodes is negligible. This assumption
is reasonable for WSNs and is commonly used; see, e.g., Carli and
Zampieri (2014) and Schenato and Fiorentin (2011). In addition,
transmission delays can be compensated, using, e.g., the conven-
tional Network Time Protocol (NTP) (Mills, 1991) or a standard
flooding protocol (Ferrari et al., 2011) with minor communication
overhead between neighbouring nodes in the clock measurement
process.

Denote by tj(τ) the global time instant at which node j an-
nounces its τ -th local minute, i.e., xj(tj(τ)) = τ . Due to the as-
sumption that the transmission time between nodes is negligible,
node i ∈ Nj will receive this announcement τ at its own local time

K. Xie et al. / Automatica 92 (2018) 133–142 135

xi(tj(τ)). We assume in the sequel that, for each τ ∈ Z , only the
readings of xi(tj(τ)), j ∈ Ni, are available to node i.

The problem of distributed clock synchronization is stated as
follows: Design a compensator (function) fi(·) for each node i ∈

V using its local clock readings and the announcements from its
neighbouring set Ni such that the compensated local clock x̂i(t) =

fi(xi(t)) is synchronized in the sense that

x̂i(t) = at + b, ∀t ≥ T (2)

for some common values of a > 0 and b after a pre-specified period
of time T .

The clock synchronization problem is further split into rate syn-
chronization problem (also known as frequency synchronization)
for which only a common rate needs to be achieved, and offset
synchronizationproblem (also knownasphase synchronization) for
which a common initial time b needs to be achieved, assuming rate
synchronization is achieved. We impose a further ‘‘fairness’’ re-
quirement that a be the geometricmean of ai (i.e., a = n

√
a1a2 . . . an

).
To address the complexity property for scalability as discussed

in Introduction, we impose the following constraints on the algo-
rithm’s complexities:

(1) Information exchange: Each node i can communicate with
each j ∈ Ni only once per iteration.

(2) Computation: Each node i’s computational load should be at
most O(|Ni|) per iteration.

(3) Storage: Each node i’s storage should be atmostO(|Ni|) over
all iterations.

The above constraints ensure that the complexities of the al-
gorithm per node per iteration will not increase as the size of the
network increases. To see the relationship between the network
size and the required number of iterations, we give the following
benchmark result.

Lemma 1. Under the local information exchange constraint above,
a connected undirected graph G with diameter d needs at least d
iterations to achieve either clock rate synchronization or clock offset
synchronization.

Proof. Let nodes i and jbe such that they are dhops away fromeach
other (such nodes exist by the definition of d). The information at
node i needs to propagate to node j in order for node j to correctly
align the clock rates or clock offsets for all the sensors. By the local
information exchange constraint, this will take at least d iterations.

Note that the minimum iteration number given above is in-
dependent of the algorithm and the network topology. We will
show in the next section that our proposed algorithm achieves this
minimum number.

3. Distributed algorithm for clock synchronization

In this section, we introduce our distributed algorithm for clock
synchronization, provide its key property on acyclic graphs and
analyse its complexities. The proposed synchronization algorithm
has two parts: one for clock rate and one for clock offset.

3.1. Clock rate synchronization

Node i can compute the local time difference xi(tj(τ))−xi(tj(τ −

1)) between two adjacent announcements from node j. Follow-
ing Carli and Zampieri (2014) and Schenato and Fiorentin (2011),
we define

δij(τ) = ln(xi(tj(τ)) − xi(tj(τ − 1))), (3)

and note that {δij(τ) : j ∈ Ni} is a set available to node i. We have
the following result.

Lemma 2. Given any i ∈ V, j ∈ Ni, it holds that

δij(τ) = αi − αj (4)

for any τ ∈ Z , where αi = ln ai and αj = ln aj.

Proof. By definition, xj(tj(τ)) = τ . Because the transmission time
between neighbouring nodes is negligible, node i ∈ Nj receives
this announcement immediately and can check its own local time
xi(tj(τ)). From (1),

xi(tj(τ)) − xi(tj(τ − 1)) = ai(tj(τ) − tj(τ − 1));
xj(tj(τ)) − xj(tj(τ − 1)) = aj(tj(τ) − tj(τ − 1)).

Since xj(tj(τ))− xj(tj(τ − 1)) = τ − (τ − 1) = 1, it follows from the
above that

xi(tj(τ)) − xi(tj(τ − 1)) = ai/aj > 0.

Then, (4) follows from δij(τ) = ln(xi(tj(τ)) − xi(tj(τ − 1))) and
αi = ln ai.

Algorithm 1 is our proposed distributed algorithm for clock rate
synchronization, which is executed once for each time τ . The avail-
able information at each node i is δij(τ). For notational brevity, the
dependence on τ is suppressed. The algorithm iterates d times and
aims to compute two variables at each iteration k: si(k) represents
the number of nodes in G involved in clock synchronization for
node i, and ηi(k) represents the compensated rate deviation for
node i.

Algorithm 1 (Clock Rate Synchronization)

• Initialization: At each node i: For each j ∈ Ni, set ηi→j(0) =

0, si→j(0) = 1 and transmit them to node j; Then, store the
received ηj→i(0) and sj→i(0) from each j ∈ Ni.

• Main loop: At iteration k = 1, 2, · · · , d, for each node i,
compute

si(k) = 1 +

∑
j∈Ni

sj→i(k − 1) (5)

η̃i(k) =

∑
j∈Ni

(sj→i(k − 1)δij + ηj→i(k − 1)) (6)

then for each j ∈ Ni, compute

si→j(k) = si(k) − sj→i(k − 1) (7)
ηi→j(k) = η̃i(k) − (sj→i(k − 1)δij + ηj→i(k − 1)). (8)

If k < d, transmit the above two quantities to node j. Then,
store the received ηj→i(k) and sj→i(k) from each j ∈ Ni. If
k = d, compute

ηi(k) = −η̃i(k)/si(k). (9)

Theorem 3. Suppose the graph G is undirected and acyclic with
diameter d. Then, we have

si(k) = 1 + |Vi(k)| (10)

η̃i(k) = |Vi(k)|αi −
∑

j∈Vi(k)

αj (11)

for k = 1, 2, . . . , d, where Vi(k) is the set of nodes in G that are at
most k hops away from node i (excluding node i), and |Vi(k)| denotes
its cardinality. Consequently, si(k) and η̃i(k) converge after d iterations
and we have

ηi(k) = αi − ᾱ, ∀ k ≥ d, i ∈ V, (12)

136 K. Xie et al. / Automatica 92 (2018) 133–142

where ᾱ is the arithmetic mean of αi, i ∈ V . The rate-synchronized
local clock for each node i ∈ V is given by

x̃i(t) = exp(−ηi(d))(xi(t) − τ) + τ (13)

which has the property of

x̃i(t) = at + βi, (14)

where a = n
√
a1a2 . . . an and

βi = −
a
ai
(bi − τ) + τ . (15)

Proof. For each edge (i, j) ∈ E , we consider the convergence of
si→j(k) and ηi→j(k). To do so, we construct the disjoint subgraphs
Gi (containing node i) and Gj (containing node j) of G by removing
the edge (i, j). Note that G is the union of Gi and Gj plus the
edge (i, j), due to its acyclic nature. Denote by Vi (reps. Vj) the
set of nodes in Gi (reps. Gj). We see from (7)–(8) that si→j(k) and
ηi→j(k) are constructed using the information in Gi only because
the information flow from node j to node i gets removed in each
iteration. Recall that at the Initialization step (k = 0), we set
si→j(0) = 1 and ηi→j(0) = 0. Next, consider the case of k = 1. From
(5) and (7), si→j(1) contains all sm→i(0) for all the neighbouring
nodes m, except node j. Using the definition of Vi(k), we get

si→j(1) = 1 +

∑
m∈Vi(1)\Vj

1 = 1 + |Vi(1) \ Vj|.

That is, (si→j(1)−1) equals the number of all the nodes 1 hop away
from node i, except nodes in Vj. Similarly, noting that Ni = Vi(1),
(6) and (8) give

ηi→j(1) =

∑
m∈Ni\{j}

(sm→i(0)δim + ηm→i(0))

= |Vi(1) \ Vj|αi −
∑

m∈Vi(1)\Vj

αm.

For k = 2, we have

si→j(2) = 1 +

∑
m∈Ni\Vj

sm→i(1)

= 1 +

∑
m∈Ni\Vj

1 +

∑
m∈Ni\Vj

|Vm(1) \ Vi|.

The first sum above is equal to |Vi(1)\Vj|. In theminute sum above,
each |Vm(1) \ Vi| term is equal to the number of nodes 1 hop away
from node m, except those in Vi, which means that this term is
equal to the number of nodes 2 hops away from node i, except
those in Vj. Hence, we get

si→j(2) = 1 + |Vi(2) \ Vj|,

hence (si→j(2)−1) equals the number of nodes atmost 2 hops away
from node i, except those in Vj. Likewise,

ηi→j(2) =

∑
m∈Ni\{j}

(sm→i(1)δim + ηm→i(1))

=

∑
m∈Ni\{j}

(1 + |Vm(1) \ Vi|)(αi − αm)

+

∑
m∈Ni\{j}

(|Vm(1) \ Vi|αm −

∑
u∈Vm(1)\Vi

αu)

= |Vi(2) \ Vj|αi −
∑

m∈Ni\{j}

⎛⎝αm −

∑
u∈Vm(1)\Vi

αu

⎞⎠
= |Vi(2) \ Vj|αi −

∑
m∈Vi(2)\Vj

αm.

Repeating the above, we get, for a general k,

si→j(k) = 1 + |Vi(k) \ Vj|

ηi→j(k) = |Vi(k) \ Vj|αi −
∑

m∈Vi(k)\Vj

αm.

Next, we consider si(k) and η̃i(k). Note from (7) that si(k) =

si→j(k)+sj→i(k−1). Also note that node j is 1 hop away fromnode i,
which means that all the nodes in Gj that are k−1 hops away from
node j are actually k hops away from node i, when considering the
graph G:

(Vi(k) \ Vj) ∪ (Vj(k − 1) \ Vi) ∪ {j} = Vi(k).

It follows that

si(k) = (1 + |Vi(k) \ Vj|) + (1 + |Vj(k − 1) \ Vi|)
= 1 + |Vi(k)|,

which is (10). Eq. (11) is shown in the same way. It then follows
that all the updating stops when k ≥ d, and for such k, we get

si(k) = si(d) = 1 + |Vi(d)| = 1 + |V \ {i}| = |V|

η̃i(k) = η̃i(d) = |V \ {i}|αi −
∑

j∈V\{i}

αj = |V|αi −
∑
j∈V

αj,

resulting in (12) for each node i.
It remains to check that after iteration d, all the updating will

stop. To see this, consider any path p in G going through nodes
i and j. This path is split into three segments: path pi in Gi, edge
(i, j) and path pj in Gj. Denote the maximum path length of pi by di
and the maximum path length of pj by dj. From the analysis above,
we see that si→j(k) and ηi→j(k) will converge after di iterations,
and that sj→i(k) and ηj→i(k) will converge after dj iterations. Since
the maximum path length of p is d, we have di + dj + 1 ≤ d. In
particular, d ≥ di and d−1 ≥ dj. Hence, at iteration d, all the terms
si→j(d), ηi→j(d), sj→i(d−1), ηj→i(d−1)must have converged. From
(7)–(8), the above means that si(d) and η̃i(d) must have converged.

Finally, substituting exp(−ηi(d)) = a/ai and (1) into (13) yields
(14) immediately.

Remark 4. We see from Theorem 3 that the converged common
clock rate is the geometric mean of all the local clock rates, i.e., a =
n
√
a1a2 . . . an. Because of this, we can say that Algorithm 1 achieves

average consensus in the geometric sense. This is different from
many algorithms in the literature which aim at reaching the arith-
metic mean (a1 + a2 + · · · + an)/n. The difference is negligible in
practice because a typical sensor node has a drift of up to 8 (i.e.,±4)
seconds only every 24 h (see more details in Section 5.3 later). If
re-synchronization is done every 2 min, the drift is up to ±0.0056
second.

3.2. Clock offset synchronization

Given any node i and its neighbouring node j ∈ Ni, define the
offset difference βij = βi − βj. We show below that βij can be
computed locally.

Lemma 5. For every node i ∈ V and j ∈ Ni, βij is available at node i
and it is given by

βij = exp(−ηi(d))(xi(tj(τ)) − τ). (16)

Proof. Since xj(tj(τ)) = τ , we have

x̃j(tj(τ)) = exp(−ηj(d))(xj(tj(τj)) − τ) + τ = τ .

It follows that

βij = βi − βj = x̃i(tj(τ)) − x̃j(tj(τ))
= {exp(−ηi(d))(xi(tj(τ)) − τ) + τ } − τ

= exp(−ηi(d))(xi(tj(τ)) − τ).

K. Xie et al. / Automatica 92 (2018) 133–142 137

Note that the information of βij is available at node i because
xi(tj(τ)) is the local time at node i at which node j announces its
local time of τ minutes.

Algorithm 2 is our proposed distributed algorithm for clock
offset synchronization, also executed at each time τ , after Algo-
rithm 1. It also iterates d times. For each iteration k, it aims to
compute si(k) as before, and γi(k) which is the compensated offset
deviation for node i.

Algorithm 2 (Clock Offset Synchronization)

• Initialization: At each node i: For each j ∈ Ni, set γi→j(0) =

0, si→j(0) = 1 and transmit them to node j; Then, store the
received γj→i(0) and sj→i(0) from each j ∈ Ni.

• Main loop: At iteration k = 1, 2, · · · , d, for each node i,
compute

si(k) = 1 +

∑
j∈Ni

sj→i(k − 1) (17)

γ̃i(k) =

∑
j∈Ni

(sj→i(k − 1)βij + γj→i(k − 1)) (18)

then for each j ∈ Ni, compute

si→j(k) = si(k) − sj→i(k − 1) (19)
γi→j(k) = γ̃i(k) − (sj→i(k − 1)βij + γj→i(k − 1)). (20)

If k < d, transmit the above two quantities to node j. Then,
store the received γj→i(k) and sj→i(k) from each j ∈ Ni. If
k = d, compute

γi(k) = −γ̃i(k)/si(k). (21)

Theorem 6. Suppose the graph G is undirected and acyclic with
diameter d and Algorithm 2 is applied. Then, we have (10) and

γ̃i(k) = |Vi(k)|βi −
∑

j∈Vi(k)

βj (22)

for k = 1, 2, . . . , d, where Vi(k) are defined in Theorem 3. Conse-
quently, si(k) and γ̃i(k) converge after d iterations, and we have

γi(k) = βi − b, ∀ k ≥ d, i ∈ V, (23)

where b is the arithmetic mean of βi, i ∈ V . The synchronized local
clock for node i is given by

x̌i(t) = exp(−ηi(d))(xi(t) − τ) + τ − γi(d) (24)

for all t ≥ ti(τ), which has the property of

x̌i(t) = at + b, ∀t ≥ ti(τ) (25)

where a = n
√
a1a2 . . . an and b = (β1 + β2 + · · ·βn)/n.

Proof. The proof is identical to that of Theorem 3whenwe replace
(δij, η̃i, ηi, αi, ᾱ) with (βij, γ̃i, γi, βi, b). Using x̌i(t) = x̃i(t) − γi(d)
and substituting (14) and (23) into (24) gives (25).

Remark 7. We see from Theorem 6 that the converged common
offset b is the arithmetic mean of the offsets βi, i.e., b = (β1 +β2 +

· · ·+βn)/n. That is, Algorithm 2 achieves average consensus in the
arithmetic sense.

Although the compensated local clock x̌i(t) in (24) achieves
synchronization for both the rate and offset, it may experience a
step jump at the time the compensation starts. The jump can even

be negative, causing temporary time reversal. So we modify (24)
to:

x̂i(t) =

{xi(t), t ≤ ti(τ)
{exp(−ηi(d))(xi(t) − τ) + τ

−(1 − exp(−µi(xi(t) − τ)))γi(d)}, t > ti(τ)
(26)

for some constant µi > 0.
The choice of µi determines how fast the offset compensation

term (1−exp(−µi(xi(t)−τ)))γi(d) decays to the desired value γi(d).
In practice, if we take exp(−5) ≈ 0.0067 ≈ 0, then, choosing µi =

5/Ti for some Ti > 0 will ensure that the offset compensation term
becomes roughly γi(d) after Ti local minutes. The value of Ti also
needs to be chosen appropriately to ensure that the compensated
clock rate is sufficiently positive (at least not negative) for all time
t . We have the following result:

Theorem 8. Suppose the graph G is undirected and acyclic with
diameter d and µi > 0, i ∈ V . Then, the compensated local clocks
x̂i(t) in (26) are continuous and

x̂i(t) → at + b, t → ∞, ∀i ∈ V, (27)

where a = n
√
a1a2 . . . an and b = (β1 + β2 + · · ·βn)/n. By choosing

suitably large M > 0 with exp(−M) ≈ 0 and choosing µi = M/Ti
for some Ti > 0 will result in

x̂i(t) ≈ at + b, ∀t ≥ ti(τ) + Ti. (28)

Moreover, by choosing

Ti

{
= any positive number, γi(d) ≤ 0

≥ −
M
ϵ

γi(d) exp(ηi(d)), γi(d) > 0
(29)

for any 0 < ϵ < 1 will ensure that the compensated clock x̂i(t) has a
minimum rate of (1 − ϵ)a.

Proof. The continuity of x̂i(t) is easily verified because xi(ti(τ)) = τ

which means that x̂i(t) → τ as t → ti(τ) either from the left
or from the right. Other than t = ti(τ), it is clear that x̂i(t) is
continuous elsewhere. The asymptotic common rate and offset
follow fromTheorem6 and that exp(−µ(x̂i(t)−τ)) → 0 as t → ∞.
The approximation result (28) follows accordingly.

To show theminimumclock rate of x̂i(t) for the chosen Ti in (29),
we use (26) to obtain its rate

˙̂xi(t) = a − µiai exp(−µi(xi(t) − τ))γi(d), t ≥ ti(τ).

It is clear that when γi(d) ≤ 0, ˙̂xi(t) ≥ a, regardless of the choice of
Ti > 0. When γi(d) > 0,

˙̂xi(t) ≥ a − µiaiγi(d)
= a(1 − µi exp(ηi(d))γi(d)) ≥ a(1 − ϵ),

after using µi = M/Ti and (29).

3.3. Complexity analysis

It is easy to verify that Algorithms 1–2 satisfy the complex-
ity constraints (1)–(3). Indeed, in each iteration k, node i uses
(sj→i(k − 1), ηj→i(k − 1), γj→i(k − 1)) received from each neigh-
bouring node j only once, and then transmits back the resulting
(si→j(k), ηi→j(k), γi→j(k)). The computational complexity of (17)–
(21) is clearlyO(|Ni|) for each node i. Finally, each node i only needs
to store (si→j(k), ηi→j(k), γi→j(k)) for each j ∈ Ni (other than ηi(k)
and γi(k) as well as the temporary variables si(k), η̃i(k) and γ̃i(k)),
so its complexity is also O(|Ni|). Combining with Theorems 3 and
6, the complexity of Algorithms 1–2 is O(d|Ni|) for each node i.

138 K. Xie et al. / Automatica 92 (2018) 133–142

3.4. Application to cyclic network graphs

A main restriction of the proposed algorithm for distributed
clock synchronization is that the WSN graph needs to be acyclic.
For a cyclic graph, it is necessary to prune loop-forming edges so
that the remaining graph becomes loop free. The resulting graph is
called a spanning tree, a tree graphwith all the nodes in the original
graph. This can be done by applying the recently proposed dis-
tributed depth-first search DFS algorithm in Xie, Cai, Zhang, and Fu
(2018), under themild assumption that each node in the graph has
a distinct numerical ID number. For convenience, this algorithm is
listed below (Algorithm 0), which takes at most d + 1 iterations
to finish. Algorithm 0 uses a (fully distributed) max-consensus
algorithm (Nejad, Attia, & Raisch, 2009) for finding the maximum
value in a connected graph, which finishes in d iterations.

Algorithm 0 (DFS Algorithm for Spanning Tree)

• Initialization: Select a root node in G (by running max-
consensus d iterations and setting the node with maximum
ID number as the root node). Mark the root node as ‘‘visited’’
and all other nodes as ‘‘unvisited’’. Transmit a token from the
root node to each of its neighbouring nodes.

• Iterations k = 1, 2, . . .: For each node i, do the following:

(1) If it does not receive the token, do nothing;

(2) If it is ‘‘unvisited’’ and it receives the token from only
one neighbour, then mark the node as ‘‘visited’’, and
relay the token to all other neighbouring nodes with-
out the ‘‘removal’’ mark, except the incoming edge
(i.e., the edge where the token came from);

(3) If it is ‘‘unvisited’’ and it receives the token frommulti-
ple neighbours, then mark the node as ‘‘visited’’, leave
one (any one) incoming edge alone and mark all other
the incoming edges as ‘‘removal’’, and then relay the
token to all other neighbouring nodes without the
‘‘removal’’ mark, except the remaining incoming edge;

(4) If it is already ‘‘visited’’ and it receives the token, mark
the incoming edge as ‘‘removal’’ and do not relay the
token further.

4. Properties and modifications

In this section, we discuss several properties and modifications
of the proposed clock synchronization scheme.

4.1. Robustness against transmission delay and loss

Algorithm 2 is resilient to transmission delays due to the fact
that each node uses the most recently received information from
its neighbours to update its own information. A delayed arrival of
information from neighbours will only delay the update and the
convergence of the algorithm, without affecting the final consen-
sus. To see this, for each edge e in G, we denote its transmission
time by T (e) and allow it to be a positive integer only: T (e) = 1
(unit of time) if there is nodelay and loss; T (e) > 1 if it involves T (e)
units of time delay or T (e)− 1 retransmissions or a combination of
them. For a path p in G, its path transmission time T (p) is defined to
be the time it takes to relay a packet along this path by adding up
the transmission times of the edges. We have the following result.

Corollary 9. Suppose there exists T (maximum path transmission
time) such that T (p) ≤ T for every path p in G. Then, under the
conditions of Theorem 3, Algorithm 1 achieves convergence after T

iterations, i.e., ηi(k) = αi − ᾱ for all k ≥ T , i ∈ V . Similarly, under
the conditions of Theorem 6, Algorithm 2 achieves convergence after
T iterations, i.e., γi(k) = βi − b for all k ≥ T , i ∈ V . In the case of no
delay (i.e., T = d), we have ηi(k) = αi − ᾱ and γi(k) = βi − b for all
k ≥ d, i ∈ V .

Proof. Consider any node i. All the nodes in the acyclic G can be
organized as a tree with node i in the root. We see from (10)–(11)
in Theorem 3 and (22) in Theorem 6 that if there is no delay and
loss, then at each iteration k, the variables k hops away from node i
are added to si(k), η̃i(k) and γ̃i(k). If there is T (e) > 1 for some edge
e = (i1, i2) along some path p originated from node i (assuming
node i1 is closer to node i than node i2), then the information in all
the nodes along the path p starting from node i2 will all be delayed,
but they will be included in a later iteration. Since the maximum
path transmission time is T , we conclude that after T iterations,
ηi(k) = αi − ᾱ and γi(k) = βi − b for all k ≥ T , i ∈ V .

Likewise, if packet loss happens, it is sufficient that retrans-
mission happens and eventually the information arrives, which
can be guaranteed by most communications protocols, e.g., Trans-
mission Control Protocol (TCP), via Acknowledgement (ACK). This
will result in transmission delay only and will not affect the final
consensus.

4.2. Asynchronous implementation

Although Algorithms 1–2 are written as a synchronous algo-
rithm (i.e, every node uses the same time index k and updates
at the same time), this is purely for convenience. The implemen-
tation can be completely asynchronous without degradation to
the synchronization result. That is, no synchronicity is needed
among the nodes in the sensor network. More specifically, each
node simply needs to wait till it receives new information from
its neighbours, then update its own information and transmit the
updated information to its neighbours.

4.3. Regional clock synchronization

For a large-scale WSN, it is often sufficient and important for
each node to be in sync with nodes over a sub-network around
itself, the notion of regional clock synchronization. This has the
obvious benefit that the latency over the sub-network is reduced,
resulting in faster synchronization. A region of size δ for node i,
denoted by Gδ

i , is the sub-network with all the nodes at most δ

hops away from node i, including node i. Similar to the analysis
in the previous subsection, we recognize (19)–(20) in Theorem 6
that Algorithm 2 can be used to achieve this purpose by stopping
after δ iterations, i.e., ηi(δ) = αi − ᾱ(i) and γi(δ) = βi − b(i), where
ᾱ(i) and b(i) are the averages of αj and βj, respectively, over j ∈ Gδ

i .

5. Illustrative examples

We illustrate our distributed clock synchronization algo-
rithm using three examples. Comparisons are done with existing
average-consensus based algorithms.

5.1. Example 1: Demonstration of Algorithms 1, 2 and 0

Considering the graph G in Fig. 1(a) with 13 nodes.
We first execute Algorithm 0 to generate a spanning tree. Us-

ing the max-consensus algorithm on G (using the negated labels)
yields node 1 as the root node. The token is sent from node 1 to
nodes 2, 3, 4 and so forth. The resulting spanning tree is in Fig. 1(b),
with diameter d = 6 (a path from node 7 to node 13, for example).

K. Xie et al. / Automatica 92 (2018) 133–142 139

(a) Original graph. (b) Spanning tree.

Fig. 1. Graph of WSN.

Next, we apply Algorithms 1–2 to the graph in Fig. 1(b) with the
local clock parameters {ai} and {bi} given by

a = [1 1.1 0.9 0.8 1.2 1.1 0.8 1.3 0.7 1.2 0.8 0.9 1]
b = [0.1 0 0.15 0.08 0.05 0.07 0.09 0.12 0.13 0.16

0.1 0.13 0.1].

We assume that execution time for each iteration k is 0.1 s. The
local clock time τ = 2 (minute) is used.

It follows that the global time ti(2) at which the local clock i
reads τ = 2 is given by aiti(2) + bi = 2, giving

[t1(2) t2(2) . . . t13(2)]
= [1.9000 1.8182 2.0556 2.4000 1.6250 1.7545 2.3875

1.4462 2.6714 1.5333 2.3750 2.0778 1.9000]. (30)

Similarly, it is verified that the global time ti(1) at which the local
clock i reads τ − 1 = 1 minute is given by aiti(1) + bi = 1, which
yields

[t1(1) t2(1) . . . t13(1)]
= [0.9000 0.9091 0.9444 1.1500 0.7917 0.8455 1.1375

0.6769 1.2429 0.7000 1.1250 0.9667 0.9000]. (31)

We can compute a = 13
√
a1a2 . . . a13 = 0.96826829 and

[β1 β2 . . . β13]

= [0.1603 0.2395 0.0097 − 0.3238 0.4266 0.3011 − 0.3117
0.5997 − 0.5867 0.5153 − 0.2996 − 0.0118 0.1603],

giving b = 0.06755385. The only information available to each
node i is xi(tj(1)) and xi(tj(2)), j ∈ N , e.g.,

[x1(t2(1)) x1(t3(1)) x1(t4(1))] = [1.0091 1.0444 1.2500];
[x1(t2(2)) x1(t3(2)) x1(t4(2))] = [1.9182 2.1556 2.5000]. (32)

From the above, each node i computes δij = ln(xi(tj(2))− xi(tj(1))),
e.g., [δ12 δ13 δ14] = ln[0.9091 1.1112 1.2500].

ExecuteAlgorithms1 and2 for 6 iterations each (or 1.2 s in total)
with ϵ = 0.5, Ti ≥ 2 andM = 5. The compensated local clocks x̂i(t)
in (26) are shown in Fig. 2. We see from Fig. 2 that before the local
clocks’ readings reach τ = 2, each clock runs at its own rate with
its own offset. After they reach τ = 2, they start to converge. At
the global time t = 5, all the local clocks have converged to the
common rate and common offset.

Next, we test the algorithms’ resilience to transmission delay
and packet loss. Assume that 1) a unit of delay (one iteration time)

Fig. 2. Our algorithm: Before and after compensations.

occurs for the transmission of (x1→2(3), s1→2(3)); 2) a packet loss
occurs for (x3→7(4), s3→7(4)). It is verified that both algorithms take
at most 7 iterations to converge, totalling 1.4 s, which is only 0.2 s
slower than in the case without delay or packet loss. Also, due to
the choice of M = 5, the achieved accuracy at t = 5 s is about
exp(−5) ≈ 0.0067 or 0.67%.

Note that since the slowest local clock (clock 9) reaches τ = 2 at
global time t = 2.6714 (minutes), Algorithms 1–2 can be executed
only after t = 2.6714. The compensations for the local clocks can
be done only after the algorithms are terminated. This means that
the un-compensated local clock readings are recorded and these
readings are revised after the algorithms are terminated.

5.2. Comparison with Laplacian matrix-based algorithms

Now we compare the simulation results above with Laplacian
matrix-based consensus algorithms for clock synchronization. It
is well known that, for a Laplacian matrix-based algorithm, con-
vergence is asymptotic only and the convergence rate depends on
the ratio of the second and largest eigenvalues of the Laplacian
matrix, which in turn depends highly on the network topology
(see, e.g., Li et al., 2011). In contrast, Theorem 3 shows that at
iteration k, all the nodes in the sub-graph within k hops away
from node i are used to derive the averaged clock rate; see
(10)–(11). Hence, the convergence rate depends on how many
nodes are absorbed in iteration k, and convergence completes
when k = d (the graph diameter). Similar comment applies to the
clock offset synchronization.

Themost representative Laplacianmatrix-based algorithmwas
proposed in Carli et al. (2011) with iterative dynamics:

zi(h + 1) = zi(h) + ui(h) (33)

where zi(h) = [zi(hT0)′ zi(hT0)′′]T with z ′

i (hT0) represents the
compensated (or estimated) local clock time for node i at time
hT0, and z ′′

i (hT0) represents the corresponding compensated (es-
timated) oscillation period (i.e., the reciprocal of clock rate), T0 is
the sampling period and h = 0, 1, 2, The control ui(h) is given
by

ui(h) = −

∑
j∈Ni

Kij

[
0.5

1/(T0 max
i

ai)

]
(zj(hT0)′ − zi(hT0)′)

140 K. Xie et al. / Automatica 92 (2018) 133–142

and Kij are elements of a Laplacian matrix K given by

Kij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

max{|Ni|, |Nj|}
, if i ̸= j, (i, j) ∈ E

−

∑
j̸=i

Kij if i = j

0 otherwise.

The initial conditions are chosen as z ′

i (0) = xi(0), z ′′

i (0) = 1 (the
‘‘nominal’’ clock rate). Between the update times hT0 and (h+1)T0,
the compensated local clocks are

z ′

i (t) = z ′′

i (hT0)(xi(t) − x(hT0)) + z ′

i (hT0). (34)

The above algorithm requires synchronous sampling, which is
impractical. Amodification is provided in Carli et al. (2011) to allow
asynchronous implementation, with some performance degrada-
tion. For simplicity, we will do comparison only with the syn-
chronous implementation. Applying the above to Fig. 1(a), we get

K =

⎡⎢⎢⎣

11
12

−
1
4

−
1
3

−
1
3

0 0 0 0 0 0 0 0 0

−
1
4

−1 −
1
4

0 −
1
4

−
1
4

0 0 0 0 0 0 0

−
1
3

−
1
4

11
12

0 0 0 −
1
3

0 0 0 0 0 0

−
1
3

0 0
1
3

0 0 0 0 0 0 0 0 0

0 −
1
4

0 0
1
2

0 0 −
1
4

0 0 0 0 0

0 −
1
4

0 0 0
47
60

−
1
3

0 −
1
5

0 0 0 0

0 0 −
1
3

0 0 −
1
3

13
15

0 −
1
5

0 0 0 0

0 0 0 0 −
1
4

0 0
19
20

−
1
5

−
1
4

−
1
4

0 0

0 0 0 0 0 −
1
5

−
1
5

−
1
5

−1 0 0 −
1
5

−
1
5

0 0 0 0 0 0 0 −
1
4

0
7
12

−
1
3

0 0

0 0 0 0 0 0 0 −
1
4

0 −
1
3

11
12

−
1
3

0

0 0 0 0 0 0 0 0 −
1
5

0 −
1
3

8
15

0

0 0 0 0 0 0 0 0 −
1
5

0 0 0
1
5

⎤⎥⎥⎦

.

We implement (33)–(34) starting from t = 2 (as the initial time)
and take T0 = 0.05. Note thatmaxiai = 1.3. Running the algorithm
for 60 iterations, we obtain the results in Fig. 3. This value of T0 is
chosen such that the accuracy and convergence time are on par
with Fig. 2 for the transient period (2–5 min). But we see that the
algorithm in Carli et al. (2011) requires a lot more iterations and
has serious discontinuity and time reversal behaviours.

We also comment that the relative accuracy of the compensated
clock rate in Fig. 3 is 4.88% after 60 iteration. To improve the accu-
racy to 0.67% (the same as the proposed scheme), 160 iterations
are needed. With T0 = 0.05 s, this requires settling time of 8 min.
Making T0 shorter would become impractical for most wireless
sensors. In addition, even 8 min of settling time is acceptable, this
would require constant communications and computations (once
every 0.05 s), which means that a main operating mode – sleep
mode – cannot be used. In contrast, our scheme needs 2d = 12
iterations only and settling time of about 3min (or shorter if larger
µi values are used). Also recall that the above comparison is with
the synchronous implementation (Carli et al., 2011).

Fig. 3. Algorithm in Carli and Zampieri (2014): Before and after compensations.

5.3. Example 2: scalability to large WSNs

To demonstrate the scalability of the proposed algorithm, we
consider a network with n = 500 nodes. It is reasonable to expect
its diameter to be around d = 10 (or we can use d = 10 for
regional clock synchronization). It is assumed that each local clock
drifts up to 8 (i.e., ±4) seconds every 24 h. (Note that this figure
is on par with the accuracy of a typical 1 µW clock for wireless
sensors, which is about 10−4 parts-per-million (PPM), or 0.01%;
see, e.g., Sadler, 2005.) To guarantee a maximum error of 0.01
(i.e., ±0.005) second, it is sufficient to re-synchronize the clocks
every 2 min. Assuming each iteration of Algorithm 1 or 2 takes
0.05 s, then 1 s (for every 2 min) will be enough to synchronize
all the clocks.

To give a specific example, we consider a WSN testbed studied
in Schenato and Fiorentin (2011) where each sensor node uses
an external crystal oscillator (ECO) running at 32768 Hz during
the idle state. The corresponding clock resolution is 1 tick =

1/32768 Hz = 30.5 µs. Assuming that the maximum clock rate
drift is 10−4 PPM as above, then the maximum clock offset is
0.0001×2×60 = 0.012 s,which is 392 ticks. Supposewedonot do
the rate synchronization and simply do the offset synchronization
every 2 min, i.e., run Algorithm 2 only once every 2 min. Then,
after each re-synchronization, the offset error is reduced back to
exp(−5) × 392 = 2.64 < 3 ticks, assuming that M = 5
and µi are chosen to have settling time less than 2 min. If rate
synchronization is also done, then this compensates about 90% of
the clock drift, i.e., the maximum offset error is reduced down to
39.2 ticks after each re-synchronization. Together with Algorithm
1, the clock offset error is reduced down to 0.264 tick.

5.4. Example 3: resilience to measurement errors

To test the robustness of the proposed scheme against mea-
surement errors, we revisit Example 1 by adding measurement
noises and quantization errors. We first claim that, under the as-
sumption that the measurement errors are modelled by zero-mean
random variables with variance σ 2, the induced error variances in the
compensated clock rate and offset are approximately 2σ 2/n in both
cases, resulting in great robustness.

To see the above claim, we consider node i and node j ∈ Ni.
Recall that the global time tj(τ) atwhich the local clock j announces

K. Xie et al. / Automatica 92 (2018) 133–142 141

the τ -th minute is given by ajtj(τ) + bj = τ in the noise-free case.
We now modify this to

ajtj(τ) + bj = τ + ej(τ) (35)

with the quantity ej(τ) including both measurement noise and
quantization error at time τ . Denote the induced error in tj(τ) as
∆tj(τ). Taking the approximation of aj ≈ 1, we get ∆tj(τ) ≈ ej(τ).
Similarly, the local clock xi(t) = ait + bi is modified to

xi(t) = ait + bi + ei(t). (36)

Also taking the approximation of ai ≈ 1, we get

∆xi(tj(τ)) ≈ ∆tj(τ) + ei(tj(τ)) ≈ ej(τ) + ei(τ).

Following (3) and using the further approximation that xi(tj(τ)) −

xi(tj(τ − 1)) ≈ 1 and the fact that ln(1 + x) ≈ x for small x, the
induced error in δij(τ) becomes

∆δij(τ) ≈ ej(τ) + ei(τ) − ej(τ − 1) − ei(τ − 1).

Under the assumption that ei(τ) is independent of τ and i with
zero mean and variance σ 2, ∆δij(τ) is approximately zero mean
with variance of 4σ 2. Using (4), this is equivalent to each δi having
a measurement error of zero mean and variance of 2σ 2. Conse-
quently, the induced error in the arithmetic mean ᾱ of αi, denoted
by ∆ᾱ is approximately zero mean with variance of 2

nσ
2. Since the

compensated clock rate is also approximately equal to 1,we get our
conclusion that the induced error in the compensated clock rate is
approximately a zero mean with variance of 2

nσ
2. The verification

for the compensated offset is similar and thus omitted.
Taking the ECO of 32768 Hz as an example, we assume ei(τ) to

be a random binary value of ±0.5 tick = 10.25 µs. These values
will be added to ti(2), ti(1), xi(tj(2)) and xi(tj(1)) in (30)–(32). After
runningAlgorithms1–2, the newly computed values forα and b are
α ≈ 0.968273 and b = 0.067556, respectively. Comparedwith the
previous values in Example 1, the effect of measurement errors is
indeed negligible. It is verified that the error variances match the
predicted value of σ 2/n. We further assume that the readings of
xi(tj(τ)) are quantized by truncating to 2 decimal points, resulting
in

[x1(t2(1)) x1(t3(1)) x1(t4(1))] = [1.01 1.04 1.25];
[x1(t2(2)) x1(t3(2)) x1(t4(2))] = [1.92 2.16 2.50].

Even in this case, the new values are α = 0.9682 and b = 0.067,
respectively, which are negligibly different.

6. Conclusions

A new fully distributed clock synchronization algorithm has
been proposed for WSNs. The algorithm is developed based on
a finite average consensus concept. For WSNs with an acyclic
graph, the algorithm is shown to converge in only d iterations for
clock rate synchronization and then d iterations for offset syn-
chronization, where d is the graph diameter. Many nice properties
of the algorithm have been studied, including low complexities,
robustness against transmission adversaries and asynchronous im-
plementability. Modification of the algorithm is presented for the
regional clock synchronization problem.

References

Ahmad, A., Zennaro, D., Serpedin, E., & Vangelista, L. (2012). A cactor graph approach
to clock offset estimation in wireless sensor networks. IEEE Transactions on
Information Theory, 58(7), 4244–4260.

Bolognani, S., Carli, R., Lovisari, E., & Zampieri, S. (2016). A randomized linear
algorithm for clock synchronization in multi-agent systems. IEEE Transactions
on Automatic Control, 61(7), 1711–1726.

Carli, R., Chiuso, A., Schenato, L., & Zampieri, S. (2011). Optimal synchronization for
networks of noisy double integrators. IEEE Transactions on Automatic Control,
56(5), 1146–1152.

Carli, R., D’Elia, E., & Zampieri, S. (2011). A PI controller based on asymmetric gossip
communications for clocks synchronization in wireless sensors networks. In
Proceedings of 50th IEEE conference on decision and control and European control
conference (pp. 7512–7517).

Carli, R., & Zampieri, S. (2014). Network clock synchronization based on the second-
order linear consensus algorithm. IEEE Transactions on Automatic Control, 59(2),
409–422.

Chaudhari, Q., Serpedin, E., & Qaraqe, K. (2008). Onmaximum likelihood estimation
of clock offset and skew in networks with exponential delays. IEEE Transactions
on Signal Processing , 56(4), 1685–1697.

Chen, J., Yu, Q., Zhang, Y., Chen, H.-H., & Sun, Y. (2010). Feedback-based clock
synchronization in wireless wireless sensor networks: a control theoretic ap-
proach. IEEE Transactions on Vehicular Technology, 59(6), 2963–2973.

Cortés, J. (2006). Finite-time convergent gradient flows with applications to net-
work consensus. Automatica, 42(11), 1993–2000.

Dai, H., & Han, R. (2004). Tsync: A lightweight bidirectional time synchronization
service for wireless sensor networks. ACM SIGMOBILE Mobile Computing and
Communications Review, 8(1), 125–139.

Du, J., & Wu, Y.-C. (2013). Distributed clock skew and offset estimation in wire-
less sensor networks: asynchronous algorithm and convergence analysis. IEEE
Transactions on Wireless Communications, 12(11), 5908–5917.

El Khediri, S., Nasri, N., Samet, M., Wei, A., & Kachouri, A. (2012). Analysis
study of time synchronization protocols in wireless wireless sensor networks.
International Journal of Distributed and Parallel Systems, 3(3), 155–165.

Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization
using reference broadcasts. In Proc. fifth symposium on operating systems design
and implementation, Vol. 36 (pp. 147–163).

Ferrari, F., Zimmerling, M., Thiele, L., & Saukh, O. (2011). Efficient network flooding
and time synchronizationwith glossy. In Proc. 10th int. conf. information process-
ing in wireless sensor networks (pp. 73–84).

Ganeriwal, S., Kumar, R., & Srivastava, M. B. (2003). Timing-sync protocol for sensor
networks. In Proc. 1st ACM conf. embedded networked sensor sys. (pp. 138–149).

Hendrickx, J. M., et al. (2004). Graph diameter, eigenvalues, and minimum-time
consensus. Automatica, 50, 635–640.

Kadowaki, Y., & Ishii, H. (2015). Event-based distributed clock synchronization
for wireless sensor networks. IEEE Transactions on Automatic Control, 60(8),
2266–2271.

Kashyap, A., Basar, T., & Srikant, R. (2007). Quantized consensus. Automatica, 43,
1192–1203.

Leng, M., & Wu, Y.-C. (2011). Distributed clock synchronization for wireless sen-
sor networks using belief propagation. IEEE Transactions on Signal Processing ,
59(11), 5404–5414.

Leva, A., Terraneo, F., Rinaldi, L., Papadopoulos, A. V., & Maggio, M. (2016). High-
precision low-powerwireless nodes’ synchronization via decentralized control.
IEEE Transactions on Control Systems Technology, 24(4), 1279–1293.

Li, T., Fu, M., Xie, L., & Zhang, J. (2011). Distributed consensus with limited commu-
nication data rate. IEEE Transactions on Automatic Control, 56(2), 279–292.

Luo, B., &Wu, Y. C. (2013). Distributed clock parameters tracking in wireless sensor
network. IEEE Transactions on Wireless Communications, 12(12), 6464–6475.

Maróti, M., Kusy, B., Simon, G., & Lédeczi, A. (2004). The flooding time synchro-
nization protocol. In Proc. 2nd int. conf. embedded networked sensor systems
(pp. 39–49). New York, NY, USA: ACM.

Mills, D. (1991). Internet time synchronization: the network time protocol. IEEE
Transactions on Communications, 39(10), 1482–1493.

Mock, M., Frings, R., Nett, E., & Trikaliotis, S. (2000). Continuous clock synchroniza-
tion in wireless real-time applications. In Proc. 19th IEEE symposium on reliable
distributed systems (pp. 125–133).

Nejad, B. M., Attia, S. A., & Raisch, J. (2009). Max-consensus in amax-plus arithmetic
setting: the case of fixed communication topologies. In XXII international sym-
posium on information, communication and automation technologies.

Noh, K.-L., Serpedin, E., & Qaraqe, K. (2008). A new approach for time synchro-
nization in wireless sensor networks: Pairwise broadcast synchronization. IEEE
Transactions on Wireless Communications, 7(9), 3318–3322.

Ping, S. (2003). Delay measurement time synchronization for wireless sensor net-
works, Intel Research, IRB-TR-03-013, June.

Ren, F., Lin, C., & Liu, F. (2008). Self-correcting time synchronization using reference
broadcast in wireless wireless sensor network. IEEE Transactions on Wireless
Communications, 15(4), 79–85.

Rhee, I.-K., Lee, J., Kim, J., Serpedin, E., & Wu, Y.-C. (2009). Clock synchronization in
wireless wireless sensor networks: An overview. Sensors, 9(1), 56–85.

Sadler, B. M. (2005). Fundamentals of energy-constrained wireless sensor network
systems. IEEE Transactions on Aerosp. Electron. Syst., 20(8), 17–35.

Sarvghadi,M. A., &Wan, T.-C. (2014). Overview of time synchronization protocols in
wireless wireless sensor networks. In 2nd international conference on electronic
design.

Schenato, L., & Fiorentin, F. (2011). Average timesynch: A consensus-based proto-
col for clock synchronization in wireless sensor networks. Automatica, 47(9),
1878–1886.

Sichitiu, M. L., & Simple, V. C. (2003). Accurate time synchronization for wireless
sensor networks. In Proc. IEEE wireless commun. and networking.

http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb1
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb2
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb4
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb6
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb7
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb8
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb10
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb11
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb12
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb13
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb18
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb19
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb20
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb21
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb22
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb23
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb24
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb26
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb28
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb31
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb34
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb35
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb36
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb38

142 K. Xie et al. / Automatica 92 (2018) 133–142

Simeone, O., & Spagnolini, U. (2007). Distributed time synchronization in wireless
sensor networks with coupled discrete-time oscillators, U. Journal of Wireless
Communications and Networking , 2007(1), 1–13.

Solis, R., Borkar, V. S., & Kumar, P. R. (2006). A new distributed time synchronization
protocol for multihop wireless networks. In IEEE conference on decision and
control.

Sundararaman, B., Buy, U., & Kshemkalyani, A. D. (2005). Clock synchronization for
wireless sensor networks: A survey. Ad-Hoc Networking , 3(3), 281–323.

Van Greunen, J., & Rabaey, J. (2003). Lightweight time synchronization for sensor
networks. In Proc. 2nd ACM intertional workshop on wireless sensor networks and
apps. (pp. 11–19).

Xiao, L., & Boyd, S. (2004). Fast linear iterations for distributed averaging. Systems &
Control Letters, 53, 65–78.

Xie, K., Cai, Q., Zhang, Z., & Fu, M. (2018). A fast converging distributed algorithm for
weighted average consensus. IEEE Transactions on Automatic Control, submitted
for publication.

Yoon, S., Veerarittiphan, C., & Sichitiu, M. L. (2007). Tiny-sync: Tight time synchro-
nization for wireless wireless sensor networks. ACM Transactions on Wireless
Sensor Networks, 3, 2.

Zennaro, D., et al. (2013). Network-wide clock synchronization via message passing
with exponentially distributed link delays. IEEE Transactions on Communica-
tions, 61(5), 2012–2024.

Kan Xie was born in Hubei, China. He received the M.S.
degree in software engineering from the South China Uni-
versity of Technology, Guangzhou, China, in 2009. Cur-
rently, he is pursuing the Ph.D. degree in intelligent signal
and information processing at the Guangdong University
of Technology, Guangzhou, China. His research interests
include machine learning, nonnegative signal processing,
blind signal processing, and biomedical signal.

Qianqian Cai received the B.S. degree in environmental
engineering from the University of Shanghai for Science
and Technology, Shanghai, China, in 2011, and the Ph.D.
degree in engineering from the University of Newcastle,
Newcastle, Australia, in 2016. She is currently doing post-
doctoral research in the School of Automation, Guangdong
University of Technology, Guangdong, China. Her interests
include water pollution control engineering, environmen-
tal monitoring, automation and adaptive neural fuzzy in-
ference systems.

Minyue Fu received his Bachelor’s Degree in electrical en-
gineering from the University of Science and Technology
of China, Hefei, China, in 1982, and M.S. and Ph.D. degrees
in electrical engineering from theUniversity ofWisconsin-
Madison in 1983 and 1987, respectively. From 1983 to
1987, he held a teaching assistantship and a research as-
sistantship at the University of Wisconsin-Madison. From
1987 to 1989, he served as anAssistant Professor in theDe-
partment of Electrical and Computer Engineering, Wayne
State University, Detroit, Michigan. He joined the Depart-
ment of Electrical and Computer Engineering, University

of Newcastle, Australia, in 1989. Currently, he is a Chair Professor in Electrical
Engineering andHead of the School of Electrical Engineering and Computer Science.
In addition, he was a Visiting Associate Professor at the University of Iowa in 1995–
1996, and a Visiting Professor at Nanyang Technological University, Singapore in
2002, Chang Jiang Professor at Shandong University in 2007–2010, a Qian-ren
Scholar at Zhejiang University and Guangdong University of Technology, China.
He is a Fellow of the IEEE. His main research interests include control systems,
signal processing and communications. He has been an Associate Editor for the
IEEE Transactions on Automatic Control, IEEE Transactions on Signal Processing,
Automatica and Journal of Optimization and Engineering.

http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb40
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb43
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb45
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb46
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb47
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48
http://refhub.elsevier.com/S0005-1098(18)30084-0/sb48

	A fast clock synchronization algorithm for wireless sensor networks
	Introduction
	Problem formulation
	Distributed algorithm for clock synchronization
	Clock rate synchronization
	Clock offset synchronization
	Complexity analysis
	Application to cyclic network graphs

	Properties and modifications
	Robustness against transmission delay and loss
	Asynchronous implementation
	Regional clock synchronization

	Illustrative examples
	Example 1: Demonstration of Algorithms 1, 2 and 0
	Comparison with Laplacian matrix-based algorithms
	Example 2: scalability to large WSNs
	Example 3: resilience to measurement errors

	Conclusions
	References

