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a b s t r a c t

This paper proposes a new distributed algorithm for Kalman filtering. It is assumed that a linear discrete-
time dynamic system ismonitored by a network of sensorswith some being active and some idle. The goal
of distributed state estimation is to devise a distributed algorithm such that each node can independently
compute the optimal state estimate by using its local measurements and information exchange with
its neighbours. The proposed algorithm applies to acyclic network graphs (i.e., tree graphs) with fast
finite-time convergence, but is also applicable to cyclic graphs by combining it with a distributed loop
removal algorithm. The proposed algorithm enjoys low complexities, robustness against transmission
adversaries and asynchronous implementability. The proposed distributed algorithm also applies to
maximum likelihood estimation and weighted least-squares estimation, as special cases. With simple
modifications, the proposed algorithm also applies to an important problem in signal processing called
distributed field estimation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed Kalman filtering (DKF) has been an extremely active
research topic for over a decade, in response to rapid development
and vast deployment of low-cost sensors and sensor networks.
The technical challenge is how to migrate the well-established
central (or traditional) Kalman filtering (KF) approach (Anderson
& Moore, 1979; Kalman, 1960) to complex large-scale dynamic
systems with measurements distributed over a large geographical
area (Khan & Moura, 2008). Available DKF algorithms are already
abundant. For example, a one-step prediction algorithm was in-
troduced in Zhou (2013); a distributed iterate-collapse inversion
algorithm in conjunction with a bipartite fusion graph was in-
troduced in Khan and Moura (2008) for spatially sparse systems;
distributed fusion estimationwas proposed in Chen, Zhang, and Yu
(2014a, b) and Chen, Zhang, Yu, Hu, and Song (2015); DKF using
quantized information were studied in Li, Kar, Alsaadi, Dobaie,
and Cui (2015), Riberio, Giannakis, and Roumeliotis (2006) and
Song, Yu, and Zhang (2014); a DKF design using the well-known
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gossip protocol was given in Li, Kar, Moura, Poor, and Cui (2015);
DKF using diffusion strategies was studied in Cattivelli and Sayed
(2010) and Hu, Xie, and Zhang (2012); DKF with out-of-sequence
measurements was treated in Shen, Song, Zhu, and Luo (2009), and
fusion-centre based DKF designs were shown in Song, Xu, and Zhu
(2014) andXu, Song, Luo, andZhu (2012). SeeMahmoudandKhalid
(2013) for a recent survey on DKF. Related works also include dis-
tributed maximum likelihood estimation (Zhao & Nehorai, 2007)
and distributed weighted least-squares estimation (Marelli & Fu,
2015).

Numerous applications of DKF have been reported in the lit-
erature, ranging from environmental monitoring to surveillance,
detection, tracking and object classification. Target tracking using a
sensor network over a large geographical area is an active research
topic recently, andDKFhas been shown to play an important role in
this application (Medeiros, Park, & Kak, 2008; Zhou, Fang, & Hong,
2013). In fact, this line of research can be traced back to Durrant-
Whyte and Rao (1991) in 1991 and Regazzoni (1994) in 1994. DKF
also finds wide applications in plant-wide control systems (Vadi-
gepalli & Doyle, 2003), stochastic nonlinear systems with commu-
nication delays and packet losses (Wang, Fang, & Liu, 2015), clock
synchronization for sensor networks (Luo & Wu, 2013), wireless
sensor networks (Riberio & Giannakis, 2006), spatial estimation
(Cortés, 2009), power networks (Kanna, Dini, Xia, Hui, & Mandic,
2015; Roshany-Yamchi et al., 2013; Sun, Fu, Wang, & Zhang, 2015;
Tai, Lin, Fu, & Sun, 2013). We will also show in this paper a novel

https://doi.org/10.1016/j.automatica.2018.05.012
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.05.012
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.05.012&domain=pdf
mailto:zzwu@scut.edu.cn
mailto:minyue.fu@newcastle.edu.au
mailto:yxu@hdu.edu.cn
mailto:rqlu@gdut.edu.cn
https://doi.org/10.1016/j.automatica.2018.05.012


64 Z. Wu et al. / Automatica 95 (2018) 63–72

application of DKF in distributed field estimation where a sensor
network is used to estimate the parameters of a physical field
over a large geographical area, a problem with vast applications
on its own (see, e.g., Martinez, 2010; Talarico, Schmid, Alkhweldi,
& Valenti, 2014; Wang, Ishwar, & Saligrama, 2008).

One common approach to DKF is to use an average consensus
strategy as introduced in Xiao and Boyd (2004); see Carli, Chiuso,
Schenato, and Zampieri (2008), Das and Moura (2015), Kar and
Moura (2011), Song, Yu et al. (2014), Xu et al. (2012), and Zhou
et al. (2013) for examples of this approach. Themain shortcomings
of this approach include (1) usually only asymptotic convergence
is guaranteed, meaning that an infinite number of iterations is
required in theory; (2) stopping criteria are difficult to give for
practical applications; (3) only sub-optimal estimates are usually
given. Another common problem with many existing DKF algo-
rithms is that a fusion centre is required, which means that they
are not fully distributed. Approaches of this kind include Chen et al.
(2014a, b, 2015), Shen et al. (2009), Song, Xu et al. (2014) and Xu et
al. (2012).We also note that fusion centre is also commonly used in
the so-called parallel Kalman filtering where local measurements
are used to produce local estimates that are then fused together in
a fusion centre; see, e.g., Hashemipour, Sumit, and Laub (1988). The
need for fully distributed DKF with good optimality properties and
low computational, communicational and storage complexities is
urgent. These features are essential to make DKF scalable to large-
scale sensor networks.

In this paper, we consider a sensor network used to detect,
monitor and track targets within the geographical area covered by
the network. Each target is modelled as a linear dynamic system,
suitable for describing the motion of a moving target or changes
in time-varying parameters. The goal of this paper is to devise a
distributed algorithm that allows us to estimate the state of each
target system. The algorithm needs to have low complexities per
node (in terms of communication, computation and storage) so
that it is scalable to large-scale sensor networks. For convenience,
we mainly consider the tracking of a single target system, as the
tracking of multiple targets can be achieved by a multiple number
of single target trackers.We consider the scenariowhere the target
system is measured by a small subset of active sensors at each
time instant, while the rest of the sensors are idle. The set of
active sensors is allowed to vary for each time. The use of idle
nodes is motivated by applications where only a small fraction of
sensors are able tomeasure information for a particular system. For
example, a surveillance network may be responsible to monitor
certain types of targets over a large geographical area. A moving
target may be observed only by a small number of sensors around
it, but the information about it may need to be distributed among
the whole network so that the target can be tracked as it traverses
within the network.

Following the standard (central) KF approach, we also divide
the DKF problem into two steps, a maximum likelihood estimation
(MLE) step and a one-step forward prediction step. The core tech-
nical issue is how to carry out the MLE step in a fully distributed
manner. For this, we propose a fully distributed maximum likeli-
hood estimation (DMLE) algorithm. Under the assumption that the
communication graph for the sensor network is acyclic (i.e. it is a
tree graph), the algorithm delivers the same (optimal) estimate as
given by a central MLE algorithm, but with the advantage of fast
convergence. That is, the proposed DMLE algorithm converges in
a finite number of iterations (this number equals the maximum
diameter of the graph). For sensor networkswith a cyclic graph,we
can apply a distributed depth-first-search (DFS) algorithm to con-
vert the given graph to a spanning tree before applying the DMLE
algorithm. We will show that the proposed DKF algorithm, which
is based on the aforementioned DMLE algorithm, enjoys a number
of nice properties, including low computational, communicational

and storage complexities, robustness against transmission loss and
delay and asynchronous implementability. The algorithm can run
in either a point-to-point communication mode between neigh-
bouring sensors (for better privacy) or in a broadcast mode (for
lower communication burden).

We emphasize that the above target tracking setting is used to
motivate the proposed DKF algorithm. Other applications of the
proposed DKF algorithm include cascading failure monitoring in a
power network, vehicle tracking in a transportation network, fire
monitoring in a forest, etc. In particular, we will study the appli-
cation to distributed field estimation in detail. To help illustrate
the proposed DKF, two simulation examples will be given, one on
single and multiple target tracking and one on distributed field
estimation.

The rest of the paper is organized as follows: Section 2 formu-
lates the DKF problem; Section 3 gives the proposed DKF algo-
rithm; Section 4 details a number of properties of this algorithm;
Section 5 discusses its application to distributed field estimation;
Section 6 demonstrates the algorithm via some simulation exam-
ples; and Section 7 concludes the paper.

2. Problem formulation

Consider a dynamic model for a target system described by

x(t + 1) = A(t)x(t) + w(t), (1)

where t = 0, 1, . . . is the time index, x(t) ∈ Rn is the state,
w(t) ∈ Rn is a zero-mean i.i.d. Gaussian noise with covariance
W (t) ≥ 0, andA(t) ∈ Rn×n is the (possibly) time-varying transition
matrix. The initial state x(0) is an independent Gaussian variable
with mean x0 and covariance P0 > 0.

The target system is measured by a network of sensors which
can be represented by a graph G(t) = {V(t), E(t)} with a set of
nodes V(t) and a set of edges E(t) ⊂ {(i, j) : i ̸= j, i, j ∈ V(t)}. The
set V(t) = I(t) ∪ S(t), where S(t) is a set of sensing nodes with
measurements and I(t) is an idle set consisting of nodes without
measurements. Each node i ∈ S(t) has a measurement:

yi(t) = Ci(t)x(t) + vi(t), (2)

where yi(t) ∈ Rri , Ci(t) ∈ Rri×n is the (possibly) time-varying
measurement vector, vi(t) is the measurement noise which is a
zero-mean i.i.d. Gaussian noise with covariance Ri(t) > 0. Stacking
up all the measurements, we get

y(t) = C(t)x(t) + v(t). (3)

The covariance of v(t) is R(t) = diag{Ri(t)}. It is assumed through-
out the paper that the system with (1) and (3) is observable.

We assume that G(t) is undirected and acyclic. A graph is called
undirected if each edge is undirected. A graph is called acyclic if
it is connected and has no loops, i.e., it is a tree graph. We will
show how to deal with cyclic graphs later. Denote by Ni(t) the set
of neighbouring nodes connected to node i, and denote by |Ni(t)|
the cardinality of Ni(t). We assume that |Ni(t)| ≪ |V(t)| for each
i ∈ V(t). We denote by d(t) the diameter of the graph G(t), which
is the length of the longest path between two nodes.

For notational convenience, we will suppress the time depen-
dence of the system parameters (A(t), C(t),W (t), R(t)) as well as
those of the network graph (G(t), V(t), I(t), S(t), E(t), Ni(t), d(t)).
In addition, with some abuse of notation, i ∈ G means ∈ V , and
(i, j) ∈ G means (i, j) ∈ E .

It is well known (Anderson & Moore, 1979) that the optimal
state estimation, in the maximum likelihood sense, is given by the
celebrated Kalman filter (KF), which we will call central Kalman
filter. Given the system model (1) and the measurement model



Z. Wu et al. / Automatica 95 (2018) 63–72 65

(3), the optimal state estimate x̂(t + 1) of x(t + 1), conditioned on
measurements y(0), y(1), . . . , y(t), is given by

x̂(t + 1) = Ax̂(t) + AGt (y(t) − Cx̂(t)) (4)

with

Gt = PtCT (t)(CPtCT
+ R)−1, (5)

where Pt is the estimation error covariance for x̂(t) given by

Pt+1 = APtAT
+ W

− APtCT (CPtCT
+ R)−1CPtAT . (6)

An alternative expression for the above is as follows (which we
will use for developing a distributed estimation algorithm):

• Update:

x̃(t) = x̂(t) + Gt (y(t) − Cx̂(t)); (7)

P̃t = Pt − PtCT (CPtCT
+ R)−1CPt . (8)

• Prediction:

x̂(t + 1) = Ax̃(t); (9)

Pt+1 = AP̃tAT
+ W . (10)

The problem of distributed Kalman filtering (DKF) is to devise an
iterative algorithmwhich runs on every node i ∈ Vt to compute an
estimate of x(t) such that after a certain number of iterations, each
node’s estimate, denoted by x̂i(t), will converge to the optimal state
estimate x̂(t) given by the central KF.

Before ending this section, we need to clarify what we mean
by ‘‘distributed’’. In this paper, an algorithm is called distributed
if the following linear complexity constraints on communication,
computation and storage are satisfied:

(1) Local information exchange: Each node i can exchange in-
formation with each j ∈ Ni only once per iteration.

(2) Local computation: Each node i’s computational load should
be at most O(|Ni|) per iteration.

(3) Local storage: Each node i’s storage should be atmostO(|Ni|)
over all iterations.

3. Distributed algorithm for Kalman filtering

In this section, we introduce our DKF algorithm, provide its key
property on acyclic graphs and analyse its complexities.

3.1. Distributed maximum likelihood estimation

Themain difficulty for distributed implementation of the KF lies
in the Update step (7)–(8). This step is also known as themaximum
likelihood estimation (Anderson & Moore, 1979). The problem is to
produce the posteriori estimate x̃(t) of x(t), given its prior estimate
x̂(t) and measurement y(t), i.e., we need to compute the following
conditional expectation (see Anderson & Moore, 1979):

x̃(t) = E{x(t)|x̂(t), y(t)}. (11)

Its solution is, of course, given by (7)–(8); see Anderson andMoore
(1979).

The proposed distributed maximum likelihood estimation al-
gorithm is given in Algorithm 1. It is assumed that the graph G is
acyclic with diameter d.

Theorem 1. Under the assumption that G is acyclic with diameter d,
the estimate x̃(t) and the associated error covariance P̃t computed by
Algorithm 1 coincide with those by (7)–(8).

Algorithm 1 (Distributed Maximum Likelihood Estimation)
Initialization: For each node i and each j ∈ Ni,

• if i ∈ S , set Qi→j(0) = CT
i R

−1
i Ci and αi→j(0) = CT

i R
−1
i yi(t),

• else (i ∈ I), set Qi→j(0) = 0 and αi→j(0) = 0;

• then transmit the above to node j.

Main loop: At iteration k = 1, 2, · · · , d, for each node i,

• if i ∈ S , compute

Qi(k) = CT
i R

−1
i Ci +

∑
j∈Ni

Qj→i(k − 1); (12)

αi(k) = CT
i R

−1
i yi(t) +

∑
j∈Ni

αj→i(k − 1), (13)

• else (i ∈ I), comptue

Qi(k) =

∑
j∈Ni

Qj→i(k − 1); (14)

αi(k) =

∑
j∈Ni

αj→i(k − 1), (15)

• then for each j ∈ Ni,

Qi→j(k) = Qi(k) − Qj→i(k − 1); (16)
αi→j(k) = αi(k) − αj→i(k − 1), (17)

and transmit them to node j.

Termination:

P̃t = (P−1
t + Qi(d))−1

; (18)

x̃(t) = P̃t (P−1
t x̂(t) + αi(d)). (19)

Proof. In the sequel, for a given state estimate x̂ and the associated
estimation error covariance P > 0, we will denote the information
matrix as Q = P−1 and the scaled state estimate as α = Q x̂.

Using the well-knownmatrix inverse lemma, (8) can be rewrit-
ten as

P̃−1
t = P−1

t + CTR−1C .

In view of the composition of C and the fact that R is a block
diagonal matrix, the above can be further rewritten as

P̃−1
t = P−1

t +

∑
i∈S

CT
i R

−1
i Ci. (20)

It is also straightforward to verify that (7) can be rewritten as

x̃(t) = P̃t (P−1
t x̂(t) + CTR−1y(t))

= P̃t (P−1
t x̂(t) +

∑
i∈S

CT
i R

−1
i yi(t)). (21)

A similar expression of the above can be traced back to
Hashemipour et al. (1988).

Take any edge (i, j) ∈ E . Because G is a tree graph, G can be split
into two sub-graphs Gi and Gj with a connecting edge (i, j) between
them. Here Gi is a tree graph with node i as the root node, and Gj is
a tree graph with node j as the root node, and they are obtained
from G by removing the edge (i, j). For each node in Gi, denote
its layer by the number of hops it is away from node i. That is,
node i is called the layer-0 node; all the nodes one hop away from
node i are called layer-1 nodes, those two hops away are called
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layer-2 nodes, and so on. It is clear that the initialization steps set
Qi→j(0) as the information matrix and αi→j(0) as the scaled state
estimate for x(t) using the layer-0 information in Gi only. Then,
tracing through (12)–(17) will lead us to see that after iteration
1, Qi→j(1) will be the information matrix for x(t) using layer 0
and layer 1 information in Gi only, and no information from Gj is
used. Similarly, αi→j(1) will be the scaled state estimate for x(t)
using layer 0 and layer 1 information in Gi only, without using
information from Gj. This process goes on. So in iteration d, Qi→j(d)
and αi→j(d) will be the information matrix and the scaled state
estimate for x(t), respectively, using all the information from layer
0 to layer d in Gi, without using information from Gj. Similarly,
Qj→i(d− 1) and αj→i(d− 1) will be the information matrix and the
scaled state estimate for x(t), respectively, using all the information
from layer 0 to layer d−1 in Gj, without using information from Gi.
We combine them together (using (16)–(17)) to create

Qi(d) = Qi→j(d) + Qj→i(d − 1)
αi(d) = αi→j(d) + αj→i(d − 1),

and note that node j is one hop away from node j and that the
diameter of G is d. Then, it is clear that Qi(d) and αi(d) will be
the information matrix and the scaled state estimate for x(t), re-
spectively, using all the nodes in G. In particular, these results are
independent of node i. Finally, (18) combines the prior information
matrixP−1

t with Qi(d) to create the posterior information matrix
P̃t . Similarly, (19) combines the prior scaled state estimate P−1

t x̂(t)
with αi(d) to create the posterior scaled state estimate P−1

t x̂(t) +

αi(d) and then the posterior state estimate x̃(t).

Remark 2. We give some interpretations for Algorithm 1 . Follow-
ing the proof of Theorem 1, we see that the Initialization part sets
the scaled state estimate αi→j(0) and the associated information
matrix Qi→j(0) for x(t) and allows them to be broadcast to all of
the neighbouring nodes of i. The steps (12)–(15) fuse the scaled
estates and the information matrices together. For i ∈ I, only
the neighbouring information needs to be fused together; whereas
for i ∈ S , the measurement yi needs to be added as well. The
steps (16)–(17) ensure that the information transmitted back to
node j will not be ‘‘contaminated’’ by the information coming
from node j previously. The avoidance of contamination marks
a crucial difference between the proposed distributed maximum
likelihood estimation algorithm and many distributed algorithms
in the literature, and is the key for finite-time convergence.

Remark 3. We see from the proof of Theorem 1 that the computa-
tion of P̃−1

t in (20) involves the fusion of the terms CT
i R

−1
i Ci for all

i ∈ S. Similarly, the fusion of CT
i R

−1
i yi(t) is needed for computing

x̃(t) in (21). Since the fusion is done iteratively, it is natural to
ask what the minimum number of iterations is required to do the
above computations. The following result gives the answer, which
confirms that Algorithm 1 achieves the fastest possible finite-time
convergence for acyclic graphs.

Lemma 4. Under the linear complexity constraint (1) in Section 2, a
connected undirected graph G with diameter d needs a minimum of d
iterations to achieve the fusion (20) or (21).

Proof. Let nodes i and jbe such that they are dhops away fromeach
other (such nodes exist by the definition of d). The information at
node i needs to propagate to node j in order for node j to correctly
fuse the CT

i R
−1
i Ci (or CT

i R
−1
i yi(t)) term. By the linear complexity

constraint (1), this will take at least d iterations.

Remark 5. Since our distributed estimate and its error covariance
coincide with that of the central Kalman filter, our distributed
Kalman filter is stable due to the well-known fact that the central
Kalman filter is stable (Anderson & Moore, 1979).

3.2. Distributed prediction

The distributed implementation of the Prediction step (9)–(10)
is easy, given that each node i ∈ V has a local estimate equal to
x̃(t) and the corresponding estimation error covariance equal to P̃t .
That is, each node i ∈ V computes (9)–(10) independently.

3.3. Application to cyclic network graphs

Amain restriction of the proposed algorithm for DKF is that the
measurement network graphneeds to be acyclic. For a cyclic graph,
it is necessary to prune loop-forming edges so that the remaining
graph becomes loop free. The resulting graph is called a spanning
tree, a tree graph with all the nodes in the original graph.

Constructing a spanning tree is a well-known classical problem
in graph theory. The standard (and most popular) algorithms are
depth-first search (DFS) and breath-first search (BFS) (Goodrich &
Tamassia, 2001; Skiena, 2008). Both algorithms can construct a
spanning tree in O(|V| + |E|) time. However, these algorithms are
sequential, i.e., not distributed. Indeed, both algorithms start with
an arbitrarily chosen root node. In DFS, one starts at the root and
explores as far as possible along each branch before backtracking
and exploring another branch; whereas in BFS, one starts at the
root and explores the neighbouring nodes first, before moving to
the next level neighbours.

In our recent work (Xie & Fu, 2018), we proposed a distributed
DFS algorithm (Algorithm 2) for constructing a spanning tree. The
algorithm applies to a connected graph with diameter d, with the
assumption that each node in the graph has a distinct numerical ID
number.

Algorithm 2 (Distributed DFS Algorithm for Spanning Tree)
Initialization: Select a root node in G (by running max-consensus
d iterations and setting the node with maximum ID number as the
root node). Mark the root node as ‘‘visited" and and all other nodes
as ‘‘unvisited’’. Transmit a token from the root node to each of its
neighbouring nodes.
Iterations k = 1, 2, . . .: For each node i, do the following:

(1) If it does not receive the token, do nothing;

(2) If it is ‘‘unvisited" and it receives the token from only one
neighbour, thenmark the node as ‘‘visited", and relay the to-
ken to all other neighbouring nodes without the ‘‘removal"
mark, except the incoming edge (i.e., the edge where the
token came from);

(3) If it is ‘‘unvisited" and it receives the token from multiple
neighbours, then mark the node as ‘‘visited", leave one (any
one) incoming edge alone and mark all other the incoming
edges as ‘‘removal", and then relay the token to all other
neighbouring nodeswithout the ‘‘removal"mark, except the
remaining incoming edge;

(4) If it is already ‘‘visited" and it receives the token, mark the
incoming edge as ‘‘removal" and do not relay the token
further.

Algorithm 2 uses a max-consensus algorithm (Nejad, Attia, &
Raisch, 2009), which is a distributed algorithm for finding themax-
imum value in a connected graph. For a graph with diameter d and
n nodes (each node iwith a variable ai), the algorithm converges in
d iterations. For completeness, the algorithm is described below:

• Each node i initializes ai(0) = ai and transmits it to its
neighbours.
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• For iterations k = 1, 2, . . . , each node i updates ai(k) =

maxj∈Niaj(k − 1) and transmits it to its neighbours.

As shown in Xie and Fu (2018), Algorithm 2 takes at most d+ 1
iterations to finish. Moreover, it has very low complexity for each
node because, during each iteration, each node relays the token
only to its neighbours which were not visited before.

4. Properties

In this section, we explore the properties, other than the finite
convergence property stated in Theorem 1. These properties in-
clude robustness against transmission adversaries, asynchronous
implementability, and broadcast transmission mode. We will also
discuss a special case of Algorithm1 for distributedweighted least-
squares estimation and application of Algorithm 1 to multi-target
estimation.

4.1. Robustness against transmission loss and delay

It turns out that Algorithm 1 is very resilient to transmission
loss and delay due to the fact that each node uses the most
recently received information from its neighbours to update its
own information. A delayed arrival of information fromneighbours
will only delay the update and the convergence of the algorithm,
without affecting the maximum likelihood estimates. Likewise, if
packet loss happens, it is sufficient that retransmission happens
and eventually the information arrives, which can be guaranteed
bymost communications protocols, e.g., Transmission Control Pro-
tocol (TCP), via Acknowledgement (ACK). This will result in trans-
mission delay only and will not affect the maximum likelihood
estimates. The only requirement to ensure the correctness of the
DKF result is that the delayed information needs to arrive within
one sampling period of the system.

4.2. Asynchronous implementation

Although Algorithm 1 appears as a synchronous algorithm (i.e.,
all the nodes update together at each iteration time k), this is
purely for convenience. The algorithm can be implemented asyn-
chronously as follows: Each node waits till it receives new infor-
mation from its neighbours, then updates its own information and
transmits it to its neighbours. In fact, each node can either update
information as soon as it receives some update from neighbours,
or wait till multiple updates arrive or till a prescribed time interval
elapses. The only tradeoff is that more frequent updates require
more transmissions and less frequent updates cause more delay.
As discussed earlier, as long as the all the iterations finish within
one sampling period, no degradation will occur to the DKF result.

4.3. Point-to-point transmission vs. broadcast

Algorithm 1 is written for point-to-point transmissions be-
tween neighbours. That is, each node i transmits to each
neighbouring node j different information, i.e., (Qi→j(k), αi→j(k)).
Point-to-point transmission has the advantage of good privacy, but
at the cost of more transmissions (one for each neighbour). An
alternative is broadcast. Algorithm 1 can be easily implemented
in a broadcast mode. To do so, each node i still needs to compute
(Qi→j(k), αi→j(k)) for each neighbouring node j, but simply broad-
cast (Qi(k), αi(k)) to all of its neighbours. When node j receives
(Qi(k), αi(k)), it can re-compute (Qi→j(k), αi→j(k)) by subtracting its
own (Qj→i(k−1), αj→i(k−1)). For applications like wireless sensor
networks where transmission power and bandwidth are scarce,
broadcasting is no doubt a better choice.

4.4. Distributed weighted least-squares estimation

Weighted least-squares estimation is no doubt one of the most
popular estimation methods, applicable to a wide range of appli-
cations. Technically speaking, this is a special case of maximum
likelihood estimation. The only difference is that the prior infor-
mation is not available for weighted least-squares estimation. This
is the same as taking Pt = ∞. That is, only the Termination step in
Algorithm 1 needs to be revised to

P̃t = Qi(d)−1
; (22)

x̃(t) = P̃tαi(d). (23)

4.5. Distributed estimation for multiple targets

The proposed distributed algorithm is readily applicable to
track multiple targets. We modify the target model (1) to a set of
target models:

x(m)(t + 1) = A(m)x(m)(t) + w(m)(t), m = 1, 2, . . . ,M. (24)

For each targetm, there may be a set of sensors S(m) monitoring it,
i.e., for each i ∈ S(m),

y(m)
i (t) = C (m)

i x(m)(t) + v(m)(t). (25)

We can either run Algorithm 1 forM times in parallel, one for each
target model, or amalgamate the targets into a super-target and
then runAlgorithm1on it. The two implementationsmay yield dif-
ferent communication complexities depending on whether trans-
missions for different targets are synchronized or not, andwhether
they can be packed together.

5. Application to distributed field estimation

In this section, we discuss how the proposed DKF algorithm
can be easily modified to solve the distributed field estimation
problem.

To illustrate the distributed field estimation problem, consider
monitoring the temperature distribution over a large geographical
area using a network of temperature sensors. Each sensor mea-
sures the temperature at its local point,with unavoidablemeasure-
ment noise. To reduce the noise effect, all the measurements over
a region centred around a sensor are weight-averaged. To further
improve the estimation accuracy, a dynamic temperature model
is incorporated to provide prior prediction of the temperature
change, which can be developed using historical data (e.g., data
over past 24 h) or forecast information. Each sensor may have its
local temperature model, specialized to its local physical environ-
ment. The prior prediction is then calibrated using the averaged
measurements. Although we have used temperature distribution
monitoring as an example, the same distributed field estimation
problem occurs in vast applications, including air pollutant mon-
itoring, water quality monitoring, flow distribution monitoring,
traffic congestion monitoring, data traffic monitoring, and so on.

We now formally describe our distributed field estimation
problem. Given a sensor network represented by a connected
undirected graph G = {V, E} as before, denote by Gi(k) a sub-graph
of G centred around node i such that all the nodes in it are at most
k hops away from node i. Each node i is associated with a state
variable xi(t) ∈ Rm of common interest to all nodes (such as the
temperature in the example above) at time t , and a linear dynamic
model:

xi(t + 1) = Aixi(t) + wi(t), (26)

where wi(t) is a zero-mean i.i.d. Gaussian noise with covariance
Wi ≥ 0, and xi(0) is an independent Gaussian variable with mean
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xi,0 and covariance Pi,0 > 0. Each node i also has a measurement
similar to (2), i.e.,

yi(t) = Cixi(t) + vi(t). (27)

Also given is an integer r ≤ d describing the size of the geographi-
cal region of interest, i.e., each node i is interested only in the sub-
network associated with Gi(r).

In our distributed field estimation problem, we recognize the
fact that a field distribution tends to have high correlations among
neighbouring nodes. Instead of modelling the correlations explic-
itly (which is not always easy), we take the view that each node i
regards all the nodes in Gi(r) to have roughly the same state, i.e.,
xj(t) ≈ xi(t) for all j ∈ Gr . This means that, as far as node i is
concerned, there is a common system model for all the nodes in
Gi(r), which is (26), and themeasurement yj(t) available at j ∈ Gi(r)
is

yj(t) ≈ Cjxi(t) + vj(t). (28)

Due to the above approximation, at each time step t , our dis-
tributed field estimation problem involves doing the following for
each node i:

(1) Compute the regional maximum likelihood state estimate

x̃i(t) = E{x(t)|x̂i(t), yj(t), ∀j ∈ Gi(r)}

and the associated estimation error covariance P̃i(t) using
the approximation (28).

(2) Compute, using the above result and (26), the state estimate
x̂i(t + 1) for xi(t + 1) and the associated estimation error
covariance Pi(t + 1).

It is clear that when the region of measurements used for the
first step is the entire sensor network and the state variables for
different nodes are the same, this problem is the same as the DKF
problemwe have studied so far. The challenge is, of course, how to
modify the proposed algorithm to solve this new problem.

It turns out the required modification is very simple. Firstly, in-
stead of runningAlgorithm1 for d iterations,we stop at r iterations.
Secondly, in the Termination step, Pt , P̃t , x̂(t) and x̃(t) need to be
replaced with their local versions by adding the subscript i. What
these two changes do is that the maximum likelihood estimate
obtained at each node i becomes a regional estimate over Gi(r).
Finally, it is clear that the Prediction step can be easily replaced
with its local version. It is interesting to know that the modified
algorithm has even lower complexities than the original algorithm
due to the lower number of iterations required.

Due to the fact that only r iterations are needed, the graph G
needs not be acyclic. This is because of the nice property of the
proposed algorithm that only nodes within r hops away from node
i are fused in x̃i(t). This means that it is sufficient to have G void of
loops of length r or less. Also note that central Kalman filtering is
not directly applicable to the distributed field estimation because
each node has its own state estimation problem, i.e. there is no
central state to estimate.

6. Simulations

In this section, we provide several simulation examples to
demonstrate the proposed DKF algorithm. Our attention will be on
the complexities of the algorithm and accuracy of the estimation
results. Three examples will be used. The first one is about tracking
of a single target in a surveillance network. The second one is a
simple generalization of the first one, about tracking of multiple
targets. The third one is about distributed field estimation for a
temperature field (e.g., in a bushfire monitoring network).

Fig. 1. Sensor network for target tracking.

6.1. Single target tracking

Consider a network of sensors in a two-dimensional region
to monitor a possible moving target (e.g., intruder, truck, mobile
transmitter). The state of the target is x(t) = [pT (t) sT (t)]T with the
two-dimensional coordinate p(t) and its velocity s(t). The sampling
period is assumed to be T , normalized to be 1 s. Its state-space
equation is a random walk model as follows:

p(t + 1) = p(t) + s(t)T + wp(t), (29)
s(t + 1) = s(t) + ws(t). (30)

Each active sensor i ∈ S measures p(t) with noise, i.e.,

yi(t) = p(t) + vi(t). (31)

We assume that the noises w(t) = [wp(t) ws(t)]T and vi(t) are
independent, zero-mean, and their covariances are as follows:
W = diag{0.1, 0.05}, Ri = diag{0.08, 0.08}, P0 = diag{0.2, 0.2,
0.2, 0.2}.

We consider the square monitoring area in Fig. 1, with 7 × 7
sensors uniformly distributed. It is assumed that each sensor can
detect a target around itwith the radius of 15. The original commu-
nication edges are depicted by the dotted lines., i.e., every node can
communicatewith anyhorizontal or vertical nodenext to it (or, put
in another way, any nodewithin the radius of 12). It is obvious that
this graph is cyclic. Applying the distributed DFS algorithm results
in a spanning tree with the communication edges depicted by the
solid lines in Fig. 1.

Fig. 2 shows the target tracking results by the distributed esti-
mator and the central estimator. As expected by Theorem 1, there
is no difference between the two.

6.2. Multiple target tracking

We consider the same sensor network in Fig. 1 and add a second
target with the following model:

A =

[
0.9 0.9

−0.1 0.91

]
, C =

[
1 0
0 1

]
.

The stochastic properties of the initial state and the noises of the
measurements and the systems are same as in the first example.
The noises for the two targets are independent.

The estimation results are shown in Fig. 3. Again, the results for
the distributed estimation and central estimation are the same, as
expected.
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Fig. 2. Single target tracking comparison.

Fig. 3. Multiple target tracking comparison.

6.3. Distributed field estimation

Consider a terrain (e.g., forest, coal mine, agriculture land,
chemical field) covered by a wireless sensor network to moni-
tor its temperature distribution. Each sensor is equipped with a
temperature sensor. A dynamic temperature model is available
at each sensor, which can be obtained from historical data and
physical properties of the terrain. It is desirable to smooth out
the measurements over a region around each sensor so that mea-
surement noises are reduced and local temperature fluctuations
are suppressed. Although it is possible to carry out the required
estimation work in a centralized way, this would involve a central
processing unit and create communication bottlenecks around it.
The example below shows how distributed estimation is done
using the proposed algorithm.

A square field of one square kilometres has temperature sensors
uniformly distributed, one sensor for every 10× 10 squaremetres.
At each node, the temperature τi(t) at each node i and time t is
modelled by

τi(t) = τ0(t) + δi,

where τ0(t) is the average field temperature at time t , which
experiences the following 24-hour cycle (a fictitious model):

τ0(t) = 10 + 5 sin(ωt)

Fig. 4. Temperature distribution.

withω = 2π/T0 with T0 = 24×60min, and δi represents the local
temperature fluctuation. Fig. 4 shows the distribution of τi(t) with
t = 0 and τ0(0) = 10 (i.e., Fig. 4 shows the distribution of δi+10). It
is assumed in this example that δi is time-invariant. The sampling
period is chosen to be 1 min. The above can be modelled by

xi(t + 1) =

[
0 1

−1 2 cos(ω)

]
xi(t)

with xi(0) = δi + 10. This gives τi(t) = [1 0]xi(t).
The measured temperature at node i is given by

yi(t) = τi(t) + vi(t) = [1 0]xi(t) + vi(t)

with vi(t) as a Gaussian noise with zero mean and variance of
0.09. The measured temperature distribution at t = 0 is shown in
Fig. 5.

Choosing r = 4 as the size of geographical region of interest
and applying the proposed algorithm in Section 5, the resulting
estimated temperature distribution is shown in Fig. 6.

6.4. Comparisons

6.4.1. Target tracking examples
We first compare our simulation results for the two target

tracking examples with several classes of methods.

Sequential processing method: In a sequential processing
method (Zhao & Nehorai, 2007) (although it is also called dis-
tributed method in this reference), the maximum likelihood es-
timation step (or Update step) (7)–(8) is done sequentially. More
specifically, nodes 1, 2, . . . , n are arranged in an ordered sequence
and initialize x̃(t) = x̂(t). Then, node 1 updates x̃(t) using its local
measurement y1(t) and passes the updated x̃(t) to node 2. This goes
on until x̃(t) is finally updated by node n. Clearly, this sequential
processing doe not satisfy our distributed processing properties.

Distributed updating, non-distributed averagingmethod: In the
distributed estimation algorithm in Vadigepalli and Doyle (2003),
each node takes the state estimate x̂i(k − 1|k − 1) using its
own prediction model to obtain x̂i(k|k − 1), then using its local
measurement yi(k) to update its local estimate x̂i(k|yi(k)), then
communicate with all other nodes to obtain an average x̂i(k|k).
Although the result is identical to global estimation, the second
step (communications among nodes and averaging) is not done
in a distributed fashion. Thus, this does not satisfy our distributed
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Fig. 5. Measured temperature distribution.

Fig. 6. Estimated temperature distribution.

processing properties. Vadigepalli and Doyle (2003) recognize this
problem and suggest to do the averaging exercise at a reduced
sampling rate. This would compromise the optimality of the es-
timation.

Central processor assisted method: Some distributed estimation
methods require a fusion centre which collects all the processed
local information and fuse them together to produce a global esti-
matewhich is then broadcast back to each node; Chen et al. (2014a,
b, 2015) and Song, Xu et al. (2014). Obviously these methods are
not fully distributed in our sense.

Laplacian matrix-based average consensus method: Many dis-
tributed Kalman filtering algorithms are available based on this
method, as mentioned in Introduction. Here we discuss Carli et
al. (2008) as a representative algorithm. In Carli et al. (2008),
each node i takes x̂(t) and computes its own update x̃i(t) using its
local measurement yi(t), then uses a Laplacian matrix based aver-
age consensus algorithm to produce the final update x̃(t), which
theoretically requires an infinite number of iterations to achieve
consensus. Carli et al. (2008) use a finite number of iterations,

but this compromises the optimality, and the number of iterations
cannot be determined a priori. In an example in Carli et al. (2008),
a randomly distributed network of 30 nodes needs 10 iterations,
but it is not clear how the required number of iterations grows as
the network size grows. In contrast, the proposed algorithm needs
only d iterations. Other references using the Laplacianmatrix based
average consensus method include Das andMoura (2015), Kar and
Moura (2011), Xu et al. (2012) and Zhou et al. (2013), which suffer
from similar deficiencies.

In summary, all the methods above, estimation errors are iden-
tical or similar to the distributed algorithm given in this paper,
hencewe do not show the corresponding simulation results for the
tracking examples. (The only case where estimation errors are not
identical is the Laplacian matrix-based average consensus method
with a finite number of iterations.) The main differences lie in
either lack of fully distributed processing properties (Methods 1–
3 above) or requiring higher computational and communicational
complexities (Methods 2 to 4 above).

6.4.2. Distributed field estimation example
We now do comparison for the distributed field estimation

example.

Cluster-based method: In Medeiros et al. (2008), a cluster-based
distributed Kalman filtering technique is proposed for target track-
ing. Nodes which can detect the target at a given time instant
forms a cluster. In this cluster, a node is chosen as a cluster head
which collects measurements from other nodes and updates the
state estimate collectively. This updated state estimate is passed
on to the cluster head in the next time instant. It is clear that
this cluster coincides with our set of sensing nodes S(t). However,
the cluster-based processing is still not fully distributed in our
sense. In particular, the cluster head is still a bottleneck for both
communication and computation, although not as severe as in a
fully centralized scheme.

Diffusion method: Instead of doing full average consensus, the
diffusion technique (e.g., Cattivelli & Sayed, 2010; Kanna et al.,
2015; Song, Yu et al., 2014) approximates a global average with an
average among the neighbouring nodes. This makes the algorithm
fully distributed, but the estimation performance becomes sub-
optimal.

Nearest neighbour interpolation-based method: In Martinez
(2010), an asynchronous Kalman filter-like algorithm is proposed
for distributed field estimation by combining a nearest neighbour
interpolation method and Laplacian matrix-based average con-
sensus algorithm. More specifically, each sensor produces a local
estimate of a given field by fusing together its own measurement
and information from neighbouring nodes via nearest neighbour
interpolation, then these local estimates are fused together using
a Laplacian matrix-based average consensus algorithm. Again, the
required number of iterations for a given accuracy level cannot
be determined a priori. In an example in Martinez (2010), for a
network of 75 nodes, 25 iterations are used, which appears high.
It is not clear how this scales up for a large network.

Kriging interpolation method: In Cortés (2009), a distributed
field estimation algorithm is given based on the so-called Kriging
interpolation technique. The algorithm employs the well-known
Jacobi over-relaxation method and a dynamic average consensus
method, both requiring an infinite number of iterations in theory. It
is not clear how to choose the right number of iterations in practice,
especially for large networks.

In summary, the cluster-based method gives the same estima-
tion result for our example, but it requires the selection of the
cluster head and centralized processing in the cluster, hence it is
not a fully distributed method in our sense. The Kriging interpo-
lation method gives a similar simulation result to the proposed
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Fig. 7. Estimated temperature distribution using diffusion method.

method, when the iteration number is sufficiently large, but this
is at the cost of more computation. The diffusion method and
nearest neighbour interpolation-based method give compatible
simulation results, which are shown in Fig. 7. We can see that they
are inferior to the proposed method due to the fact that only the
information from the direct neighbours is used for each node in
each sampling point.

7. Conclusions

In this paper, we have proposed a new distributed algorithm
for Kalman filtering for sensor networks. The algorithm runs very
efficiently on acyclic network graphs, with very low complexities
for each sensor node. It is also applicable to cyclic network graphs
by running a distributed loop removal algorithm on the graph first,
which is also a very efficient with very low complexities. The pro-
posed algorithm provides the same estimation quality as a central
Kalman filter and enjoys many extraordinary features including
robustness against transmission adversaries, asynchronous imple-
mentability, and broadcast mode operation. The technical core of
the algorithm is a distributed algorithm for maximum likelihood
estimation, including weighted least-squares estimation as a spe-
cial case. The algorithm is most suitable for detection, estimation
and tracking of dynamic targets. With simple modifications, the
algorithm is also suitable for an important application domain
called distributed field estimation requiring low-complexity dis-
tributed solutions. We expect that this algorithm will find wide
applications in large-scale sensor networks. Our simulation ex-
amples have demonstrated this potential. Future research topics
include handling correlated measurement noises among sensors,
transmission failures between sensors and quantization errors in
the transmissions.
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